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Abstract. The Alpine region was shaped by repeated glaciations during the Quaternary, which led to the for-
mation of overdeepened valleys and basins. These features today, hidden below the present-day land surface,
host multiple stacked and nested glacial sequences and offer valuable insight into the environmental history and
geomorphological evolution of the region. The project Drilling Overdeepened Alpine Valleys (DOVE) of the
International Continental Scientific Drilling Program (ICDP) is dedicated to investigating such overdeepened
structures around the Alps. Within DOVE, we here focus on the Tannwald Basin in southern Germany. Situ-
ated distally within the area formerly occupied by the Rhine Glacier piedmont lobe; it was shaped by multiple
glaciations, yet it is located outside the Last Glacial Maximum (LGM) ice extent. Previous seismic imaging
and the presence of interglacial pollen sequences indicate a multi-phase infill history. The complex sedimentary
architecture observed in a newly drilled core allows for comparison with seismic data and lithological evidence
from other sites. On the basis of a lithofacies model that introduces 17 lithotypes, we propose that the basin fill
is composed of three lithostratigraphic units that reflect the glacial history of the basin. After the erosion of the
Tannwald Basin, a cold-climate, stacked basin-infill sequence recorded sedimentation of two glacial advances,
before it was covered by LGM outwash. The sedimentary record includes an extensive basal glacial shear zone
with deformed bedrock and several overlying diamict horizons. Further upcore, deformation structures under-
score the role of gravitational processes as well as profound glaciotectonics, deforming the sediment deep within
the subsurface. While the sedimentary record indicates a rather rapid infill of the depression, further age con-
straints and detailed investigations of ice-contact sediments will clarify open questions regarding the temporal
classification of the deposits.

1 Introduction

The northern Alpine foreland witnessed repeated glacial cy-
cles during the Quaternary period, comprising glacier ex-
pansion and decay (e.g., Doppler et al., 2011; Ellwanger
et al., 2011; Preusser et al., 2011). By eroding and rede-
positing large rock and sediment masses, glaciers created
landscape features such as polished bedrock surfaces, high

valley flanks, moraine ridges, and outwash terraces. More-
over, large-scale features of this dynamic landscape include
overdeepened valleys and basins that are hidden below the
present-day surface in the Alpine valleys and the Alpine
foreland (Preusser et al., 2010; Gegg and Preusser, 2023).
These overdeepened structures mainly represent deep and
elongated troughs eroded by glaciers into the bedrock below
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the fluvial base level (Cook and Swift, 2012). The forma-
tion process of overdeepening is under debate but presum-
ably is a combination of ice-contact processes (i.e., abrasion
and plucking) and pressurized subglacial (melt)water erosion
(Huuse and Lykke-Andersen, 2000; Alley et al., 2019). Sub-
stantial overdeepening is not limited to topographically con-
fined, inner-Alpine valleys with steep gradients but is also
found in the lower-relief Alpine foreland (Preusser et al.,
2010; Ellwanger et al., 2011; Ellwanger, 2015). An increased
availability of basal water is believed to have enhanced the
subglacial erosional potential far into the Alpine foreland,
thus becoming a driving force for erosion (Alley et al., 1997;
Dürst Stucki et al., 2010; Dürst Stucki and Schlunegger,
2013; Gegg et al., 2021).

Foreland overdeepenings offer large accommodation
space upon deglaciation, capable of hosting multiple stacked
and nested glacial sequences within subglacial to proglacial
sediment successions, as well as post-glacial deposits
(Schlüchter, 1989; Preusser et al., 2005; Anselmetti et al.,
2010; Dehnert et al., 2012; Buechi et al., 2018). These for-
mations serve as valuable archives that provide insight into
the timing and extent, as well as the subglacial conditions
and processes, of past glacier advances in the northern Alpine
foreland (Preusser et al., 2010; Ellwanger et al., 2011; Gegg
and Preusser, 2023). To unravel the complex glacial dynam-
ics that produced overdeepened landforms and their sedimen-
tary fillings, a combination of coring and geophysical analy-
sis has proven indispensable (e.g., Dehnert et al., 2012; Pom-
per et al., 2017; Buechi et al., 2018; Gegg et al., 2021). Re-
cent studies have also benefited significantly from advances
in dating techniques, such as optically stimulated lumines-
cence (OSL) dating, revolutionizing our ability to precisely
determine the timing of glacial advances (e.g., Preusser et al.,
2005; Dehnert et al., 2012; Fiebig et al., 2014; Buechi et al.,
2018; Schwenk et al., 2022).

Unfortunately, such scientific investigations of sedimen-
tary successions are still scarce, while records of commer-
cial drillings, usually with cuttings only, often lack the nec-
essary detail for comprehensive sedimentological interpreta-
tion and geochronological constrains. To address this gap,
the pan-Alpine project Drilling Overdeepened Alpine Val-
leys (DOVE) was initiated, co-funded by the International
Continental Scientific Drilling Program (ICDP). DOVE aims
to conduct detailed investigations at several complementary
sites along the northern (and potentially southern) Alpine
foreland (Anselmetti et al., 2022). The primary objective
of DOVE is to determine the timing and extent of past
Alpine glaciations and to contribute to broader discussions
on climate teleconnections and synchronization of glacia-
tions across the Northern Hemisphere. This study aims to
contribute data to evaluate patterns in glacial–interglacial pa-
leoclimates and landscape evolution from a key overdeepen-
ing of the Alpine foreland: the Tannwald Basin. This basin
stands out in several distinct aspects, leading to its identi-
fication as a high-potential location for the DOVE project

(Anselmetti et al., 2022). Situated in the region that formerly
occupied the Rhine Glacier piedmont lobe, it has been repeat-
edly covered by ice; however, this was without experiencing
the direct impact of the Last Glacial Maximum (LGM) (Ell-
wanger et al., 1995, 2011; Ellwanger, 2015).

