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Abstract. The Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) is designed to investigate fault
mechanics and seismogenesis along a subduction megathrust, with objectives that include characterizing fault
slip, strain accumulation, fault and wall rock composition, fault architecture, and state variables throughout
an active plate boundary system. Integrated Ocean Drilling Program (IODP) Expedition 338 was planned to
extend and case riser Hole C0002F from 856 to 3600 meters below the seafloor (m b.s.f.). Riser operations
extended the hole to 2005.5 m b.s.f., collecting logging-while-drilling (LWD) and measurement-while-drilling,
mud gas, and cuttings data. Results reveal two lithologic units within the inner wedge of the accretionary prism
that are separated by a prominent fault zone at∼1640 m b.s.f. Due to damage to the riser during unfavorable
winds and strong currents, riser operations were suspended, and Hole C0002F left for re-entry during future
riser drilling operations.

Contingency riserless operations included coring at the forearc basin site (C0002) and at two slope basin
sites (C0021 and C0022), and LWD at one input site (C0012) and at three slope basin sites (C0018, C0021
and C0022). Cores and logs from these sites comprehensively characterize the alteration stage of the oceanic
basement input to the subduction zone, the early stage of Kumano Basin evolution, gas hydrates in the forearc
basin, and recent activity of the shallow megasplay fault zone system and associated submarine landslides.

1 Introduction

Subduction zones generate Earth’s most destructive earth-
quakes, but much of what we thought we knew about great
earthquakes, and the tsunamis they generate, was turned up-
side down by the 2004 Sumatra and 2011 Tohoku events.
To better understand seismogenesis and rupture propagation
along subduction plate boundary faults, the Integrated Ocean
Drilling Program (IODP) implemented drilling as part of
the Nankai Trough Seismogenic Zone Experiment (NanTro-
SEIZE) along a transect offshore of the Kii Peninsula, Hon-
shu, Japan (Tobin and Kinoshita, 2006; Figs. 1, 2).

The Nankai Trough is formed by subduction of the Philip-
pine Sea Plate to the northwest beneath the Eurasian Plate
at a rate of∼4.1–6.5 cm yr−1 (Fig. 1) (Seno et al., 1993;
Miyazaki and Heki, 2001), and Shikoku Basin oceanic plate
sediment is actively accreting at the deformation front. In
the seaward portion of the Kumano forearc basin, the genic
zone lies<6000 m below sea floor (m b.s.f.) (Nakanishi et
al., 2002). The Nankai Trough region has a 1300 yr histor-
ical record of recurring great earthquakes that are typically
tsunamigenic, including the 1944 TonankaiMw 8.2 and 1946
NankaiMw 8.3 earthquakes (Fig. 1; Ando, 1975; Hori et al.,
2004, Baba et al., 2006).
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Figure 1. Map of the NanTroSEIZE region showing all Stage 1, 2,
and 3 drill sites. Red= Expedition 338 sites, blue= NanTroSEIZE
Stage 1 and 2 sites. Black outline= region with 3-D seismic data,
yellow arrows= estimated far-field vectors for motion of Philippine
Sea Plate (PSP) with respect to Japan (JP) (Seno et al., 1993; Heki,
2007). Stars= epicenter locations of 1944 and 1946 tsunamigenic
earthquakes. Black line= KR0108-5 seismic reflection line shown
in Fig. 2.

Along the Nankai margin, high-resolution seismic reflec-
tion profiles across the outer wedge of the accretionary prism
(including a ∼11 km×55 km 3-D seismic reflection vol-
ume; Moore et al., 2009), clearly document a large out-of-
sequence-thrust fault system (the megasplay fault; Park et
al., 2002; Fig. 2) that branches from the plate boundary close
to the updip limit of inferred coseismic rupture in the To-
nankai earthquake (Fig. 1). The megasplay system is active
and it may accommodate an appreciable component of plate
boundary motion, but the partitioning of strain between the
décollement zone and the megasplay system (Fig. 2) and the
mechanics of fault slip as a function of depth and time on
the megasplay remain poorly understood. The main objec-
tives of the NanTroSEIZE project include documenting the
role of the megasplay fault in accommodating seismic and
interseismic plate motion and characterizing its mechanical
and hydrologic behavior.

