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One of the more ambitious goals of the Seismogenic Zone 
Experiment (SEIZE) is to discriminate between the effects 
of changing intrinsic frictional strength (i.e., gouge versus 
wall-rock) and the effects of gradual or transient increases in 
pore pressure within fault zones. In subduction zones, both 
variables are likely to change with increasing distance down 
the plate boundary. In addition to sediment’s cohesion and 
coefficient of internal friction, the shear strength of any 
given stratigraphic interval depends upon fluid pressure and 
total normal stress. The release of fluids from mudstones 
during diagenesis (including volatiles generated from 
organic matter) is modulated by a combination of mechanical 
compaction, tectonic consolidation, and mineral reactions. 
Thus, it is essential to determine how permeability, sediment-
derived fluid sources, and fluid flow contribute to overpressure 
conditions within the subduction inputs, beginning seaward 
of the subduction front at depths of 2500 m or less.

Primary lithostratigraphic architecture exerts a first-
order influence over the material properties and tectonic 
behavior of subduction zones, at least near the toe of the 
margin wedge. Generic sedimentary facies models for 
trenches (Piper et al., 1973) show upward thickening and 

coarsening trends (from basalt at the base through pelagic 
ooze, hemipelagic mud, silty turbidites, and sandy turbi-
dites). As glaring exceptions to that norm, however, there are 
substantial thicknesses of highly permeable sand (abyssal-
plain deposits) that continue to move down the subduction 
path (i.e., beneath the frontal décollement) in Nankai 
(Ashizuri transect), Barbados, and Cascadia (Underwood 
and Moore, 1995; Underwood, 2007). Until those sands are 
lithified by cementation, their high net permeability will 
control three-dimensional patterns of fluid circulation. The 
amount and types of clay-size particles within each strati-
graphic interval are also important because they affect any 
sediment’s coefficient of friction and permeability. Empirical 
and experimental studies demonstrate that clay-rich fault 
gouges are weaker than surrounding wall rocks, typically 
because of their constituent particle size and mineralogy. 
Expandable minerals of the smectite group (e.g., montmoril-
lonite) are notorious in the eyes of geotechnical engineers 
for affecting strata’s coefficient of internal friction, compress-
ibility, and permeability (Lupini et al., 1981; Morrow et al., 
1992; Saffer and Marone, 2003). 

Common hydrous minerals (e.g., smectite and opal) also 
increase fluid production 
during diagenesis. Fluids 
produced from dehydration 
reactions become increasingly 
important as the burial temper-
ature increases and the pore 
volume is reduced by 
compaction. To complicate 
matters further, the thermal 
structure of subducting litho-
sphere varies with crustal age, 
basement relief, and patterns 
of hydrothermal circulation. 
The zones of maximum fluid 
production, therefore, should 
shift spatially in response to 
variations in two independent 
input parameters: heat flow andheat flow and 
abundance of hydrous minerals. 
Moreover, pathways of focusedathways of focused 
fluid migration will track the 
architecture of high-permea-
bility sand bodies inherited 
from the depositional 
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Figure 1. Schematic cross-section through ODP Sites 1177 and 1173 near the subduction front of the Nankai Trough. The 
plane of the section is oriented parallel to the strike of the margin and shows pinch-out of Miocene to Pliocene turbidites 
against the paleo-seafloor and basement relief of the Kinan seamounts.
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environment (i.e., isolated shoe-string channel sands, 
stacked channel-levee complexes, unconfined sand sheets, 
depositional lobes). Compartments of excess pore-fluid 
pressure are, in many depositional systems, set up initially 
by those sand-body geometries (Bredehoeft et al., 1988; 
Flemings et al., 2002). Conversely, if subduction inputs 
consist of low-permeability mud throughout a system, then 
diffuse drainage will be retarded, and focused flow is more, and focused flow is more and focused flow is more 
likely to follow structural conduits of fracture-enhanced 
permeability.