2 Geological setting

2.1 Lake Constance amphitheater

The Rhine piedmont–glacial landscape, which stretches from
the northern Alpine front to the Swabian Jura, bears the
distinct imprint of Quaternary erosion and deposition pro-
cesses. These dynamic geological forces have sculpted the
terrain into an amphitheater-like topography within the
Alpine foreland Molasse Basin (Ellwanger et al., 1995, 2011;
Lämmermann-Barthel et al., 2003), with Lake Constance
at the heart of it. While different Quaternary stratigraphic
systems are in use in the countries that border Lake Con-
stance (Doppler et al., 2011; Preusser et al., 2011), a strati-
graphic framework for the Lake Constance amphitheater
has been introduced (Fiebig, 1995; Ellwanger et al., 1995,
2011; Geyer et al., 2011). This approach comprises four re-
gional unconformity-bounded units that represent the three
distinct generations of basin formation: the Steinental Fm.,
Dietmanns Fm., Illmensee Fm., and Hasenweiler Fm. The
formation boundaries of the youngest three correlate with
pleniglacial conditions during the Hosskirch, Riss (both Mid-
dle Pleistocene), and Würm (Late Pleistocene) glaciations,
respectively (Ellwanger et al., 2011; Fig. 1). These lithos-
tratigraphic investigations, in addition to the morphostrati-
graphic concept, have furthermore increased knowledge of
changes in the erosion pattern and the identification of the
reorientation of the branch glacial basins over time. While
alignment of branch basins was originally northward towards
the Danube, the direction later shifted into a westward direc-
tion towards the “Hochrhein” Rhine. This change in glacial
direction also modified the fluvial drainage network orienta-
tion, i.e., the Alpine Rhine was connected to the lower parts
of the Rhine drainage system (Ellwanger et al., 1995, 2011).

2.2 Previous drillings and geophysical surveys in the
Tannwald Basin

Within the Lake Constance amphitheater, some overdeep-
ened basins have been influenced by multiple glaciations
(Ellwanger et al., 2011). One notable example of an
overdeepened structure that has witnessed multiple glacia-
tions is the Tannwald Basin, a distal overdeepened branch
basin located ca. 45 km north of Lake Constance. It be-
came of significant importance when pollen indicative of
the Holsteinian Interglacial, the equivalent of Marine Iso-
tope Stage (MIS) 11, were identified in a fine-grained lacus-
trine sediment succession of a research drilling in 1993/1994
(“Schneidermartin” drilling; Ellwanger et al., 1995, 2011;
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Figure 1. (a) Map illustrating the Quaternary overdeepened structures within the German (differentiated) and Swiss (undifferentiated) Lake
Constance area of the Rhine glacial landscape in the northern Alpine foreland. The location of the Tannwald Basin is indicated by a black area
with hatching. Shown are the maximum ice advances corresponding to the respective glaciations (regional unconformities 1–3); modified
after Graf (2009) and Ellwanger et al. (2011). (b) Locations of seismic survey and new drill site (ICDP DOVE 5068_1_C) with respect
to the outermost terminal moraine of the last glaciation (equivalent to unconformity 2, modified after Burschil et al., 2018). (c) Seismic
section displaying interpreted geological structures based on the stratigraphy of the Schneidermartin core. Seismic facies abbreviations: M
(purple lines) represents molasse, M′ (blue lines) represents slabs of allochthonous molasse, A (light green lines) represents waterlain till, B
(dark green lines) represents fine-grained deposits, C (lines of same color as unconformity 2) represents till and sand units, E (orange lines)
represents fluvial sand and gravel. Blue vertical line: faults with offsets > 2 m. White square: foresets. White triangle: seismic transparent
regions. Modified after Burschil et al. (2018).
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Hahne et al., 2012). The Schneidermartin drilling is located
just outside the terminal moraine ridge of the LGM (Fig. 1b)
and reached the Molasse bedrock at the base of the basin,
at 209 m depth. Similar pollen assemblages were identified
in the Wattenweiler drilling, situated ∼ 3500 m northwest
of the Schneidermartin drilling within the LGM terminal
moraine (Hahne et al., 2012; Ellwanger, 2015). The pollen
findings were used to assign the Tannwald Basin to the pre-
Holsteinian (pre-MIS 11) advance of the Hosskirch glacia-
tion (Ellwanger et al., 2011). A detailed revision of the sed-
imentary succession of the Schneidermartin core projected
the erosional unconformity 2 of the Riss glaciation (MIS 6)
to a depth of 29 m (Ellwanger, 2015; Burschil et al., 2018).
Consequently, the Tannwald Basin was interpreted to contain
sedimentary deposits representing two generations of basins
(Dietmanns Formation, Illmensee Formation) and two glacial
cycles (Riss, Hosskirch).

The infill of the Tannwald Basin at the Schneidermartin
drilling (Ellwanger et al., 2011) comprises thin layers of
sheared fine-grained sediments above the undisturbed Mo-
lasse bedrock. These are overlain by a 13 m thick glacially
sheared block of Molasse, containing several shear horizons.
Based on seismic data, this block has been interpreted as
an allochthonous bedrock slab (Burschil et al., 2018). It is
overlain by gravel layers with Molasse components, followed
by diamictic fines, which were interpreted to represent ice-
proximal sediments of the Hosskirch glacial period. Above,
a succession of delta bottomsets hosts the previously men-
tioned pollen assemblages assigned to the Holstein Inter-
glacial. Upcore, these sediments transition into foresets that
are capped by a till layer, exhibiting stratification and grad-
ing, evolving into a matrix-supported diamict and fines. This
layer is separated from topmost coarse gravels, which rep-
resent meltwater deposits of the Würm glaciation, by an un-
conformity.

