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Cover figure: Drilling of the Collisional Orogeny 
in the Scandinavian Caledonides in Sweden is in 
full swing (Photo credits: Henning Lorenz, Uppsala 
University).
Insert 1: Pore water sampling on board the drilling 
vessel Chikyu (Kubo et al., 2020, this volume).
Insert 2: Late Miocene wood recovered in Bengal–
Nicobar submarine fan sediments by IODP Expedition 
362 (McNeill et al., 2020, this volume).

Dear Reader, 

This volume of SCIENTIFIC DRILLING (SD 27) comprises five publications 
on completed or upcoming scientific drilling projects in different geological 
settings. Common to all publications in this volume is the important role 
of investigations on organic material. Scientific boreholes can sample 
organic material of different sizes from macroscopic to microscopic scale, 
and serve a variety of scientific purposes. For the studies presented in this 
SD volume, organic material is used for radiocarbon dating and to reveal 
important information e.g. on mass deposit processes from submarine 
fluvial fans or tsunamis, to study the deep biosphere and the evolution of 
endemic species, and, little surprising, for paleoclimate research. 
IODP Expedition 362 in the eastern Indian Ocean encountered probably 
the largest fragment of well- preserved wood ever recovered in 
scientific ocean drilling, as reported in SD-2019-17 (p. 49). The wood 
is Late Miocene in age, is buried beneath 800m of the Bengal–Nicobar 
Fan sediments and is either transported as part of the submarine fan 
sedimentation or as a megathrust tsunami deposit. The preservation state 
of the wood fragment may provide qualitative information on seafloor 
conditions (e.g., oxygen and burial rate) that can be used to augment 
expedition sedimentary analyses.
SCORE, the new coring programme of the research vessel Chikyu, 
provides the ocean drilling community with the opportunity to conduct 
short-term drilling expeditions for the drilling of shallow holes of up to 
100 meter below sea floor (mbsf). SD-2019-15 (p. 25) summarizes the 
first SCORE expedition that drilled three holes down to a maximum depth 
of 100 mbsf off Cape Erimo, northern Japan, to study submarine mass 
transport units and the local subseafloor sedimentary biosphere. 
SD-2019-11 (p. 1) reports on the geomicrobiology observed in drilling 
fluids during ICDP drilling of the deep subsurface of the Deccan Traps 
and underlying Precambrian basement at Koyna, India. Drilling fluids, 
often regarded as a source of contamination during investigations of 
deep subsurface microbiology, served here as a vector for sampling 
of geological fluids and signatures of microbial life from terrestrial, 
granite-rock-hosted habitats. The drilling fluids samples from Koyna 
show enrichment of anaerobic, thermophilic sulphate-reducing and deep 
subsurface relevant microbial populations.
Lake Tanganyika in Africa probably preserves the longest and most 
continuous continental climate record from the mid-Miocene to the 
present anywhere in the tropics. It also harbours incredibly diverse 
endemic biota and an entirely unexplored deep microbial biosphere. 
SD-2019-19, p. 53 outlines the results of an ICDP workshop, attended 
by more than 70 scientists representing 12 countries and a variety of 
scientific disciplines who recognized Lake Tanganyika as a top-priority site 
for a major international scientific drilling project. 
In the framework of an international, joint archaeological and 
geoarchaeological project, three cores recovered a thick Holocene 
sedimentary sequence from a marine palaeochannel that ran through the 
ancient city of Cádiz. This sedimentary archive will allow reconstructing 
the palaeogeographical evolution of this specific coastal area, to trace the 
intensity of activities of the city of Cádiz and to identify and date high-
energy event deposits such as storms and tsunamis and is discussed in 
SD-2019-20, p. 35. 

We wish the readers of this volume a positive outlook on future scientific 
objectives in difficult virus-impacted times.

Your Editors
Ulrich Harms, Thomas Wiersberg, Jan Behrmann, 
Tomoaki Morishita, and Will Sager
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Abstract. Scientific deep drilling of the Koyna pilot borehole into the continental crust up to a depth of 3000 m
below the surface at the Deccan Traps, India, provided a unique opportunity to explore microbial life within
the deep granitic bedrock of the Archaean Eon. Microbial communities of the returned drilling fluid (fluid re-
turned to the mud tank from the underground during the drilling operation; designated here as DF) sampled
during the drilling operation of the Koyna pilot borehole at a depth range of 1681–2908 metres below the surface
(m b.s.) were explored to gain a glimpse of the deep biosphere underneath the continental crust. Change of pH
to alkalinity, reduced abundance of Si and Al, but enrichment of Fe, Ca and SO2−

4 in the samples from deeper
horizons suggested a gradual infusion of elements or ions from the crystalline bedrock, leading to an observed
geochemical shift in the DF. Microbial communities of the DFs from deeper horizons showed progressively
increased abundance of Firmicutes, Gammaproteobacteria and Actinobacteria as bacterial taxa and members
of Euryarchaeota as the major archaeal taxa. Microbial families, well known to strive in strictly anaerobic and
extremophilic environments, (e.g. Thermoanaerobacteraceae, Clostridiaceae, Bacillaceae, Carnobacteriaceae,
Ruminococcaceae), increased in the samples obtained at a depth range of 2000 to 2908 m b.s. Phylogenetic
analysis of common and unique operational taxonomic units (OTUs) of DF samples indicated signatures of ex-
tremophilic and deep subsurface relevant bacterial genera (Mongoliitalea, Hydrogenophaga, Marinilactibacillus,
Anoxybacillus, Symbiobacterium, Geosporobacter, Thermoanaerobacter). Thermophilic, obligatory anaerobic
sulfate-reducing bacterial taxa known to inhabit the deep subsurface were enriched from DF samples using
sulfate as a terminal electron acceptor. This report on the geomicrobiology of the DF obtained during drilling
of the deep subsurface of the Deccan Traps showed new opportunities to investigate deep life from terrestrial,
granite-rock-hosted habitats.

