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Introduction

The structure and mechanics of active Low Angle Normal
Faults (LANFs) have for decades been posing questions—in
particular, if low angle normal faults accommodate crustal
extension, and if they generate large magnitude earthquakes,
or if they move aseismically. To shed new light on these
challenging questions, MOLE intends to drill (down to
4-5km) an active LANF in the Umbria-Marche sector of the
northern Apennines (Fig. 1) and to establish a deep borehole
observatory. The target site offers a unique opportunity to
reach a LANF at drillable seismogenic depth to unravel the
“low angle normal fault mechanical paradox” (Wernicke,
1995; Axen, 2007).

In order to discuss the scientific background and plan the
MOLE project, sixty-two scientists from various research
fields attended an international workshop in Spoleto, Italy, on
5-8 May 2008. The workshop focused on the following goals
that need to be achieved: (I) to collect new observational
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Figure 1. Schematic seismotectonic map of the Umbria-Marche
area (modified after Mirabella et al., 2004). Historical earthquakes
(gray squares) between 461 BC and 1997 AD (from Boschi et al.,
2000). Focal mechanism solutions: (1) Gubbio earthquake (Haessler
et al.,, 1988); (2) Gualdo Tadino earthquake, and (3, 4, 5) Colfiorito
sequence (Ekstrom et al., 1998); (6) Norcia earthquake (Deschamps
et al., 2000). SD (San Donato) and MC (Monte Civitello) well sites
with A-A’ represent the section of Figure 2.
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data at depth for constraining the fault zone structure; (II) to
perform laboratory experiments with gouge and fault zone
materials to understand frictional properties and weakening
mechanisms; (III) to record microearthquakes at distance
comparable to the source radius, and (IV) to obtain stress
and strain measurements and geochemical data in and near
the fault zone at depth to understand the mechanics of earth-
quakes and faulting.

Scientific Background - the LANF Paradox

The question whether or not moderate-to-large magni-
tude earthquakes can nucleate on LANFs and contribute to
accommodate extension of continental crust is widely
debated in the literature (Wernicke, 1995 and references
therein; Axen, 2007). Indeed, from a theoretical point of view,
in an extensional tectonic setting characterized by a vertical
principal stress 61, no slip is expected on faults dipping less
than 30° with a friction coefficient ranging between 0.6 and
0.85 (Byerlee, 1978). In boreholes at depth in the vicinity of
many high-angle, normal faults around the world, direct
stress measurements are consistent with both theory and
laboratory-derived coefficients of friction (Zoback, 2007).
Nevertheless, observed slip on LANFs implies the reactiva-
tion of severely misoriented low angle structures (Sibson,
1985) occurring either because of anomalously weak
frictional conditions (g << 0.6) or because of abrupt rotation
of principal stress directions. If the orientation of principal
stresses rotates in the direct vicinity of a LANF, it can be
determined by stress measurements in a borehole through
the fault zone (Zoback, 2007). High fluid pressure may be
causing slip on a LANF, which means that the fault zone itself
must be overpressured with respect to the rocks in the
adjacent hanging wall and footwall.

Seismological  observations  indicate  that no
moderate-to-large magnitude earthquakes have been
documented on LANFs based on well-constrained focal
mechanisms (Collettini and Sibson, 2001; Jackson and White,
1989). On the contrary, geological evidence of active
low-angle normal faulting has been documented in
numerous field-based structural studies and also interpreted
on seismic reflection profiles. Therefore, the role of LANFs
and their contribution to seismic risk are still controversial.
Despite recent studies which provided observational
evidence and physical interpretations (Axen, 1999; Collettini
and Holdsworth, 2004; Floyd et al., 2001; Hayman et al.,
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2003; Holdsworth, 2004; Sorel, 2000), more experimental
data and iz situ studies are needed to shed light on these MC well o SD well
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located on the hanging wall of the subsiding areas.