Five P-wave seismic reflection profiles were acquired
in the northeastern section of the Tannwald Basin during
2014/2015 (Burschil et al., 2018). Based on the seismic data
and the Schneidermartin drill core description, Burschil et
al. (2018) identified six seismic facies and traced them across
the five profiles (Fig. 1c). Furthermore, the seismic cam-
paigns revealed a 50 m deep and several 100 m wide de-
pression inside the basin, marking its deepest parts. Several
faults with offsets > 2 m were identified within the upper
100 m of the basin fill (Burschil et al., 2018). A complemen-
tary acquired 3D multicomponent S-wave dataset allowed
us to visualize more reflections and lead us to the identi-
fication of glacial tectonics, including additional faults and
shallow glaciotectonic cuspate–lobate folds (Buness et al.,
2020, 2022).

3 Methods

3.1 Drilling operations

Drill site ICDP DOVE 5068_1, located on the western flank
of the overdeepened Tannwald Basin, was the first of the
DOVE sites to be drilled in April 2021 (Fig. 1c; Anselmetti
et al., 2022). To facilitate correlation, it was strategically po-
sitioned near the seismic profiles and the Schneidermartin
drill site (Fig. 1b). Besides the core drilling ICDP 5068_1_C,
two flush drillings (ICDP 5068_1_A and -B), arranged in a
triangle with side lengths of 28 m, were drilled to allow for
a later cross-hole seismic campaign. The primary challenges
encountered during the drilling of the Tannwald Basin were
caused by large variations in grain size and the unconsoli-
dated nature of the sediments. To address these challenges,
the drilling team adopted a combined approach, utilizing
percussion coring techniques down to a depth of 83 m, be-
low which a wireline rotational core system was used that
reached the final depth of 166.25 m. For a comprehensive
overview of the drilling and logging operations, core-quality
assessment, and technical parameters (such as borehole ge-
ometry and casing deployment), see the DOVE operational
report (DOVE-Phase 1 Scientific Team, 2023a).

The core drilling ICDP DOVE 5068_1_C successfully
retrieved 200 individual core sections, each stored within
opaque PVC liners with an inner diameter of 104 mm. The
overall recovery rate was 95 %, some core loss occurred pri-
marily in unconsolidated coarse gravels and cobbles above
39 m depth. Additionally, the unconsolidated nature of the
sediments led to the mobilization and partial loss of sandy
and fine sediments, for example at depths between 70 and
115 m. Both at the drill site and university storage facilities,
the cores were refrigerated at 3–5 °C.

3.2 Core logging and sampling

The core workflow defined in the DOVE project follows
mostly the guidelines developed during the Quaternary
drilling campaign of the National Cooperative for the Dis-
posal of Radioactive Waste of Switzerland (e.g., Schuster et
al., 2020), which has been successfully applied in numerous
drilling campaigns within the Swiss Alpine foreland (e.g.,
Gegg et al., 2021; Schaller et al., 2023). We conducted non-
destructive, whole-core scanning to measure wet bulk density
and magnetic susceptibility, using a multi-sensor core logger
(MSCL; Geotek Ltd.) at 5 mm resolution. Any disturbed seg-
ments encountered during drilling or described in the litho-
logical analysis were later manually excluded. A baseline
correction was applied to the magnetic susceptibility data.
Subsequently, the cores were split into archive and working
halves (A-half and W-half) under subdued orange light to fa-
cilitate luminescence dating at a later stage.

The initial core description (ICD) was carried out on the
A-half with a primary focus on specific sedimentological ob-
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servations, including grain size, character of contacts (e.g.,
erosional or deformed), clast characteristics (e.g., shape and
roundness), clast-surface features (e.g., striations and cal-
cite precipitations), and sedimentary structures (e.g., cross-
bedding, lamination, and grading). High-resolution line-scan
images were generated with the Geotek scanner to sup-
port the ICD. Additionally, we conducted minimally invasive
measurements using a vane-shear tester to systematically es-
timate the undrained shear strength, where the sediment was
suitable (i.e., dominantly sand or finer). We selected specific
cores, primarily those suspected to contain ice-contact sed-
iments, for X-ray computed tomography (CT) scanning at
the Institute of Forensic Medicine, University of Bern. Sub-
sequently, observations from geophysical logs, ICD, and CT
scans were integrated to define lithotypes, following Eyles
et al. (1983) and Schaller et al. (2023). On the basis of the
sedimentary characteristics and context, the lithotypes were
grouped into seven lithofacies assemblages (LFAs). These
LFAs then serve as building blocks to establish three lithos-
tratigraphic units, which in turn constitute the foundation of
the geological interpretation.

The W-half was used for destructive sampling under sub-
dued orange light, while all cores were otherwise stored in
lightproof tubular film. Geochemical samples were taken im-
mediately upon opening the cores at a 1 m resolution. These
samples were also used to determine water content. Subse-
quently, the fine fraction (< 63 µm) of the geochemical sam-
ples was analyzed for their carbon content, including total
organic carbon (TOC) and total inorganic carbon (TIC), us-
ing a Thermo Scientific Flash 2000 Smart (Thermo Fisher,
Waltham, MA, USA). The concentrations of carbonates and
organic matter (weight percent) were calculated by multi-
plying TIC and TOC values by the stoichiometric factors of
8.3 and 1.8, respectively (Meyers and Teranes, 2001). Po-
tential downcore variations in carbonate phases, such as the
dolomite/calcite ratio, were, however, not accounted for. For
further information on the curated samples, analysis, and
data, see the operational dataset (DOVE-Phase 1 Scientific
Team, 2023b) and explanatory remarks (DOVE-Phase 1 Sci-
entific Team, 2023c).