During stages 1 and 2 of NanTroSEIZE (IODP Expedi-
tions 314, 315, 316, 319, 322, 332, and 333), eight riserless
drilling sites and one riser drilling site targeted the incom-
ing Philippine Sea Plate, the frontal thrust region, the mids-
lope megasplay fault region, and the Kumano forearc basin
(Figs. 1, 2; Kinoshita et al., 2009; Saffer et al., 2010; Saito et
al., 2010; Kopf et al., 2011; Henry et al., 2012).

NanTroSEIZE Stage 3 began with IODP Expedition
326, during which casing was installed in Hole C0002F
to 860 m b.s.f. (Expedition 326 Scientists, 2011). Although
IODP Expedition 338 drilling was planned only to deepen
Hole C0002F, we also conducted riserless coring and logging
at Site C0002 and four additional sites (Table 1).

Site C0002 is planned to access the plate interface fault
system where it is believed to be capable of seismogenic
locking and slip, and to have slipped coseismically in the
Tonankai earthquake (Ichinose et al., 2003). This fault sys-
tem also includes the region where a cluster of very low
frequency (VLF) seismic events occurred in 2004–2005 (Ito
and Obara, 2006) and the first tectonic tremor recorded in an
accretionary prism setting was found (Obana and Kodaira,
2009). To access, sample, and monitor these deeper zones,
Hole C0002F will be deepened in 2013–2015, with the ulti-
mate goals of penetrating the megasplay fault and installing
a long-term observatory.

In this paper we present the initial results of logging, cut-
tings, mud gas and coring during Expedition 338. We charac-
terize the petrophysical properties and lithological/structural
associations determined from our log, cuttings and core data.

2 Scientific objectives of Expedition 338

The fundamental objectives of Expedition 338 are:

– To sample the forearc basin sediment and gas hydrate
zone, the Kumano forearc basin – accretionary prism
unconformity, and the upper portion of the inner wedge
to (1) determine the composition, age, stratigraphy, and
internal style of deformation; (2) characterize the gas
hydrate zone in the forearc basin; (3) reconstruct ther-
mal, diagenetic, and metamorphic history; (4) investi-
gate the mechanical state and behavior of the formation;
and (5) characterize the overall structural evolution of
the accretionary prism.

– To characterize the sedimentary section and mass trans-
port deposits (MTDs) in a slope basin seaward of the
megasplay fault at sites C0018 and C0021 (Figs. 3, 4)
to understand the nature of MTDs and their sliding dy-
namics and tsunamigenic potential.

– To target the uppermost 400 m b.s.f. near the projected
fault tip of the megasplay fault. The seismic reflection
data had previously identified this region as the tip of
the megasplay fault that emplaced the block drilled at
Site C0004 over slope basin strata (Fig. 5; Moore et al.,
2009). This megasplay fault is thought to coincide with
the outermost rupture area of the Tonankai earthquake,
and its slip was likely in part responsible for the asso-
ciated devastating tsunami (Park et al., 2002; Moore et
al., 2007).

– To characterize the sedimentary section and the upper
portion of the oceanic crust (Site C0012) in the Shikoku
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Figure 3. Detailed surface morphology and structure of the slope basin at the footwall of the splay fault (Strasser et al., 2011) showing
Expedition 338 sites (red) in relation to NanTroSEIZE Stage 1 and 2 sites (black). Solid black lines= locations of seismic lines A–A′ and
B–B′ in Figs. 4 and 5, respectively. MTD= mass transport deposit, IL= in-line, XL = cross-line.