Published by Copernicus Publications on behalf of the IODP and the ICDP.



2 H. Bose et al.: Microbial diversity of drilling fluids from 3000 m deep Koyna pilot borehole

1 Introduction

The earth’s deep continental crust was found to be of geolog-
ically varied morphology with extreme conditions (tempera-
ture, pressure, pH etc.) which made it almost impossible for
life to survive (Fredrickson and Balkwill, 2006; Colwell and
D’Hondt, 2013). Nevertheless, the “deep subsurface” of the
earth has been known to host diverse arrays of ecosystems
which harbour numerous populations of extremophilic mi-
crobial life, comprising a significant (about 19 %) but mostly
unexplored parts of earth’s biosphere (Whitman et al., 1998;
McMahon and Parnell, 2014, 2018; Kieft, 2016; Magna-
bosco et al., 2018; Soares et al., 2019). In fact, the deep
subsurface is among the five main “big habitats” of bacte-
ria and archaea containing about 3× 1029 cells (Flemming
and Wuertz, 2019). Exploration of deep life within the con-
tinental crust mostly aims to provide answers to some of
the fundamental questions related to the limits of life on our
planet and its evolution, energy mechanisms and metabolism
as well as its involvement in cycling of the essential elements
of life (Hoehler and Jørgensen, 2013; Breuker et al., 2011;
Purkamo et al., 2018; Borgonie et al., 2019).

Deep drilling has been an important method for obtain-
ing subsurface samples for geomicrobiological investiga-
tions (Escudero et al., 2018). Generally, for acquiring the
sample of more than 300 m depth (especially from crys-
talline – granite and basalt – rock) a rotary drilling tech-
nique has been used which requires the drilling fluid to fa-
cilitate the drilling process (Keift et al., 2007; Onstott et
al., 1998). Drilling fluid prepared by mixing multiple pre-
packaged powdered components, including bentonite and a
variety of organic constituents with water to lubricate and
cool the drill bit, maintain the hydrostatic pressure during the
drilling operations so that intact cores can be retrieved and
ultimately carry the rock cuttings back to the surface (Zhang
et al., 2006; Keift, 2010). Bentonite (sodium bentonite: alu-
minium phyllosilicate clay consisting mostly of montmoril-
lonite) has been widely used as drilling fluid in several con-
tinental and oceanic drilling operations (Masui et al., 2008;
Zhang et al., 2006; Struchtemeyer et al., 2011). Specific ad-
vantages of bentonite-based fluids included protection of the
drilling tools from corrosion, reduced fluid and gas pene-
tration (Gandhi and Sarkar, 2003), and owing to its charac-
teristic “thixotrophic reaction” it hinders the rock material
from dropping back into the drilled shaft (İşçi and Turutoğlu,
2011).

These fluids are essentially considered as potential con-
taminants to rock cores not only from chemical but also from
a biological perspective. Owing to the presence of a variety
of complex organic compounds (e.g. xanthan gum, guar gum,
glycol, carboxymethylcellulose, polyanionic cellulose (PAC)
or starch), diverse heterotrophic microbial populations (bac-
teria, archaea, fungi) could grow in drilling fluid (Keift et
al., 2007; Beeman and Suflita, 1989; Rabia, 1985). A circu-
latory system in which the fluid remained in continuous use

throughout the drilling operation and the scope of the inva-
sion of microorganisms from the upper stratum to the strata
below may also pose a matter of further concern (Pedersen et
al., 1997; Yanagawa et al., 2013; Smith et al., 2000; Miteva
et al., 2014). In spite of the shortcomings, the fluid that re-
turned back to the mud tank has been a subject of geomicro-
biological investigation since it can act as a window enabling
sampling of the deep subsurface environment and may give
us an opportunity to analyse the microbial communities from
the geological fluids from faults and fractures (Zhang et al.,
2006).