4 Identification and interpretation of lithotypes and
lithofacies associations

Seventeen lithotypes (facies codes in italic) were identified in
the ICDP DOVE 5068_1_C core (Fig. 2), 11 of these follow
those introduced by Schaller et al. (2023), while 6 lithotypes
are unique to the Tannwald drill core. These lithotypes are
presented as core photos (Figs. 3 and 4) and detailed descrip-
tions in the Appendix (Table A1). The broad range of litho-
facies encountered in the ICDP DOVE 5068_1_C core was
reduced by grouping commonly associated lithofacies into
seven lithofacies associations (LFAs; Fig. 2 and Table 1).

The bottom of the ICDP DOVE 5068_1_C core consists of
moderately consolidated, partly friable sand- and siltstones,
and marls, all representing Molasse bedrock (B, Fig. 3a). The
Molasse was identified as the Upper Marine Molasse (tOM
according to the nomenclature of Ellwanger, 2015; Bach-
mann et al., 1987) as opposed to the interpretation of the seis-
mic data (Upper Freshwater Molasse; Burschil et al., 2018).
A sharp, planar bedrock contact at 155.90 m depth marks the
erosional base of the Tannwald overdeepening in the core.

LFA1 is located directly above the bedrock and predom-
inantly comprises both unconsolidated (Fig. 3b) and con-
solidated (Fig. 3c) Molasse bedrock rafts (Mgt). Glauconite
grains identify the bluish sand of the unconsolidated Mo-
lasse rafts as Upper Marine Molasse (Fischer, 1987). The
consolidated Molasse rafts show in situ crushing and breccia-
tion. The Molasse bedrock rafts are intercalated and locally
sheared into stratified diamicts (Dms). Dms of LFA1 con-
tains glacially striated clasts of Alpine lithologies and sub-
stantial amounts of friable bedrock fragments. LFA1 is de-
fined by low density (2 g cm−3) and shear-strength values be-
low 50 kPa of the unconsolidated Molasse bedrock rafts. The
deformation structures and weak mechanical properties are
interpreted as evidence of the shearing of subglacial till and
bedrock rafts (Benn and Evans, 1996; Hiemstra and van der
Meer, 1997; Buechi et al., 2017). Carbonate content reaches
below 20 wt %, which further reflects the incorporation of lo-
cal Molasse sediments into LFA1. Therefore, LFA1 is clas-
sified as a Type B glaciotectonite (Benn and Evans, 1996;
Evans et al., 2006).

LFA2 comprises brownish-colored, matrix-supported,
massive, and stratified diamicts (Dmm, Dms) associated with
well-sorted, fining-upward sediments that contain frequent
dropstones (Flr(d), Fl(d), Sl). The stratified fines located be-
tween the basal diamicts do not exhibit macroscopic defor-
mation features at the core scale. The number of dropstones
generally increases near the diamicts, indicating the pres-
ence of floating ice (Bennett et al., 1996; Eyles et al., 1983).
Both dropstones and diamicts frequently contain clasts with
glacial striations, providing further evidence for the proxim-
ity of the glacier. Even though the organic matter content is
very low (mostly < 0.5 wt %) throughout the core, it abruptly
increases from 0.1 to 0.3 wt % at the emplacement of the
matrix-supported diamicts (Dmm; Fig. 3d) of LFA2. Further-
more, Dmm exhibits both high values of density (2.4 g cm−3)
and shear strength (200–270 kPa), with low water content
(10 %–13 %). A similar shift of shear-strength values mea-
sured in drill cores from a glacial overdeepening has previ-
ously been interpreted as the result of temporary ice load-
ing (Anselmetti et al., 2010; Dehnert et al., 2012). Along-
side frequent glacial striations, this observation likely indi-
cates subglacial lodgement processes. Consequently, Dmm
is interpreted as subglacial till (Evans et al., 2006), suggest-
ing that LFA2 was emplaced subglacially or submarginally
with intermittent glacier–bed coupling. The association with
stratified fines (Flr(d), Fl(d)) and diamicts (Dms) further sug-
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Figure 2. Summary profile of the ICDP DOVE 5068_1_C core with sedimentary characteristics and acquired petrophysical data.

gest deposition during ice–bed decoupling in confined sub-
glacial cavities or infilling of accommodation space created
under a floating glacier tongue (Ravier et al., 2014; Buechi et
al., 2017).

LFA3 consists of fine-grained Dmm deposits of dark grey
color with frequently occurring glacially striated clasts
(Figs. 2, 3e). The Dmm deposits show increasing density up-
core (peak at 56 m; 2.4 g cm−3), which reflects a gradual in-
crease in clast size upcore (Fig. 2). Upcore-increasing shear
strength (peak at 57 m; 270 kPa) additionally indicates in-
creasing compaction. Water content reaches its lowest values
of 14 % at 58 m. Thus, LFA3 is interpreted to be similar to
LFA2 as a mud-dominated subglacial till (Evans et al., 2006).
The fine-grained character and dark grey color are attributed

to the predominant incorporation of underlying glaciolacus-
trine deposits.

LFA4 consists of fine-grained deposits with gradual lami-
nations and beds, often containing dropstones (Flr, Flr(d), Fl,
Fl(d); Fig. 4d, g, c, f) and rarely interbedded with soft, dark-
colored, and fine-grained diamicts (Dmm, Fig. 3e). Frequent
glacial striations on both dropstones and diamicts suggest
the proximity of a glacier. The diamicts show low density
values (2.2 g cm−3) and relatively low shear strength (com-
pared to the overlying fines) and are interpreted as subaque-
ous debris flows with a proglacial sediment source (Eyles
et al., 1983; Mulder and Alexander, 2001). LFA4 is inter-
preted as deposits from an ice-contact proglacial lake. The
fines of LFA4 at around 70 m depth of the ICDP DOVE
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Figure 3. Line-scan images of cores (1 m sections), showing rep-
resentative lithotypes. (a) B: interbedded mottled siltstone and
sandstone of the Molasse bedrock (163–164 m). (b) Mgt: uncon-
solidated and deformed (faulted) medium sand of the Molasse
bedrock (153–154 m). (c) Mgt: consolidated and deformed Mo-
lasse siltstones and sandstones associated with small amounts of
diamict (mélange type) (152–153 m). (d) Dmm: highly consoli-
dated, brownish-colored diamict with both Alpine and Molasse
clasts (144–145 m). (e) Dmm: soft, fine-grained, dark-colored di-
amict (57–58 m). (f) Dms: soft, light-colored diamict (23–24 m).
(g) Gms: moderately sorted gravel with sandy matrix (10–11 m).
(h) Gmf: poorly sorted gravel with silty and sandy matrix, likely
partly washed out during coring (10–11 m).