The Alto Tiberina Fault (ATF) is a NE-dipping LANF

Several moderate-magnitude earthquakes struck the
study area in the past (Fig. 1). This seismicity is clearly
associated with Quaternary faults. The most recent earth-
quakes are the 1979 Norcia M¢=5.5, the 1984 Gubbio M¢=5.3,
the 1988 Gualdo Tadino My=5.1 events, and the 1997-98
Colfiorito earthquake sequence 5.2<My<6.0 (Amato and
Cocco, 2000). However, all these earthquakes ruptured
SW-dipping normal faults antithetic to the Alto Tiberina
Fault (Fig. 2).
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Figure 2. Geological cross-section through the Tiber Valley and the Gubbio anticline (modified after
Collettini and Barchi, 2002). The section (see location A-A’ on Fig. 1) is based on the data set acquired
during the CROPO3 NVR project, including surface geology data, seismic reflection, and refraction pro-
files, calibrated by deep boreholes (Anelli et al., 1994). SD and PG2: San Donato and Perugia 2 boreholes,
respectively.
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cutting the upper crust in Central Italy, a region charac-
terized by active extension and moderate-magnitude
seismicity (Fig. 1). The subsurface geometry of the ATF
(Fig. 2) has been depicted along a deep seismic, nearly
vertical reflection transect (CROPO03; Pialli et al., 1998),
further constrained by a set of seismic reflection profiles
(Mirabella et al.,, 2004) and calibrated by deep boreholes
(e.g., San Donato and Perugia 2 wells). All these data define

in detail a portion of the ATF
(N150° trending) which is at
least 55-60 km long. In
cross-section, the ATF is
characterized by a staircase
trajectory with a mean dip of
15°-20° recognizable in the
seismic profiles down to a
depth of about 12 km (Fig. 2).
Seismo-tectonic  data  and
preliminary geodetic investiga-
tions (D’Agostino et al., 2008)
demonstrate that the ATF
is presently active and accom-
modates crustal extension.
Moreover, the absence of
historical earthquakes doubt-
lessly associated with the ATF
and the presence of a source of
over-pressurized fluids located
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in the fault hanging wall

(Chiodini et al., 2004) suggest
that the fault most likely moves
through a combination of
seismic/aseismic slip and creep
with  repeating  microearth-
quakes (Collettini, 2002). The
ATF detaches an active hanging
wall block from an aseismic
footwall. In the hanging wall
block, seismic reflection profiles
and seismological data reveal the
presence  of  moderately-to
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Figure 4. [A] Map of the area and location of seismic sections. [B] Vertical cross-section perpendicular to
the Apenninic belt showing the relocated composite seismicity and (in orange) the 1984 Gubbio sequence.
[C] Three vertical cross-sections showing the seismicity distribution and the available fault plane solutions
computed for seismic data acquired from 2000 to 2001. Their positions are shown in [A] together with the
width used to plot hypocenters. The heavy red lines plotted in each cross-section represent the trace of
the ATF fault as imaged on the depth-converted seismic reflection profiles (modified from Chiaraluce et

L L L L L B
E 24 16 -8 0 8 16

2000 (M<3.2) earthquakes
(Piccinini et al.,, 2003). The
integration of geological observations and seismicity data,
together with the interpretation of seismic reflection profiles,
led to a clear identification of a 60-km-long portion of the E-
dipping low angle normal ATF (Fig. 4). The analysis of this
multidisciplinary data set shows that in the last 2 Ma this
structure has accumulated 2 km of displacement.

The computed focal mechanisms of microearthquakes
(Chiaraluce et al., 2007) are in agreement with the geometry
of the faults (Fig. 4). The latter are nicely highlighted by the
earthquake distributions that appear in seismic reflection
profiles in accord with a stress field characterized by a nearly
vertical 61 and a NE-trending o3, perpendicular to the strike
of the ATF, which has also been inferred from regional stress
data (Mariucci et al., 2008; Montone et al., 2004). This micro-
seismicity is uniformly distributed over the ATF plane, and
the earthquake distribution in the down-dip direction reveals
a fault zone thickness ranging from 500 m to 1000 m.
Repeating earthquakes occur in very small slip patches
whose dimensions are of the order of 10-100 m (Chiaraluce
etal., 2007).