Drilling fluids’ microbial diversity as a marker for deep
life was studied during a number of drilling operations.
Drilling fluid obtained from deep drilling at the Cretaceous-
age Piceance basin in Colorado, Triassic-age Taylorsville
basin in Virginia, Chinese continental scientific drilling op-
erations (CCSD) at a 240 Ma old ultra-high pressure meta-
morphic (UHPM) belt located in Jiangsu Province in China
and during the first riser drilling operation on the deep-earth
research vessel Chikyu was used for microbiological stud-
ies (Liu et al., 1997; Roh et al., 2002; Zhang et al., 2005,
2006; Masui et al., 2008). The presence of microorganisms
able to survive the extreme oligotrophic conditions of the
deep subsurface was detected in these studies. Several strains
of an extremely thermophilic, anaerobic chemoorganotroph
bacterium Thermoanaerobacter ethanolicus have been pre-
viously isolated from the fluids obtained during drilling in
the Piceance basin in Colorado and Taylorsville basin in Vir-
ginia at different depths of the geological formation (Liu et
al., 1997; Roh et al., 2002). This particular organism was
also retrieved from the DF samples of CCSD. Extremophilic
deep subsurface microorganisms (Caldicellulosiruptor lac-
toaceticus, Anaerobranca gottschalkii and Sulfolobus sol-
fataricus) were reported from the fluids obtained from the
CCSD project (Zhang et al., 2005, 2006). Deep subsurface
archaeal populations (Marine Crenarchaeota Group I and
II, South African Gold Mine Euryarchaeotic Group (SAG-
MEG), Soil Group Archaea) were detected in the fluid sam-
ples at the time of the first riser drilling operation on Chikyu
(Masui et al., 2008). Overall, the microbial ecology of cir-
culating fluids collected from various deep drilling opera-
tions (continental and oceanic) showed strong signatures of
subsurface microbial populations. Investigating these com-
munities remained scientifically intriguing. Additionally, the
drill cuttings along with the fluids also leave behind tons of
residue without adequate treatment, generating a large en-
vironmental liability. Knowledge about the microbial com-
munity of such drilling residue may be useful for develop-
ing techniques for drilling mud bioremediation (Guerra et al.,
2018).

The present research was undertaken to study the micro-
bial communities present in the returned drilling fluids (des-
ignated here as DF) as a proxy for deep granitic subsurface
microbial diversity in the Koyna Intra-plate Seismic zone
(Deccan Traps, India; https://www.icdp-online.org/projects/
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world/asia/koyna-india/, last access: 27 January 2020). This
unique opportunity to study microbial life within deep terres-
trial igneous rocks came to us through scientific deep drilling
in this region by the Inter Continental Drilling Programme
(ICDP) and Ministry of Earth Sciences (MoES), Government
of India, to study the earthquakes. The Deccan Traps, rep-
resentative of a continental flood basalt province, covers an
area of over 0.5 million km2 of lava flows (∼ 65 Ma) with
a total thickness of over 2000 m near the eruptive centre in
western India. This thick pile of Deccan basalts has been
resting on a ∼ 2.5 Ga Archaean crystalline basement. With
respect to varying temperature, pressure regimes (15 ◦C in-
crease in temperature and 26.7 MPa increase in lithostatic
pressure per 1000 m b.s. in granite) and geochemical condi-
tions, this study provided an excellent opportunity to study
life in deep igneous terrestrial subsurface (Roy and Rao,
2000). The specific goal of this work was to systematically
investigate the microbial diversity of DFs in the depth range
of 1681–2908 m b.s. by a culture-independent approach and
explore the presence of deep life relevant organisms within
these systems. Our results indicated that there was a change
in the microbial community structure of DF samples on
increasing borehole depth. The phylogenetic positions of
unique and shared operational taxonomic units (OTUs) of the
DF samples suggest the presence of deep subsurface and ex-
tremophilic microbial populations in drilling fluid samples.

2 Materials and methods

2.1 Sampling site and drilling

A 3 km deep pilot borehole (KFD-1) was drilled in the Koyna
region (17◦24′6′′ N, 73◦45′8′′ E) of the Deccan Traps, Ma-
harashtra during March–June 2017 under the pilot phase of
the Koyna scientific drilling project to comprehend the gen-
esis of earthquakes triggered by artificial water reservoirs in
the Koyna intraplate seismic zone. Several modifications to
the standard drilling procedure were made in order to collect
the core and drilling fluid samples in such a way that they
could be later used reliably for geochemical and geomicro-
biological analysis. All instruments in contact with the core
samples were cleaned properly before use. The drilling fluid
(bentonite) was kept in a separate tank and sodium fluores-
cein (500 mg m−3) was added to the tank before the coring
process to evaluate the penetration of drill mud into the core.
Drilling fluid samples that returned after circulating to the
depths ranging from 1681 to 2908 m b.s. were collected fol-
lowing aseptic techniques along with the rock cores (core 1–
core 7) at the time coring at the depths ranging from 1681
to 2908 m b.s. These returned DF samples were designated
as DF1 to DF7. Along with that the in-flow fluid (before
its introduction in the borehole) was also collected. A list
of samples, depth and other physiochemical parameters has
been presented in Table S1 in the Supplement. Samples were

stored in sterile containers at 4 ◦C for shipment. In labora-
tory, the samples were stored at −80 ◦C.

2.2 Geochemical analysis

The DF samples (DF1–DF7) were dried overnight in a hot
air oven (80 ◦C) to remove the water content. The dried cakes
were ground to powder using a mortar and pestle. The pow-
dered DFs were again kept overnight at 80 ◦C to remove
any leftover moisture and stored in a vacuum desiccator. The
powdered samples were analysed for their elemental compo-
sition by energy-dispersive X-ray spectroscopy (EDX) using
a field emission scanning electron microscope (Zeiss Mer-
lin) attached to an EDX detector. For pH and conductivity
measurements, DF samples were incubated in distilled wa-
ter overnight at a 1 : 10 ratio (w/v). All measurements were
done using highly sensitive probes fitted with a multiparame-
ter (Orion) (Thermo electron corporation, Beverly, MA) (Is-
lam et al., 2014). Temperature for each depth (at which rock
cores and DF samples were collected) was measured on-site
during drilling.