5068_1_C core show a slight upcore-increasing trend in den-
sity and shear strength (if a trend is visible at all), while
water content decreases upcore. Increasing amounts of drop-
stones upcore illustrate the shift from more distal, well-sorted
clay and silt facies to a proximal, dropstone-dominated facies
with frequent glacial striations. This typical upward succes-
sion can be interpreted, similarly to LFA2 and LFA3, as evi-
dence of glacial approaching and overriding. However, the
trend in density and shear strength might alternatively re-
sult from an upcore decrease in clay content. Multiple meter-
thick beds of fine-grained lake sediments (Flr(d)) at a depth
of 119–115 m show similar petrophysical characteristics and
are moreover above-average consolidated (Fig. 4g). This also
suggests compaction from ice contact, indicating a glacial
advance (Anselmetti et al., 2010; O’Regan, 2010; Dehnert et
al., 2012). The fines in the lower part of the core locally ex-
hibit soft-sediment deformation along several horizons, rang-
ing from centimeter-thick slumps to meter-thick deformed
sections (Fig. 4d). Deformation mechanisms include both
faulting and folding and, within water-saturated fines on a

Figure 4. Line-scan images of cores (1 and 0.5 m sections) show-
casing representative lithotypes. (a) Sh/Sc: partly deformed (ho-
mogenized), brownish-colored, (cross-)bedded fine to medium sand
(78–79 m). (b) Sh/Sl: dark-colored, fine sand interbedded with dark
silt and clay laminae (53–54 m). (c) Fl: mottled laminations in clay
and silt (lighter greenish and darker grey shades) with bright sand
laminae and sand lenses (106–107 m). (d) Flr: deformed silt and
clay rhythmites of varying thicknesses (126–127 m). (e) Fm(d):
massive fines with dropstones (66–67 m). (f) Fl(d): mottled lamina-
tion in clay and silt with sandy laminae, soft sediment deformation
and dropstones (64–65 m). (g) Flr(d): highly consolidated rhyth-
mites with dropstones and strong soft sediment deformation (118–
119 m). (h) Mcc: fine to medium sand with horizontally aligned silt
and clay lenses (107–107.5 m). (i) Sl: oversteepened beds of lami-
nated fine sand (94–94.5 m). (j) Fm: massive fines (84.5–85 m).

depositional slope in subglacial to proglacial beds, likely in-
dicate gravitational slumping (Visser et al., 1984).

LFA5 is characterized by intercalated meter-thick succes-
sions of stratified and massive fine-grained deposits (Fm, Fl;
LFA5.1) and greyish-colored, partly laminated sands (Sm,
Sl; LFA5.2). The intercalation results in varying density val-
ues and a significant scatter in shear-strength values in beds
of cohesive fines and uncohesive sands. Carbonate content
varies between 20 wt % and 40 wt %, indicating varying sed-
iment sources (Alpine and Molasse origin). Post-sedimentary
deformation occurs throughout LFA5 is in the form of fold-
ing, faulting, and inclined bedding. Fm and Fl are inter-
preted as the product of turbidity currents and suspension
settling in an ice-proximal lake (Eyles et al., 1993; Smith
and Ashley, 1985), while the sand-dominated facies is at-
tributed to density flows (Mulder and Alexander, 2001) and
subaqueous channel fills in a higher energy setting. The re-
peated shifts between LFA5.1 and LFA5.2 are attributed to
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transitions to a more proximal or laterally shifted deltaic
setting (Dehnert et al., 2012). The dark grey laminations
in the sand beds (Fig. 4b) suggest that this process oc-
curs not only on the meter scale but also on the centime-
ter scale. The post-sedimentary deformation features along
multiple failure surfaces, which are likely the result of re-
duced slope stability during interglacial periods. A similar
phenomenon of slope instability that resulted from geomor-
phological changes during rapid deglaciation has been doc-
umented by Fernandes et al. (2020) in the Central Pyrenees.
Furthermore, LFA5 contains horizontally aligned, decimeter-
thick beds of mud-clasts, which are interpreted as reworked
fine lacustrine sediments eroded by subaquatic mass move-
ments (Li et al., 2017). These beds were also identified as
mud-clast conglomerates (Mcc; Fig. 4h) in the ICDP_5068_2
core (Schaller et al., 2023).

LFA6 is characterized by well-sorted, massive, and strati-
fied sands (Sh, Sc) of brownish color that are weakly consol-
idated and rarely interbedded with moderately sorted gravel
(Gms; Fig. 3e). LFA6 is strongly deformed in the lower
part of the core, mainly through steep to near-vertical bed-
ding (Fig. 2). These sands and gravels are interpreted as
glaciodeltaic deposits, formed by underflows from the re-
treating glacier front during deglaciation (Buechi et al.,
2018). This interpretation is supported by a change in color
(Fig. 4a), indicating a shift in the primary sediment source of
basinal fines.

