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Earthquake ruptures are propagated inside fault zones 
that consist of structures spanning a wide spectrum of 
lengths. A natural fault is known to consist of hierarchy 
structure ranging from the scale of fine grains forming a 
gauge or ultracataclasite zone along the principal slip plane 
(Fig. 1, top) up to that of fault system consisting of discrete 
fault segments (Fig. 1, bottom) and/or branched fault 
segments (Fig. 1, middle and bottom). Although the physics 
of earthquakes has been well studied on microscopic and 
macroscopic scales (Fig. 1, top and bottom, respectively) 
based on laboratory experiments and seismic inversion 
analysis, respectively, the effects on a mesoscopic scale 
(Fig. 1, middle) are poorly understood. Since these struc-
tures interact with earthquake ruptures, one of the seismo-
logically fundamental problems is to understand how they 
are formed and evolved associated with the earthquakes that 
are the most intensive activities on fault zones.

In this study we focus on the investigation of the formation 
of branches in mesoscopic and macroscopic scales, and their 
effects on dynamic ruptures. In our model, branch fault 
segments are assumed to be nucleated at some discrete 
points on the main fault, which implies that the main fault is 
weak locally at these points. Each branch is assumed to be 
nucleated at each prescribed point on the main fault once the 
main fault tip passes, and the following fracture criterion is 
satisfied there. We also assume branches are extending in 
the direction of the maximum shear traction at each branch. 
Our studies rely on a simple slip-weakening law as the 
fracture criterion and the friction law:
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where τp, τr, S, Dc, and H (s) denote the peak shear 
strength, residual shear stress, slip, critical slip displacement, 
and a unit step function, respectively. The boundary integral 
equation method (BIEM) is employed to numerically solve 
the elastodynamic response of the medium. This method has 
advantages (in the treatment of non-planar fault geometry) 
and problems (where rupture paths are not specified but 
dynamically determined as the ruptures are extended).

Figure 2 shows snapshots of a typical example of fault 
growth. First, the main fault starts its extension and begins 
to nucleate branches. However, the nucleated branches do 
not begin their growths when the extension of the main fault 
is not long enough because of insufficient enhancement of 
stress (Fig. 2A). As the size of the main fault increases, the 
shear stress is magnified near its extending tip. If such stress 
enhancement becomes sufficiently large, branches can begin 
their growths while their extensions are arrested after 
attaining certain lengths (Fig. 2B and C). The spatial distri-
bution of these arrested branches forms a roughly triangular 
zone on one side of the main fault. The lengths of these 
branches increase with main fault size. As the main fault 
extends further and its size exceeds a certain critical length 
Lm, a limited number of branches continue to grow together 

Figure 1. Schematic illustration 
of hierarchical structure of 
ear thquake faul t .  Bot tom 
(macroscopic scale): Scale 
of entire length of a fault 
system composed of planar 
segments; Middle (mesoscopic 
scale): length scale of fault 
zone involving damage zone 
(shaded) and branches; Top 
(microscopic scale): scale 
of frictional surface involving 
gouge and microcracks (after 
Ando and Yamashita,, 2007).

Figure 2. Snapshots of dynamic growth of fault with multiple branches; the 
value of ΔB/Lc = 0.30 is assumed. Note that the scale is magnified in the x2 
direction.  (after Ando and Yamashita, 2007).
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distance of rupture propagation. This explains why the 
observed constant rupture velocity (Fig.4) decreased under 
a sub-Rayleigh speed. Note that this simple scaling is satisfied 
as long as the rupture propagation distance is smaller than a 
critical length Lm.
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with the main fault without arresting. This suggests that 
complicated fault geometry can be generated dynamically. It 
is also shown in the figure that the emergence of such a 
large-scale branch tends to suppress the growth of the next 
nucleated branches in its neighborhood, which is due to the 
stress shadow effect as will be discussed below. Such 
phenomena are also observed in Figure 3, which shows an 
example of longer simulation time.

Figure 4 shows the extending velocity of the tip of main 
fault soon attains a constant value with the extension. 
Comparing the velocity at each position between this multiple 
branch model and the case of a planar fault, we can clearly 
see that the dynamic branching reduces the rupture velocity 
of the main fault; the assumed physical parameters are 
identical between them (except the geometry). This data will 
contribute to the formation of approximately self-similar 
shapes for the spatial distribution of meso-branches.

We further investigate the effect of mesoscopic branches 
as the stress-slip relationship on a macroscopic scale, 
neglecting the thickness of the fault zone. Figure 5 shows 
this relationship obtained at each point along the main fault 
by calculating shear stress and displacement immediately 
outside the fault zone. The critical slip weakening distance 
Dc and the fracture energy Gc become proportional to the 

Figure 3. Examples of longer computation. We assume ΔB/Lc = 0.31 and 0.38 
in the upper and lower graphs, respectively (after Ando and Yamashita, 2007) .

Figure 4. Reduction of extending velocity of the tip of main fault to 
approximately a constant sub-Rayleigh value due to multiple branching; the 
model shown in Figure 4 is assumed. (Upper) Black curve denotes the fault tip 
velocity in the multi-branch model. Gray curve shows the case of planar fault 
model with no branches; the other assumptions are the same as in the multi-
branch model. (Lower) Thick curves denote the corresponding fault geometry 
of the multi-branch model (after Ando and Yamashita, 2007).

Figure 5. Slip-shear stress relationship in macroscopic scale. Each panel 
shows the shear stress as the function of slip obtained for equally lspaces 
sampling points along main fault. The dimension of the triangle corresponds 
the fracture energy Gc (after Ando, 2005).
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