2.3 DNA extraction

Microbial diversity and community composition of DFs were
studied using an approach based on next-generation sequenc-
ing (NGS) and using the extracted DNA from the respective
samples. Environmental DNA from DFs (250 mg of DF was
taken for each extraction) was extracted in triplicates using
the DNeasy® PowerSoil® kit (Qiagen 12888-50) according
to the manufacturer’s protocol. A blank DNA extraction was
performed (no sample) at the same time as a negative control
and was used subsequently in the PCR and sequencing steps
to check chances of any possible contamination. The quality
of the extracted environmental DNA and its concentration
was measured using a NanoDrop 2000 spectrophotometer,
followed by fluorometric quantitation using Qubit (Thermo-
Fisher Scientific).

2.4 Quantitative real time PCR (qPCR)

Quantification of the bacterial and archaeal populations in
DFs was performed by estimating the copy number of
bacteria- and archaea-specific 16S rRNA genes. Details of
the qPCR primers used are provided in Table S2 in the Sup-
plement. A total of 2 µL of the environmental DNA was
added to the PCR mastermix with a total volume of 10 µL.
All the reactions were set in triplicates. Quant Studio 5 was
used to perform qPCR with a Power SYBR green PCR Mas-
ter Mix (Invitrogen), primer concentration of 5 pM and the
following amplification conditions: 95 ◦C for 10 min, 40 cy-
cles of 95 ◦C for 15 s, 55 ◦C for 30 s and 72 ◦C for 30 s. A
melting curve analysis was run after each assay to check PCR
specificity. Genes encoding archaeal and bacterial 16S rRNA
genes were PCR amplified from the metagenome and cloned
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https://www.icdp-online.org/projects/world/asia/koyna-india/


4 H. Bose et al.: Microbial diversity of drilling fluids from 3000 m deep Koyna pilot borehole

in a TA cloning vector and plasmid DNA for each, with copy
numbers 102 to 1010 used as standards for quantification pur-
poses.

2.5 16S rRNA gene amplification and sequencing

Environmental DNA was subjected to amplification of the
V4 region of the 16S rRNA gene using a Veriti 96 well ther-
mal cycler (Applied Biosystems, Foster City, CA). The V4
region of the 16S rRNA gene was amplified using a 515F′–
806R′ primer (Table S2) (Bates et al., 2010) and an amplicon
library was prepared and sequenced on IonS5 NGS platform
(Thermo Scientific) as per the manufacturer’s protocol. The
sequence reads obtained were submitted to the sequence read
archive (SRA) under SRA accession: SRP155468.

2.6 Bioinformatic and statistical analysis

The reads obtained were quality filtered using the Quantita-
tive Insights Into Microbial Ecology (QIIME 1.9.1) (Capo-
raso et al., 2010) bioinformatics pipeline, according to which
sequences with lengths outside the bounds of 210 and 310,
a mean quality score below a minimum of 25 and a max-
imum homopolymer run exceeding a limit of 6 were fil-
tered out. De novo-based clustering of reads to form OTU
was performed using UCLUST under QIIME workflow. Se-
quences with greater than 97 % similarity were assigned to
the same OTU. Representative reads from each OTU were
assigned taxonomy using the UCLUST trained SILVA 128
database (Quast et al., 2012). OTUs which were present in
the reagent control were removed from the OTU pool of
the samples. Alpha diversity parameters were calculated us-
ing alpha_diversity.py under the QIIME workflow. The OTU
overlap among the DF samples and OTU pool of differ-
ent DFs were elucidated using InteractiVenn (Heberle et al.,
2015). Core (OTUs present in all samples) and unique OTU
sequences (sequences detected in only one of the samples)
were analysed using the National Center for Biotechnology
Information (NCBI) BLASTn nucleotide database. A phy-
logenetic tree was constructed by MEGA7 software using a
neighbour-joining method with 1000 bootstraps (Kumar et
al., 2016).

2.7 Enrichment of sulfate-reducing bacteria (SRB) from
DF samples

Two DF samples (DF1 and DF3, 10 mL in a 100 mL medium)
were incubated in a Postgate medium (Postgate, 1963) con-
taining sulfate as the sole terminal electron acceptor for
6 months under anaerobic conditions at 50 ◦C for the en-
richment of sulfate-reducing bacteria. Subsequently, samples
were sub-cultured thrice in the same medium and the final
culture obtained was used for total DNA extraction (in tripli-
cates) using the DNeasy® PowerSoil® kit (Qiagen 12888-
50). Total DNA was extracted from 10 mL of enrichment

cultures. The extracted DNA from the enrichment was pro-
cessed further for 16S rRNA gene amplicon sequencing and
subsequent analysis as described above.

3 Results

3.1 Geochemical properties of DF samples

DF samples were analysed for their major geochemical prop-
erties (Table S1). Silicon and oxygen were the major ele-
ments present in the DF (on an average 19 % and 29 % re-
spectively) along with Ca, S, N, Al, C and Mn. These el-
ements were found to be abundant in bentonite-based DF
(Schlumberger Oilfield Glossary, 2010). All the samples (ex-
cept DF1 – pH 7.3) were found to be alkaline in nature, with
the maximum for DF7 (9.17). The concentration of sulfide
(S2−) was found to be in the range of 0.3–0.8 mg kg−1. High
levels of barium were detected in all the DFs (except DF1)
with the maximum in DF4 (46 %). With increasing sample
depth, the change of pH to alkalinity reduced relative abun-
dance of Si and Al, but enrichment of Fe, Ca and SO2−

4 was
noted (Fig. 1). A shift in geochemical parameters suggested
the gradual infusion of elements from the crystalline bedrock
during the course of drilling.