LFA7 consists of moderately sorted gravels with sand-
dominated matrix (Gms) and poorly sorted gravels with pre-
dominantly fine-grained matrix (Gmf; both LFA7.1) with
intercalated soft matrix-supported light-colored diamicts
(Dmm, Dms; LFA7.2). Both the gravels and the diamicts
frequently show glacially striated clasts, which indicate
a glacier-proximal depositional environment. Thus, LFA7
is interpreted as proglacial fluvial and glaciofluvial sedi-
ments, representing alternating meltwater outwash and sub-
aerial debris flows, possibly sourced in ice-marginal and
supraglacial sediments (e.g., Lawson, 1982; Buechi et al.,
2018). Dmm and Dms exhibit comparatively low shear-
strength values that support interpretation of a non-subglacial
origin (< 200 kPa). Thus, they partly exhibit characteristics
of subglacial till (massive nature, glacial striations), but they
lack consolidation (low density and shear strength). Thus, di-
amicts of LFA7 are interpreted as short-distance redeposition
by slumping of diamicts, originally deposited at the LGM
glacier front on the inclined outwash plain (Fig. 1b; Ell-
wanger et al., 2011). Gmf likely represents sedimentation in a
more chaotic setting, possibly during a more proximal glacier
position or during floods (Eyles et al., 1983; Siegenthaler
and Huggenberger, 1993). The upcore-increasing occurrence
of Gmf correlates with an increase in carbonate content and
occurrence of cobble-sized clasts, reflected in an increase
in density (Fig. 2), which might indicate an overall shift to
a more ice-marginal position in a fluvial and glaciofluvial
proglacial outwash plain.

5 Discussion

The lithostratigraphic and petrophysical observations of the
sedimentary infill in the Tannwald Basin are integrated with
existing seismic data (Burschil et al., 2018; Buness et al.,
2020, 2022), morphostratigraphic data, and previously pub-
lished drill-core data (Ellwanger et al., 2011; Hahne et al.,
2012). To facilitate this integration, the Quaternary sedimen-
tary infill was categorized into three lithostratigraphic units:
A, B, and C (Fig. 2). These units represent distinct episodes
of basin infill separated by stratigraphic breaks (Figs. 5
and 6).

The facies evolution in Unit A is interpreted as basin
erosion and subglacial traction processes (LFA1 and LFA2;
Fig. 5a), followed by ice-proximal sedimentation in a
proglacial lake (LFA4; Fig. 5b), and eventually a glacier re-
treat leading to the formation of a stacked delta succession
(LFA5 and LFA6; Fig. 5c). The bedrock rafts of LFA1 can
be correlated with mobilization and transport of much larger
(> 10 m) rafts reported from the Schneidermartin core (Ell-
wanger et al., 2011; Hahne et al., 2012) and seismic facies
M′ of the seismic survey at deeper positions of the Tannwald
Basin (Burschil et al., 2018; Fig. 6). The overlying LFA2 was
probably still emplaced in a subglacial to submarginal set-
ting, as indicated by the intimate association of subglacial
traction till with sorted fines and stratified diamicts. The in-
terbedding is likely to represent first a coupled and then a
decoupled ice–bed interface, as a result of an oscillation of
the ice-margin position, intermittent floating of the glacier
tongue, or opening and closing of more confined subglacial
cavities (Fig. 5a). LFA2 correlates with seismic facies A on
the western slopes of the Tannwald Basin (Burschil et al.,
2018; Fig. 6). The overlying LFA4 represents typical fine-
grained, dropstone-bearing basin fill observed in ice-contact
proglacial lake, representing turbidity flows on a subaque-
ous fan (Fig. 5b). They can be correlated with finer basin-
floor bottomsets of the Schneidermartin drill core 1 km SW
further away and seismic facies B (Ellwanger et al., 2011;
Burschil et al., 2018; Fig. 6). The organic matter content does
not indicate interglacial sediments, suggesting the filling of
the overdeepening under still periglacial conditions, which
is a common phenomenon (Gegg and Preusser, 2023). Indi-
vidual beds of above-average consolidated fines at the top of
LFA4 might result from compaction by ice contact, indicat-
ing glacial advance (Anselmetti et al., 2010; O’Regan, 2010;
Dehnert et al., 2012). However, the role the glacier played
within this lake remains an open question, especially because
of the lack of coarse-grained deposits that are expected at the
front of a moving glacier. One possible explanation might
be the reported inability of such re-advances to carve basins
into fine-grained, soft lake sediments with low permeability
(e.g., Menzies, 1989). The onset of delta propagation might
be associated with continuing and larger-scale gravitational
slumping on the depositional slopes of the basin, leading to
faulted and folded sediment beds. This correlates with the
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Figure 5. Schematic block diagrams to illustrate the geological evolution of the Tannwald Basin. Glacier ice is illustrated in light blue,
water level in transparent light blue, and (oscillating) ice-flow direction with dark blue (bi)directional arrows. (a) Advancing glacier from S
(Hosskirch glaciation), basin erosion and transport of bedrock rafts and subglacial diamict, filling of subglacial cavities at decoupled ice–
bed interfaces. (b) Ice-contact sedimentation in proglacial lake with mass movements on basin slopes. (c) Glacier retreat and stacked delta
formation. (d) Glacier re-advance from SW (Riss glaciation) and erosion of second-order inlaid basin. (e) Glacier retreat and stacked delta
formation. (f) Glacier advance from SW (Würm advance, LGM), emplacement of LGM terminal moraine with mass movements on outwash
plain, glaciotectonic deformation of sedimentary strata of Unit A.

transition from fine-grained bottomsets to foresets inferred
from the Schneidermartin core at the top of seismic facies B
(Ellwanger et al., 2011; Burschil et al., 2018; Fig. 6). The
facies evolution from LFA5 to LFA6 with fluvial channel
fills of different color indicates the transition to a more prox-
imal sediment source, for example, by development of al-
luvial fans by more local, secondary stream-networks after
glacial retreat (Fig. 5c). Finally, Unit A is identified as the
Dietmanns Formation (Ellwanger et al., 2011; Hahne et al.,
2012).