When investigating the change from stable sliding tohen investigating the change from stable sliding to 
stick-slip behavior, the “smectite-to-illite hypothesis”, in its, the “smectite-to-illite hypothesis”, in its the “smectite-to-illite hypothesis”, in its, in itsn its 
elementary form, provides scientists with a tractable idea to, provides scientists with a tractable idea to provides scientists with a tractable idea to 
test (Hyndman et al., 1997; Vrolijk, 1990). But that influential 
concept is oversimplified because it does not take into 
account three-dimensional variations in lithostratigraphy, 
either within or among individual subduction margins. 
Similarly, the hypothesis fails to account adequately for local 
and global variability in total clay abundance, the absolute 
amount of smectite, grain fabric, pore pressure, heat flow, 
and reaction progress prior to subduction. A more holistic 
view, stressed by Moore and Saffer (2001), is that several 
interrelated factors and processes (e.g., precipitation of 
carbonate and silicate cements, progressive growth of phyllo-
silicates, clay-mineral dehydration, changes in frictional 
properties of clay) act collectively to modulate the strengthcollectively to modulate the strength to modulate the strength 
and mechanical behavior of strata on opposite sides of the 
updip limit of the seismogenic zone. The recipe for blending 
each factor and process almost certainly changes from one 
subduction margin to another, within each individual margin, 

and through time. This natural variability needs to be taken 
into account when drilling projects target subduction 
thrusts.

Variability in subduction inputs can lead to substantial 
differences in how quickly diagenetic reactions progress, 
both outboard of a subduction front and downdip along the 
subduction path. This effect is particularly obvious in thethe 
Nankai Trough, where heat flow varies with distance from 
the fossil spreading ridge of the Shikoku Basin (Yamano etthe Shikoku Basin (Yamano etShikoku Basin (Yamano et 
al., 2003). Inputs of sediment to the Nankai Trough change inthe Nankai Trough change inNankai Trough change in 
three dimensions because irregular basement highs 
deflected turbidity currents during early stages of abyssal-
floor sedimentation. Sandy turbidites are the norm, rather 
than the exception, beneath the frontal décollement where 
smooth basement enters the subduction zone (Fig. 1). The 
content of smectite also changes along strike in Nankai 
because of local perturbations of heat flow and pre-subduction 
clay diagenesis (Fig. 2). By the time strata pass beneath the 
toe of the warmer Muroto accretionary prism, the smectite-
to-illite reaction advances nearly to completion at the 
sediment-basalt interface (Fig. 2). In contrast, coeval strata 
within the nearby (cooler) Ashizuri transect remain virtually 
unaltered. Accurate predictions of where and how much fluid 
volume might be released through deeper dehydration 
reactions demand accurate three-dimensional knowledge of 
the starting materials and thermal structure. 

Each subduction margin around the world displays its 
own idiosyncrasies. The frontal décollement in the Barbados 
accretionary prism occupies a stratigraphic interval that is 
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Figure 2. Stratigraphic columns for ODP Sites 1177 and 1173, Nankai Trough, with projected position of the frontal décollement in blue. Also shown are calculated 
values of total clay minerals (from bulk-powder x-ray diffraction) and estimated weight percentages of smectite and illite in bulk mudstone (from clay-size XRD). See 
Steurer and Underwood (2003) for XRD data.
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highly enriched in smectite (Deng and Underwood, 2001). 
This unusually high concentration of smectite contributes to 
the décollement’s intrinsic weakness, and downdip fluid 
production probably leads to fluid overpressures. InIn 
comparison, the Costa Rica segment of the Middle Americahe Costa Rica segment of the Middle Americathe Middle AmericaMiddle America 
Trench is starved of terrigenous sediment, so igneous starved of terrigenous sediment, so igneousstarved of terrigenous sediment, so igneous 
basement there is overlain successively by open-ocean 
calcareous ooze and diatomaceous smectite-rich hemipe-
lagic mud (Spinelli and Underwood, 2004). Numerical 
simulations indicate that spatial variations in the thermal 
structure of the Cocos plate lead to changes in diagenetic 
reaction progress, fluid production, pore pressure, and 
effective stress, both within and beneath the plate boundary 
(Spinelli et al., 2006). This degree of thermal variability 
creates additional challenges for fault-zone drilling projects; 
lessons extracted from one system or one borehole cannot 
be imported into another.
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