3.2 Bacterial and archaeal abundance in DF

The abundance of bacterial and archaeal populations was de-
termined by estimating the copy number of bacterial- and
archaeal-specific 16S rRNA gene using a real-time PCR-
based quantitative approach. With respect to the sampling
depth, DF used for drilling rocks of a deeper horizon showed
marginal change in bacterial (2.02× 1010–3.43× 109 g−1 of
DF) and archaeal (2.54× 104 to 4.42× 103 g−1 of DF) gene
copy numbers (Fig. 2). Assuming an average of 4.7 and 1.7
16S rRNA gene copies per genome of bacteria and archaea
(Stoddard et al., 2015), we could estimate bacterial cell abun-
dance ranging between 1.38×1010 and 7.29×108 g−1 of DF
and archaeal cell abundance ranging between 1.22×104 and
2.55× 103 g−1 of DF.

3.3 Sequencing data

Sequencing of a hypervariable V4 region of 16S rRNA gene
generated 20 83 060 reads from 6 samples (Table 1). On av-
erage 613 669 reads were found usable and these obtained
reads were grouped into 49 570 operational taxonomic units
(OTUs). A total of 46 950 OTUs belonged to bacteria and
56 OTUs belonged to archaea. A small fraction of OTUs
(0.03 %–2.12 %) remained unassigned across all the samples.
A considerable portion of OTUs (17 % to 73 %) were found
to be unique and these unique OTUs represented 6 %–26 %
of the total microbial community across all the samples. A to-
tal of 148 OTUs (0.29 %) were found to be common among
all samples, which comprised about 25 % of the total micro-
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Figure 1. Major geochemical parameters of DF samples. There was a distinct variation in the geochemistry of DF samples obtained at
different depths. Increase in temperature (a), alkalinity (b), iron (c), sulfate (d) and calcium (e) was observed whereas the concentration of
manganese (f), silica (g) and aluminium (h) showed a decreasing trend.

Figure 2. Archaeal and bacterial 16S rRNA gene copy number detected by qPCR.

bial abundance. Alpha diversity analysis was performed for
the sample set. Chao 1 estimator analysis suggested that sam-
ples from the deepest location (DF7) contained the highest
number of OTUs. The Shannon index was in the range of
3.84–7.3 across all samples. The Simpson index ranged be-

tween 0.78 and 0.95. It could be noted that the lowest values
of the Shannon and Simpson indices were obtained for DF1
and in general both the values showed an increasing trend
from DF1 to DF7 (Fig. 3a).

https://doi.org/10.5194/sd-27-1-2020 Sci. Dril., 27, 1–23, 2020
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Table 1. Read details and alpha diversity.

DF1 DF2 DF3 DF4 DF6 DF7

No. of raw reads 311 959 27 804 447 627 243 598 223 603 828 469
No. of quality controlled reads 238 061 19 648 311 609 184 537 165 243 671 354
No. of reads after control subtraction 33 319 4055 127 385 74 140 98 994 275 776
Percentage of bacterial reads 99.118 99.459 99.440 96.69 99.433 98.578
Percentage of archaeal reads 0.003 0.024 0.005 0.033 0.055 0.417
Percentage of unassigned reads 0.879 0.517 0.555 3.277 0.512 1.005
No. of observed OTUs 3408 1148 7229 8002 9035 20 748
No. of bacterial OTUs 3291 1131 6883 7303 8692 19 660
No. of archaeal OTUs 1 1 3 6 12 33
No. of unassigned OTUs 116 16 341 693 331 1055
Percentage of unique OTUs 46.24 17.42 54.61 58.93 43.54 73.05
Percentage abundance of unique OTUs 12.29 6.51 7.82 20.94 6.89 25.98
Percentage of core OTUs 3.84 11.41 1.90 1.63 1.44 0.63
Percentage abundance of core OTUs 31.94 30.87 31.13 12.45 42.93 29
Estimated total OTUs (chao1) 6442.04 2805.21 13 162.85 14 339.015 17 092.29 38 931.388
Shannon evenness index 3.84 5.46 5.48 6.57 7.04 7.30
Simpson index 0.78 0.93 0.84 0.95 0.954 0.944
Goods coverage 0.99 0.96 0.99 0.98 0.97 0.983
Equitability 0.326027 0.531948 0.424991 0.504811 0.534176 0.504093

Figure 3. (a) Variation in Shannon and Simpson diversity indices across depths and (b) abundance of the top five bacterial groups across
depths.