Basin on the crest of Kashinosaki Knoll (Ike et al.,
2008) on the subducting Philippine Sea Plate (Figs. 1, 2)
to understand (1) how compressional velocity relates to
compaction state and fluid sources; and (2) how igneous
basement structures relate to the alteration state.

2.1 Site C0002 in Kumano forearc basin

Five lithologic units (I–V), based on cuttings and cores, are
identified at Site C0002 (Fig. 6). In the Kumano forearc

basin sediment (lithologic units II and III) in holes C0002J,
C0002K, and C0002L, bedding is subhorizontal to gently
dipping. At the base of lithologic Unit III, however, bed-
ding is intensely disrupted and boudinaged. Vein structures
(Ogawa, 1980) were observed in cores and cuttings exclu-
sively from Unit III in holes C0002F and C0002J.

The lithologic Unit III/IV boundary is defined at differ-
ent depths in holes C0002F and C0002J as a result of mix-
ing of cuttings over an interval of as much as∼100 m in
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C0002F, resulting in uncertainty of that depth magnitude (see
Strasser et al., 2014a for a detailed discussion of reaming
while drilling and the mixing of cuttings). The lithologic Unit
III /IV boundary was cored at 926.7 m b.s.f. in Hole C0002J
(Fig. 6), where we interpret it as an erosional unconformity.

In the upper accretionary prism (lithologic Unit IV, holes
C0002H and C0002J), bedding is subhorizontal to steeply
dipping toward the south or north. Up to 10 % of the cut-
tings in the interval 1550.5–1675.5 m b.s.f. exhibit slicken-
lined surfaces. This interval correlates with the high fracture
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Table 1. Expedition 338 coring summary.

Core Total
Water Cores Interval recovered Recovery Drilled penetration Time on

Hole Latitude Longitude depth (m b.s.l.) (N) cored (m) (m) (%) interval (m) (m) site (days)

338-

C0002F 33◦18.0507′ N 136◦38.2029′ E 1939.00 0 LWD/MWD – – 842–2005.5 2005.5 6.2
C0002H 33◦18.0252′ N 136◦38.2152′ E 1936.50 2 19.0 3.91 20.6 0–1120.0 1120.0 3.5
C0002I 33◦18.0362′ N 136◦38.2077′ E 1936.00 0 – – – – 1360.5 5
C0002J 33◦18.0173′ N 136◦38.2312′ E 1937.50 7 38.0 22.19 58.4 0–940.0 940.0 3.5
C0002K 33◦18.0063′ N 136◦38.2103′ E 1937.50 11 86.5 60.29 69.7 0–286.5 286.5 3
C0002L 33◦17.9970′ N 136◦38.2200′ E 1937.50 24 228.0 186.4 81.8 0–505.0 505.0 3

Site C0002 totals: 44 371.5 272.79 73.4 0–2005.5 6217.5 80
C0012H 32◦44.8783′ N 136◦55.0351′ E 3509.50 0 LWD/MWD – – 0–710.0 710.0 6

Site C0012 totals: 0 – – – 0–710.0 710.0 6
C0018B 33◦09.4319′ N 136◦40.8826′ E 3084.5 0 LWD/MWD – – 0–350 350.0 1.5

Site C0018 totals: 0 – – – 0–350 350.0 1.5
C0021A 33◦10.0482′ N 136◦ 39.4854′ E 2940.50 0 LWD/MWD – – 0–294.0 294.0 1
C0021B 33◦10.0555′ N 136◦39.8610′ E 2944.00 14 120.4 129.91 107.90 0–194.5 194.5 4

Site C0021 totals: 14 120.4 129.91 107.90 0–294.0 488.5 5
C0022A 33◦13.0680′ N 136◦43.4540′ E 2675.50 0 LWD/MWD – – 0–420.5 420.5 3
C0022B 33◦13.0833′ N 136◦43.4667′ E 2674.00 41 345.0 305.5 88.6 0–419.5 419.5 6.5

Site C0022 totals: 41 345.0 305.5 88.6 0–420.5 840.0 9.5

Expedition 338 totals: 198 836.9 708.2 84.6 8606.0 102

LWD = logging while drilling, MWD= measurement while drilling. –= not applicable.

concentration interval of 1500–1550 m b.s.f. and a fault iden-
tified at 1638 m b.s.f. on LWD resistivity images.