Collettini and Holdsworth (2004) brought up the
hypothesis that the ATF at depth consists of a phyllosilicate-
rich fault core. This relies on analogy with the Zuccale Fault,
an older, presently inactive, ATF-like structure cropping out
west of the Alto Tiberina fault on the island of Elba. This
hypothesis is consistent with the proposed aseismic behavior

of a misoriented fault in which microseismicity might be
generated by local, short-lived build-ups in fluid pressure
during regional scale degassing of the deep crust and the
mantle, associated with regional tectonic extension (Chiodini
et al., 2004). However, their theory must be corroborated by
in situ observations and experimental evidence.

Workshop Program and Results

During the MOLE workshop participants from eight
countries discussed drilling deep (4-5 km) into the Alto
Tiberina Fault. During the first day other deep fault drilling
projects were presented, followed by a session on the
seismotectonics, geology, seismology, geodesy, and
geochemistry of the target area during the second day.
Another session focused on laboratory experiments on rock
friction and rock mechanics using fault zone materials. The
third day was dedicated to outlining preliminary studies,
investigations during the drilling phase, and research after
drilling. The potential drill site (Fig. 5) and some major
normal faults of the region were visited during a half-day
field trip. During the last afternoon, the key scientific and
technical issues associated with the deployment of the deep
borehole and the long-term multidisciplinary observatory at
depth were summarized, and a scientific rationale for the
MOLE deep drilling project was drafted. An unusually large
set of geological and geophysical data is available, including
detailed geological mapping, seismic reflection profiles, deep
boreholes data, seismicity data, GPS measurements, and
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Figure 5. Digital Elevation Model around the planned MOLE borehole
(red circle) showing the seismicity (instrumental from Chiaraluce et
al., 2007 and historical from Boschi et al., 2000), T-axes from focal
mechanisms (Montone et al., 2004), breakout data (Mariucci et al.,
2008) and Alto Tiberina Fault isobaths (Mirabella, 2002).

more. These data support the fact that the ATF is an active
LANF. The workshop participants concluded that the
potential ATF drilling site is ideal for setting up a unique
laboratory to investigate the mechanics and the seismogenic
potential of active LANFs. However, prior to drilling it will be
necessary to improve hypocenter determination and collect
site survey data in new seismic and geodetic campaigns,
including high resolution seismic reflection data to better
image and constrain depth of the target.

An interesting opportunity that emerged during the work-
shop was the re-opening of Monte Civitello well, which was
closed many years ago by AGIP company through the injec-
tion of several plugs. The ATF was not identified during the
drilling of Monte Civitello well probably because the drilling
was stopped just above it. We are presently evaluating the
possibility of re-opening Monte Civitello in order to install a
deep array of seismometers and possibly to monitor geofluids
at an expected maximum depth of nearly 2000 m.

Another key conclusion from the workshop was to start
drilling with a 2-km-deep pilot hole very close to the final
MOLE borehole. This will allow for further detailed observa-
tions at depth to refine existing crustal structure models and
to implement monitoring activities with particular attention
to deep geo-fluids. Moreover, this will provide new data
through borehole logging and sampling that will help to set
up a permanent observatory at depth and improve planning
for the deep hole.

Summary

One of the main conclusions of the workshop was that
drilling through the Alto Tiberina Fault will provide infor-
mation on crustal stress and fluid pressures. It will also allow
us to do the following: (I) sample fault zone materials to
measure their physical properties; (II) install down-hole
seismometers, strainmeters, and fluid chemistry recorders
to measure seismicity, strain rate, and transmigration of
fluids; and (III) better understand the fault zone structure of
a normal fault dipping at ~15°-20°, of which the seismogenic
potential is unknown. Taken together, these studies will
directly address many of the key questions related to the
LANF paradox with particular regard to the understanding
of the local stress field within the fault zone and the role of
fluids in this process.

While the main goals of the MOLE project are to improve
the understanding of the mechanical and physico-chemical
behavior of LANFs, the impact of the project is certainly
broader. The collected data and direct observations will
provide a step toward more realistic models of earthquake
nucleation and strain localization within fault zones.
Laboratory experiments on rock friction with real and fresh
fault zone materials can provide important constraints on
fault friction and dynamic fault weakening processes. In
general, MOLE will become a natural laboratory for moni-
toring and modeling the geophysical and geochemical
processes controlling normal faulting in an active tectonic
setting.
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