3.4 Microbiological assessment of DF

The number of sequences assigned to bacteria covered 35
phyla, 87 classes, 174 orders, 350 families and 848 genera.
Sequences assigned to archaea covered 2 phyla, 5 classes,
6 orders, 6 families and 7 genera (Table 2). Based on aver-
age abundance at phylum level (phylum Proteobacteria has
been further divided into its different classes), Firmicutes
(10 %–66 %), Bacteriodetes (4 %–45 %), Alphaproteobac-
teria, (10 %) Gammaproteobacteria, (3 %–21 %) and Acti-
nobacteria (2 %–15 %) constituted more than 90 % of the
communities in the DF (Fig. 4a). Firmicutes was the most
abundant phylum across all the samples except DF4. Fig-

ure 3b revealed changes in the abundance of these phyla
depending on the depth. With respect to depth, the abun-
dance of Firmicutes (20 % to 60 %), Gammaproteobacteria
(3 % to 21 %) and Actinobacteria (2 % to 15 %) increased,
whereas Bacteriodetes (45 % to 10 %) showed a decreas-
ing trend. The abundance of Alphaproteobacteria remained
nearly consistent across the depths (10 %–30 %). Verrucomi-
crobia, Planctomycetes, Spirochaetae, Tenericutes, Chlo-
roflexi and Deinococcus-Thermus (0.07 %–3 %) were some
of the other phyla observed in the DF samples. Only two ar-
chaeal phyla, namely (Fig. 4b) Euryarchaeota and Thaumar-
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chaeota, were detected in DF samples, with relatively low
abundance (0.01 %–0.4 %).

Microbial diversity of the in-flow drilling fluid was as-
sessed and compared with that of returning DFs (DF1–DF7).
Bacteriodetes (45 %) was the most abundant phyla in the in-
flow DF, followed by Firmicutes (23 %), Alphaproteobacte-
ria and Deltaproteobacteria (Fig. 4a). These four phyla con-
stituted more than 90 % of the total community in the in-flow
fluid sample. A distinct shift in microbial community com-
position was observed in the returning DFs (DF1–DF7). Bac-
teriodetes was identified as one of the major phyla present in
DF1 (44 %), and its diversity decreased in DF samples re-
trieved from increasing depths. Similarly, abundance of Fir-
micutes, Alphaproteobacteria and Gammaproteobacteria in-
creased in the DF samples collected at lower depths. Interest-
ingly, no archaeal phylum was detected in the in-flow sample
but they were detected in the DF samples collected from the
lower depths.

Clostridia, Alphaproteobacteria, Gammaproteobacteria,
Bacilli, Cytophagia Actinobacteria, Bacteroidia and Be-
taproteobacteria (> 80 %) were the major bacterial classes
in DFs. Noticeably, there was an increase in the abundance
of Clostridia and Bacilli in the DF samples obtained from
lower depths. DF1 was majorly dominated by Cytophagia
(38 %) followed by Betaproteobacteria (15 %), Clostridia
(14 %), Alphaproteobacteria (8 %) and Bacteroidia (6 %).
DF2 was comprised of Gammaproteobacteria (22 %) and
Alphaproteobacteria (21 %), with Clostridia (11 %) being
the third most abundant class. Clostridia (26 %) was the
most abundant class in DF3 followed by Gamma- (21 %),
Alphaproteobacteria (11 %) and Deltaproteobacteria (9 %).
DF4 was majorly dominated by Alphaproteobacteria (28 %)
and Gammaproteobacteria (15 %). DF4 also had a higher
abundance of Actinobacteria (15 %) than other DFs. DF6
had a high abundance of Clostridia (31.5 %) and Bacilli
(26.5 %) with Alphaproteobacteria (8.5 %), Actinobacteria
(6 %), Bacteroidia (6 %) and Gammaproteobacteria (8 %)
being the other prominent classes. DF7 had a significant
abundance of Clostridia (36 %) and Bacilli (18 %) followed
by Alphaproteobacteria (9 %) and Actinobacteria (5 %).
Among archaeal classes Methanobacteria (DF6 and DF7)
and Methanomicrobia (DF3–DF7) showed the highest abun-
dance followed by Thermoplasmata (DF3 and DF7) and the
Soil Crenarchaeotic Group (SCG) (DF6 and DF7).

3.5 Abundance of major microbial families and genera
in DF

Figure 5 displays the abundance of different microbial
families in DFs. DF1 was dominated by Cyclobacteri-
aceae (Mongoliitalea, Cecembia) (39 %), Comamonadaceae
(Hydrogenophaga) (14 %) and Clostridiales (unclassified
Clostridium) (9 %). Pseudomonadaceae (Pseudomaonas)
(11 %), Rhodobacteraceae (Rhodobacter, Pannonibacter,
Paracoccus) (10 %), Erysipelotrichaceae (Erysipelothrix)

(8 %), Cyclobacteriaceae (Mongoliitalea, Cecembia) (6 %)
and Alteromonadaceae (Alishewanella) (5 %) were the top
five families in DF2. Shewanellaceae (Shewanella) (16 %),
Clostridiaceae 1 (unclassified Clostridiaceae) (15 %), Bac-
teroidetes Incertae Sedis (8 %) and Desulfovibrionaceae
(Desulfovibrio) (7 %) were the major families in DF3.
The prominent microbial families in DF4 were Hy-
phomonadaceae (Hyphomonas) (12 %), Bacteria (10 %),
Opitutaceae (Opitutus) (9 %), Cellulomonadaceae (Actino-
talea) (8 %) and Caulobacteraceae (Brevundimonas) (6 %).
Carnobacteriaceae (Marinilactibacillus, Alkalibacterium)
(32 %) was found to be the most abundant microbial fam-
ily in DF6 followed by Clostridiaceae 1 (Clostridium sensu
stricto 1) (13 %) and Lachnospiraceae (unclassified Lach-
nospiraceae) (7 %). Bacillaceae (Geobacillus, Anoxybacil-
lus, Anaerobacillus, Aeribacillus) (9 %), Clostridiaceae 1
(Clostridium sensu stricto 1) (7 %), Rhodobacteraceae (Pan-
nonibacter) (7 %) and Thermoanaerobacteraceae (Ther-
moanaerobacter, Gelria) (6 %) were the major microbial
families present in DF7.