Salinity, chlorinity, and sodium in interstitial water show
similar changes with depth, reaching minimum concentra-
tions at 300–500 m b.s.f. (Fig. 7). These minimum concen-
trations are attributable to freshwater derived from the disso-
ciation of methane hydrate.

Methane in headspace gas shows a relatively high con-
centration at∼300 m b.s.f., and propane shows high concen-
tration from 200 to 400 m b.s.f. (Fig. 7). The methane- and
propane-rich interval (200–400 m b.s.f.) corresponds to the
gas hydrate zone inferred from resistivity and sonic log data
(Expedition 314 Scientists, 2009). No massive gas hydrates
were found in cores from this interval, although gas-rich
sands were common. This suggests disseminated methane
hydrate. A methane peak was observed in mud gas data at
the Unit III/IV boundary.

The ratio of methane to ethane plus propane (C1/[C2 +

C3]) andδ13C concentration in methane (δ13C–CH4) suggest
that the methane in the gas hydrate zone is mostly of mi-
crobial origin (Strasser et al., 2014a). The C1/(C2 + C3) and
δ13C–CH4 data of mud gas sampled during riser drilling in
Hole C0002F show that thermogenic methane gradually in-
creases with depth up to∼50 % at∼2000 m b.s.f.

Discrete moisture and density (MAD) data on cuttings (be-
low 875.5 m b.s.f. in Hole C0002F) show lower bulk den-
sity and higher porosity compared with measurements on
discrete samples from cores, as observed during previous

riser drilling (Expedition 319 Scientists, 2010; Inagaki et
al., 2012). Analyses of Expedition 338 cuttings revealed that
these differences resulted from mixing of aggregates pro-
duced during the drilling process, termed drilling-induced
cohesive aggregates.

Compressional borehole breakouts and drilling-induced
tensile fractures (DITFs) observed in Hole C0002F suggest
a northeast–southwest orientation of the maximum horizon-
tal stress (σHmax), which is consistent with breakout data ob-
tained in Hole C0002A (Expedition 314 Scientists, 2009).
A leak-off test (LOT) performed at 875.5 m b.s.f. yielded
an estimate of 32 MPa as the least horizontal principal
stress (σHmin), which is consistent with a LOT performed at
703.9 m b.s.f. in Hole C0009A (Expedition 319 Scientists,
2010).

2.2 Sites C0018, C0021 and C0022 in the outer wedge

LWD logs (holes C0018B and C0021A) and cores (Hole
C0021B) were collected to characterize MTDs in the slope
basin seaward of the megasplay fault zone. New logging data
are used to define two logging units in Hole C0018B (Fig. 8)
and three subunits in Hole C0021A logs (Fig. 9), which cor-
relate to subunits defined based on visual core descriptions
and X-ray CT images in Hole C0021B (Fig. 9) and at Site
C0018 (Expedition 333 Scientists, 2012a).

www.sci-dril.net/17/1/2014/ Sci. Dril., 17, 1–12, 2014
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2.2.1 Site C0018

Six MTDs (1–6) were identified in cores from Hole C0018A
(Expedition 333 Scientists, 2012a); however, the lower res-
olution of the LWD data allowed interpretation of only two
MTD intervals in Hole C0018B by resistivity image analy-
sis. The tadpole diagram (bedding dip angle in Fig. 8) shows
the high-angle, randomly oriented bedding (Fig. 8). Logging
MTD B corresponds to lithologic MTD 6 in cores from Hole
C0018A, while the depth range of logging MTD A encom-
passes lithologic MTDs 3–5 of Hole C0018A (Fig. 8).