Facies evolution of Unit B indicates glacier re-advance,
likely coupled with secondary shallow basin erosion (LFA4
and LFA3; Fig. 5d), subsequent glacier retreat, and, in anal-
ogy to Unit A, delta formation (LFA5 and LFA6; Fig. 5e).
In contrast to the Schneidermartin core, where coarsening-
upward foresets announce glacier advance (Ellwanger et al.,
2011), the ICDP DOVE 5068_1_C core shows the transition
back to fine-grained lacustrine sediments. The characteristics
(dropstone occurrences, density) of LFA4 indicate gradual
glacier advance, infilled into a newly eroded, possibly rather

shallow, basin, stacked on top of the main valley fill (Fig. 5d).
This is supported by the fact that overlying LFA3 correlates
with unconformity 2 (Fig. 1c) and can be followed in the
seismic profiles of Burschil et al. (2018) from the Schnei-
dermartin core at ∼ 30 m depth (Ellwanger et al., 2011) to
the ICDP DOVE 5068_1_C core at ∼ 60 m depth (Fig. 6).
Hence, Unit B is identified as the Illmensee Formation (Ell-
wanger et al., 2011; Hahne et al., 2012).

Unit C indicates the development of a fluvial and glacioflu-
vial proglacial outwash plain with mass movements from
the close glacier margin (LFA7; Fig. 5f). LFA7 morpho-
logically correlates with the outwash plain associated with
the LGM terminal moraine ∼ 100 m to the southwest of the
ICDP DOVE 5068_1_C drilling (Figs. 1b, c and 6). The basal
contact of LFA7 can be followed in the seismic profiles of
Burschil et al. (2018) to the Schneidermartin core (Ellwanger
et al., 2011), where it correlates to the topmost 22 m of flu-
vial coarse gravels with diamicts. The decreased thickness at
the Schneidermartin drilling might be due to the greater dis-
tance from the LGM terminal moraine. The LGM glacier,
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Figure 6. 3D block image showing simplified core profiles (of
DOVE 5068_1_C (supplemented with the lithostratigraphic units of
this study) and Schneidermartin (Ellwanger et al., 2011)) and their
spatial relationship to seismic lines 1 (front) and 4 (left side) includ-
ing the seismic facies (capital letters and colored lines; see Fig. 1c
for legend; Burschil et al., 2018). Inferred bedrock morphology in
brown, modern topography in grey.

which evidently created push-moraines in the Lake Con-
stance area (Ellwanger et al., 2011), caused cuspate–lobate
folding that was documented in 60 m depth in the vicinity
of the ICDP DOVE 5068_1_C drilling (Buness et al., 2022).
Seismic reflections of seismic line 1, however, seem to be
displaced and inclined at an even greater depth of ∼ 100 m
(Fig. 1c). This effect can be correlated to sedimentary de-
formation in the form of faulting, folding, and oversteep-
ening of sedimentary strata in LFA5 and LFA6 of Unit A
(Figs. 2 and 6). Hence, glaciotectonic deformation caused by
the Würm (LGM) glacial advance presents an alternative ex-
planation to syn-sedimentary gravitational slumping. The re-
sulting stresses might have further contributed to the above-
average consolidation and severe deformation of fines at the
interface of LFA4 and LFA5 of Unit A, as well as the mottled
character of lamination of fines throughout Unit A.

6 Conclusions

Drilling the overdeepened Tannwald Basin revealed key ge-
ological and sedimentological features, including a basal
5.4 m thick glacial shear zone of deformed bedrock as well
as recurrent ice-contact sediments. Frequent evidence of sed-
iment deformation indicates the pivotal role of gravitational
and glaciotectonic processes on the western slope of the
basin. Detailed sedimentological investigations, combined
with petrophysical data from the ICDP DOVE 5068_1_C
core, led to the definition of seven lithofacies associations
that were grouped into three lithostratigraphic units. Unit A
represents an initial basin infill cycle following subglacial

erosion and deformation, followed by the development of
a delta. Unit B provides evidence for a glacier re-advance,
once again followed by the development of a delta similar
to Unit A. Unit C indicates the development of a glacier-
proximal glaciofluvial outwash plain. Hence, the sedimen-
tary sequence of the Tannwald Basin reflects a multi-phase
stacked infill, indicative of at least three distinct glacial ad-
vances. However, without independent age control, the tim-
ing and relevance (glacial fluctuations or independent glacia-
tions) of these advances remains uncertain.

The identification of potential ice-contact sediments (sub-
glacial till) and indirect evidence of glacier overriding (sed-
iment deformation and compaction) are crucial to interpret
glacial sequences (not only within the Tannwald Basin). This
task is particularly challenging in overdeepened basins, of-
ten accessed through drilling, which limits the scale and
lateral continuity of observations and has rarely been car-
ried out in detail (e.g., Buechi et al., 2017). In this context,
3D analysis, such as computer tomography (CT) scanning,
will provide a powerful tool to identify and quantify sedi-
mentological features and systematically characterize poten-
tial ice-contact sediments. To address the architecture of the
sedimentary infill at the drill site, particularly in terms of
shear-wave anisotropy and its sedimentological significance,
a high-resolution cross-hole seismic survey has been con-
ducted. Furthermore, luminescence and cosmogenic nuclide
dating offer the potential of numerical age determination.
The availability of such data will allow for an integration of
the results into the broader context of the glacial evolution of
the Lake Constance amphitheater.
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Appendix A: Lithofacies description

Table A1. Summary table with the 17 lithotypes identified in the Tannwald drill core presented, along with their corresponding sedimento-
logical descriptions and interpretations. Respective core photos are shown in Figs. 3 and 4.

No: abbreviation
core photo Lithofacies Description Interpretation

1: B Fig. 3a Molasse bedrock Strongly to moderately consolidated siltstones
and sandstones with decimeter-thick marl se-
quences.