Sample-wise community profiling at lower taxonomic
levels highlighted the distinct microbial assemblages with
change in depth. Overall community profile highlighted that
with changes in depth, the DF microbial communities under-
went a pronounced shift. However, members of a few bacte-
rial taxa remained ubiquitously abundant across all the sam-
ples. Clostridiaceae, Marinilibiaceae, Rhodobactereaceae
and Erysipelotrichaceae were ubiquitous in all the samples.
Samples from deeper horizon (2662–2908 m b.s.) showed
a distinct abundance of Clostridiaceae 4, Desulfovibri-
onaceae, Veillonellaceae, Aeromonadaceae and Xanthomon-
adaceae. On the other hand, samples recovered from shallow
levels (1681–1801 m b.s.) (like DF1, DF2) were more pop-
ulated with Peptococcaceae and Opitutaceae. Members of
Shewanellaceae, Hyphomonadaceae and Microbacteriaceae
were relatively more abundant in samples recovered from
DF3 and DF4, which represent a medium depth range (2093–
2335 m b.s.).

3.6 Core OTU analysis

OTUs common (core OTUs) across all six DF samples were
analysed. Out of the total 49 570 OTUs present across these
six samples only 148 OTUs were identified as core OTUs
(Fig. 6a). All of these OTUs together could cover 30 %–
45 % of the total communities (Fig. 6b), with the excep-
tion of DF4 (12 %) and DF7(18 %). The relative abundance
of different taxonomic groups (Fig. 7a) representing the
core OTUs indicated that the abundance of Firmicutes re-
mained higher in samples from deeper horizons (highest in
DF6; 71 %). OTUs affiliated with Alphaproteobacteria rep-
resented 7 % to 31 % from DF1 to DF7. Members of Bacte-
riodetes present in the core OTUs represented 50 % of to-
tal communities of DF1 and 11 % to 15 % in DF2, DF3
and DF6 but reduced substantially to 2 % and 6 % in DF4
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Table 2. Analysis of the unique operational taxonomic units (OTUs).

Sample Total no. of No. of No. of extremophilic Total no. of reads of Percent
name unique OTUs reads OTUs among top extremophilic communities abundance of top

10 unique OTUs among top 10 unique OTUs 10 unique OTUs

DF1 1577 4093 9 335 8.21
DF2 200 264 5 26 9.84
DF3 3947 9966 7 377 4.3
DF4 4716 15 534 6 1884 11.22
DF6 3934 6819 7 176 2.58
DF7 15 159 71 647 6 11 047 15.148

Figure 4. (a) Bacterial community composition of DF samples (original and returned DF samples) at phylum level (phylum Proteobacteria
has been further divided into its different classes). Phyla which had minimum 1 % abundance in the DF samples were selected and the
remaining ones were grouped into “Others”. (b) Abundance of archaeal communities in DFs (phylum level).

and DF7 respectively. Actinobacterial core OTUs in gen-
eral constituted 2 % to 9 % of the communities, except for
DF4 where these OTUs represented 53 % of total OTUs.
Core OTUs affiliated with Deltaproteobacteria represented a
relatively lower proportion of most of the communities ex-
cept DF2 (4 %) and DF3 (19 %). Members of Verrucomi-
crobia, present as core OTUs, constituted 16 % of DF1 and
3 % of DF2 communities, while in the rest of the communi-
ties their abundance was very low. Planctomycetes members
were generally less abundant except in DF2 (3 %). Betapro-
teobacterial core OTUs were no very abundant (0.004 %
to 0.03 %) except in DF1 (0.13 %) and DF2 (0.29 %). Ar-
chaeal OTUs were not detected in the core communities of
DF. Clostridia (24 %) and Alphaproteobacteria (18 %) were
the major classes detected in the core OTUs of DF fol-
lowed by Bacilli (14 %), Actinobacteria (12 %) and Cytopha-
gia (9 %) (Fig. 7b). However, the absence of Gammapro-
teobacteria and lower abundance of Betaproteobacteria was
noteworthy in the core OTUs of DF. The unique presence
of Negativicutes and Coriobacteria (with very low abun-
dance) was also noted within the DF core communities

(Fig. 7b). Erysipelotrichia, Clostridia, Alphaproteobacteria
and Deltaproteobacteria (Fig. 7b) were the other major
microbial classes. Carnobacteriaceae, Rhodobacteraceae,
Clostridiaceae 1, Cellulomonadaceae, Erysipelotrichaceae,
Cyclobacteriaceae, Opitutaceae, Bradyrhizobiaceae and
Desulfovibrionaceae were the major families present as the
core community members of DF (Fig. 8). These micro-
bial families constituting the core OTUs of DF obtained
from 1681 to 2908 m b.s. were quite different from the
microbial families detected in the core OTUs of granitic
bedrock at higher depths (up to 1500 m b.s.). Idiomarinaceae,
Moraxellaceae, Methylophilaceae, Nocardioidaceae, Nitro-
somonadaceae, Enterobacteriaceae, Comamonadaceae and
Chitinophagaceae were the major microbial families de-
tected in the core OTUs of granitic bedrock up to 1500 m b.s.
(Dutta et al., 2018). Marinilactibacillus, Youngilibacter,
Clostridium sensu stricto 8, Geosporobacter and Pannoni-
bacter were the highly abundant bacterial genera present in
the core communities of DF.
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Figure 5. Microbial community composition and their abundance
(> 1 %) in DF samples at family level.