2.2.2 Site C0021

Lithologic Unit IA is composed of mottled silty clay with
rare thin interbeds of fine sand and ash layers. Lithologic
Unit IB is composed of a succession of thin sand beds in-
terbedded with silty clay and occasional ash layers (Fig. 9).
Unit IA also contains two intervals of MTD with chaotic
and distorted bedding, i.e., MTD A and MTD B (Fig. 9).

The top of MTDs A and B are defined by a zone of mud
clasts capped by a thin draping sand. Below the mud clasts, a
zone of chaotic/tilted/homogenous bedding occurs. The base
of the MTDs is defined as the last occurrence of a shear
zone, which also corresponds to the base of a zone with rela-
tively high shear strength. We note that MTD A identified in
Hole C0021B and the upper zone with chaotic bedding ob-
served in Hole C0021A do not have the same characteristics
as MTD A identified from structural analysis of the resistiv-
ity image data in Hole C0018B (Strasser et al., 2014b), which
was postulated to correspond to several of the smaller MTDs
observed in Hole C0018A cores (Strasser et al., 2014b; Ex-
pedition 333 Scientists, 2012a). The mismatch between the
upper sections of these two sites is corroborated by the seis-
mic data (Fig. 4), which show that the package of low reflec-
tivity at the corresponding depth at Site C0021 is truncated
to the southeast and does not extend to Site C0018.

A prominent regional seismic reflection (Kimura et al.,
2011; Strasser et al., 2011) marks the top of the thickest MTD

Sci. Dril., 17, 1–12, 2014 www.sci-dril.net/17/1/2014/
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(Fig. 4), which represents MTD 6 and MTD B at sites C0018
and C0021, respectively (Figs. 8, 9).

2.2.3 Site C0022

LWD data and cores were collected at Site C0022 to char-
acterize the uppermost 400 m of sediment near the tip of the
megasplay fault zone where the seaward-most branch of this
fault system approaches the surface (Figs. 2, 5; Moore et al.,
2007, 2009).

Two lithologic subunits are recognized in Hole C0022B.
Subunit designations are adopted with minor modification
from Site C0008 (Expedition 316 Scientists, 2009). Subunit
IA is dominated by silty clay with a variable component of
calcareous nannofossils, foraminifers, siliceous biogenic de-
bris, and volcanic ash (Fig. 10). Subunit IB consists of a se-
ries of interbedded mud clast gravels with thin sand, clayey
silt, and silty clay in the upper part and is dominated by silty
clay in the lower part (Fig. 10). This mud clast gravel is cor-
relative with a similar section at∼245–270 m b.s.f. in litho-
logic Subunit IB of Hole C0008A (Expedition 316 Scientists,
2009).

Bedding is subhorizontal with dip angles<15◦ through-
out the entire section, except in the vicinity of the possible
splay fault.

The interval of 100–101 m b.s.f. (delineated by gray line,
Fig. 10) is a plausible candidate for the location of the
splay fault at Site C0022, because of: (1) increased bed-
ding dip with systematic orientation; (2) more minor faults
20 m above this interval; (3) poor core recovery; and (4) three
2 cm-thick intervals of claystone showing planar fabrics not
encountered elsewhere in Hole C0022B.

A high-resistivity (up to ∼1.5Ωm) interval at 85–
88 m b.s.f., a low-resistivity (0.72Ωm) spike at 100 m b.s.f.,
and a high-resistivity (up to∼1.7Ωm) interval at 102–
106 m b.s.f. correspond to a highly fractured zone and are
likely related to the megasplay faulting (Fig. 10).

Interstitial water data in Hole C0022B are similar to those
in holes C0004D, C0008A, and C0008D. However, the depth
profiles of pH, chlorinity, Na+, Ca2+, Fe2+, Li+ and Rb+

change at∼100 m b.s.f., perhaps associated with the megas-
play fault.