Upper Freshwater Mo-
lasse (tOS) as found in
the study area in previous
drillings (Ellwanger et al.,
2011) and seismic survey
(Burschil et al., 2018)

2: Dmm Fig. 3d, e Diamict, massive Matrix-supported and poorly sorted diamict,
slightly to very sandy silt matrix (70 %–95 %)
and occasional cobbles; angular to rounded
components with glacial striations, Alpine and
local Molasse clast lithologies

(i) Subglacial traction till
(Evans et al., 2006) or
(ii) terrestrial or subaque-
ous cohesive debris flows
(Mulder and Alexander,
2001; Eyles et al, 1983)

3: Dms Fig. 3f Diamict, stratified Matrix-supported to clast-supported and poorly
sorted diamict, bedded by centimeter- to
decimeter-thick variations in matrix composi-
tion and clast size; bedding locally inclined or
graded; with slightly to very sandy silt ma-
trix (50 %–95 %) and occasional cobbles; an-
gular to rounded components with glacial stria-
tions, Alpine and local Molasse clast lithologies
(strongly varying proportions)

Melt-out till (Evans et
al., 2006) or proximal
hyperconcentrated density
flow deposits (Mulder and
Alexander, 2001)

4: Mgt Fig. 3b, c Mélange Consolidated and unconsolidated Molasse
sand- and siltstone fragments showing in situ
crushing and brecciation.

Deformed bedrock rafts
(Benn and Evans, 1996;
Hiemstra and van der
Meer, 1997)

5: Mcc Fig. 4h Mud-clast
conglomerate

Horizontally aligned accumulations of well-
sorted fines in a coarser, mostly sandy matrix;
often show soft sediment deformation

Reworked fine lacustrine
sediments eroded by sub-
aquatic mass movements
(e.g., Li et al., 2017)

6: Gms Fig. 3g Gravel, sandy Clast-supported and moderately sorted gravel
with cobbles and fine sandy matrix; massive to
crudely bedded; subangular to rounded compo-
nents, Alpine and Molasse clast lithologies, lo-
cally glacial striations (33.09–32.28 m depth).

Distal fluvial to
glaciofluvial deposits

7: Gmf Fig. 3h Gravel, silty Clast-supported and poorly sorted gravel with
cobbles and silty coarse sand matrix (prone to
coring-induced deformation); massive; suban-
gular to rounded components, Alpine and Mo-
lasse clast lithologies

Proximal fluvial to
glaciofluvial deposits

8: Sm Sand, massive Well-sorted fine to medium sand; massive to
crudely bedded by localized millimeter- to
centimeter-thick variations in silt content and
dominant grain-size fraction

Hyperconcentrated den-
sity flow deposits (Mulder
and Alexander, 2001)
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Table A1. Continued.

No: abbreviation
core photo Lithofacies Description Interpretation

9: Sh Fig. 4a, b Sand, horizontally
bedded

Well to moderately sorted fine to medium sand;
bedded by centimeter- to decimeter-thick vari-
ations in silt content and dominant grain-size
fraction, locally with silt and clay laminae

Subaquatic channel fills

10: Sc Fig. 4a Sand, cross-bedded Well-sorted fine to medium sand; centimeter-
thick cross-bedding by silt content and varia-
tions in dominant grain-size fraction

Subaquatic channel fills

11: Sl Fig. 4h Sand, laminated Well-sorted fine to medium sand, laminated
(mottled) by varying silt content and dominant
grain-size fraction ranging from silty sand up to
silt and clay

Proximal turbidity de-
posits (Bouma, 1962).

12: Fm Fig. 4j Fines, massive Very well-sorted silt and clay, massive to lo-
cally crudely interbedded by fine sand laminae

Suspension settling (Eyles
et al., 1993).

13: Fm(d) Fig. 4e Fines, massive,
dropstones

Fm with dropstones locally showing glacial
striations

Suspension settling in a
proglacial lake with ice
rafting (Bennett et al.,
1996).

14: Fl Fig. 4c Fines, laminated Very well-sorted clay and silt bedded by
millimeter- to centimeter-thick variations in
dominant grain-size reflected in slight changes
of color

Distal sedimentation of
turbidity currents in a
proglacial lake (Smith and
Ashley, 1985).

15: Fl(d) Fig. 4f Fines, laminated,
dropstones

...with dropstones locally showing glacial
striations

Distal sedimentation of
turbidity currents in a
proglacial lake with ice
rafting (Bennett et al.,
1996)

16: Flr Fig. 4d Fines, laminated,
rhythmites

Very well-sorted clay and silt bedded by normal
graded laminae and beds with strongly varying
thickness (mm to dm thick) of varying domi-
nant grain-size fraction ranging from fine sand
to clay

Proximal turbidity de-
posits (Eyles et al., 1993;
Bouma, 1962: Bouma
divisions C–E)

17: Flr(d) Fig. 4g Fines, laminated,
rhythmites,
dropstones

...with dropstones showing glacial striations Proximal turbidity de-
posits floating in a
proglacial lake with ice
rafting (Eyles et al.,
1983).
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Data availability. The DOVE operational dataset is published un-
der https://doi.org/10.5880/ICDP.5068.001 (DOVE-Phase 1 Sci-
entific Team et al., 2023b) together with the operational
report (https://doi.org/10.48440/ICDP.5068.001, DOVE-Phase 1
Scientific Team et al., 2023a) and the explanatory remarks
(https://doi.org/10.48440/ICDP.5068.002, DOVE-Phase 1 Scien-
tific Team et al., 2023c). Furthermore, the dataset is ac-
cessible via the ICDP website: https://www.icdp-online.org/
projects/by-continent/europe/dove-switzerland/ (ICDP, 2024). In-
formation on the project and the data is also available
on the ICDP DOVE project website: https://www.icdp-online.
org/projects/by-continent/europe/dove-switzerland (DOVE-Phase
1 Scientific Team, 2024).
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