MAD measurements show that porosity decreases from
70 % at the seafloor to 45–50 % at∼100 m b.s.f. and then in-
creases to 60 % at 150 m b.s.f. The minimum porosity occurs
at 93.4–94.7 m b.s.f., which is close to the proposed location
of the megasplay fault.
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Figure 10. Core-log-seismic integration at Site C0022: LWD data and seismic data from In-line 2315 (Kumano 3-D PSDM volume; Moore
et al., 2009) with seismic units defined by Kimura et al. (2011), lithology and lithologic units, fracture dips, and medium button static
resistivity. Dashed and dotted black lines show correlations (“?”= tentative) between the different data sets. Shaded box highlights tip of the
splay fault zone (FZ) and wider deformation zone, identified from fractures in resistivity images and shear zones in cores.

2.3 Site C0012 on Kashinosaki Knoll

LWD data in Hole C0012H (0 to 709.0 m b.s.f.) can be com-
bined with core analyses from previous expeditions (Expedi-
tion 322 Scientists, 2010; Expedition 333 Scientists, 2012b)
and seismic data (Park et al., 2008) to characterize the sub-
duction zone inputs.

Based on variations of the gamma ray data, eight log-
ging units were identified: six (I–VI) within the sedimentary
cover and two (VII and VIII) within the basement, which
are mostly comparable to lithologic units identified by Ex-
pedition 322 Scientists (2010) and Expedition 333 Scientists
(2012b) (Fig. 11). Logging units IV, VI and VII were further
divided into subunits based on resistivity and sonic velocity.

Logging Unit VII (530.3–626.6 m b.s.f.) represents the up-
permost part of the oceanic basement, and corresponds to
lithologic Unit VII and seismic Unit G (Fig. 11). Through
logging Unit VII, the resistivity,P wave velocity and gamma
ray logs exhibit significant variations, with jumps to high re-
sistivity and gamma ray values in subunit VIIB (Fig. 11),
possibly reflecting variable sediment volume within the base-
ment or variable alteration of the basalt.

Logging Unit VIII (626.6–709 m b.s.f.) is characterized by
low gamma ray values with minor fluctuations, high resistiv-
ity values andP wave velocities of∼4–5 km s−1, suggesting
the presence of uniform or fresh basalt (Fig. 11).

3 Summary

Riser drilling was conducted in Hole C0002F to
2005.5 m b.s.f. and suspended for future reoccupation
and completion of the NanTroSEIZE project. LWD data,
mud-gas analyses, and cuttings samples in Hole C0002F
provided constraints on lithology, structure, physical proper-
ties, and geochemistry of the previously unaccessed deeper
part of the Nankai accretionary prism. Riserless coring in
holes C0002H, C0002J, C0002K, and C0002L provided core
samples (1) across the previously unsampled gas hydrate
zone of the Kumano forearc basin; (2) across the Kumano
forearc basin – accretionary prism unconformity, and (3) in
the uppermost accretionary prism. Thus, these operations
enabled not only exploration of the accretionary prism to
∼2005 m b.s.f., but also complemented current knowledge
of Site C0002.

www.sci-dril.net/17/1/2014/ Sci. Dril., 17, 1–12, 2014
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LWD at sites C0012 and C0018 provided petrophysical
data to complement coring from expeditions 322 and 333.
Integration of existing core and 3-D seismic data with new
LWD data enabled us to characterize the petrophysical, litho-
logical and structural manifestation of the oceanic basement
and its overlying sediment at a subduction input site (Site
C0012) as well as submarine landslide dynamics and MTD
emplacement processes at a Nankai Trough Submarine Land-
slide History (NanTroSLIDE) site (Site C0018).

LWD and coring at Site C0021 provided further informa-
tion on the nature, provenance, and kinematics of the MTDs
observed at Site C0018 and provided data on the lateral het-
erogeneity of MTDs.

LWD and coring at Site C0022 provided logging data and
samples across the tip of the megasplay fault, which provided
additional information on the activity of the megasplay fault
and its bearing on earthquakes and tsunamis.
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