3.7 Phylogeny of the core OTUs of DF samples

The phylogeny of the top 20 core OTUs (relative abun-
dance 82 %) were analysed using the NCBI BLASTn nu-
cleotide database, and a phylogenetic tree (Fig. 9) was
constructed using MEGA7 software. Phylogenetic analy-
sis revealed that the most of the core OTUs of all six DF
samples displayed a significant match with known (cul-
tured and uncultured) anaerobic, thermo-alkaliphilic mi-
croorganisms obtained from extremophilic habitats and the
deep subsurface. Amphibacillus, Marinilactibacillus, Pan-
nonibacter phragmitetus, Thermotalea metalivorans, Cras-
saminicella profunda, Geosporobacter subterraneus, Anaer-
obranca horikoshii, Anaerobranca californiensis, Cras-
saminicella profunda and Mongoliitalea lutea were some of
the major bacteria which displayed close lineage with the
OTUs of DF samples. Some of the OTUs also showed a
match with uncultured thermophilic, anaerobic iron and sul-
fate and nitrate reducers (Clostridia, Geosporobacter, Desul-
fovibrio etc.).

3.8 Phylogeny of the unique OTUs of DF samples

The top 10 OTUs (on the basis of relative abundance), unique
to each specific DF sample, were subjected to phyloge-
netic analysis to investigate their identity with extremophilic
lineages or microorganisms reported from the deep sub-
surface (Fig. 10). The relative abundance of the unique
OTUs (Table 2), which showed matches with extremophiles
or microorganisms reported from deep subsurface micro-
biome, pertaining to a specific sample, was highest for DF7
(15.42 %) and lowest for DF6 (2.58 %). Unique OTUs cor-
responding to DF1 showed close NCBI BLASTn matches
with Hydrogenophaga aquatica, Tepidicella and other un-
cultured bacteria from extreme environments (hypersaline
lakes) and deep environments. The top 10 unique OTUs cor-
responding to DF2 showed matches with Peptostreptococ-
caceae and Sphingobacteriales. Here also some of the OTUs
showed matches with Pseudomonas strains derived from sur-
face environments. Apart from a few OTUs pertaining to
DF3 (which showed a match with bacteria from waste wa-
ter and sewage sludge) most of them displayed close sim-
ilarity to Desulfomicrobium and some uncultured bacterial
population from deep subsurface environments. Most of the
top 10 OTUs of DF4 showed correspondence to Aishwanella
and other haloalkaliphilic bacteria, whereas few OTUs were
related to bacteria derived from hydrocarbon-contaminated
soil and anaerobic sludge. The unique OTUs (top 10) of
sample DF6 exhibited close lineage with Marinilactibacillus
piezotollerans and other representatives of uncultured bac-
teria from deep subsurface rocks and geologically derived
fluids. Subsequently most of the top 10 unique OTUs of
DF7 were similar to Thermincola, Thermosinus, extremotol-
erant Paenibacillus and other representatives from geother-
mal deep aquifers.
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Figure 6. (a) Venn diagram displaying the number of common OTUs among the DF samples; 148 OTUs were found common in the DF
samples (1–7). (b) Percentage abundance of common OTUs across the DF samples.

3.9 Enrichment of SRB from DF samples

16S rRNA gene amplicon sequencing and subsequent analy-
sis revealed an assessable shift in microbial community com-
position of DF samples (DF1 and DF3) following anaero-
bic incubation under sulfate-reducing conditions. A compar-
ison with the microbial community composition of DFs be-
fore and after enrichment is given in Fig. S1 in the Sup-
plement. Following incubation under sulfate-reducing con-
ditions a distinct shift in community composition with great
enhancement of Firmicutes (60 %) was observed. Bacteri-
odetes, Alphaproteobacteria and Betaproteobacteria, which
dominated the DF1 sample, decreased significantly in the
enrichments. Members of the phyla Gammaproteobacte-
ria (12 %) and Deltaproteobacteria (4 %) increased in DF1
SRB enrichments. Similarly, in the DF3 sample Firmicutes
(29 %), Bacteriodetes (18 %), Gammaproteobacteria (21 %)
and Alphaproteobacteria (11 %) were the major phyla. Fol-
lowing enrichment under sulfate-reducing conditions, a sharp
increase in the abundance of Firmicutes (98 %) was noted
(Fig. S1a). A 3- to 4-fold enhancement of Firmicutes was
observed in the SRB enrichments for both the DF samples.
Analysis of genus-level data (Fig. S1b) showed that known
anaerobic sulfate reducers such as Anaerobranca, Anoxy-
bacillus, Bacillus and Clostridium sensu stricto 8 were most
prevalent in the SRB enrichments for both the DFs.

4 Discussion

Rotary drilling has been one of the most important tech-
niques to get the crystalline rock samples and geological
fluids from deeper depths (Keift et al., 2007). The returned
drilling fluid obtained on site, during the drilling of Koyna
pilot borehole (at the Deccan Traps), India, contained chem-

ical signatures of bentonite-based drilling mud (Table S1).
These drilling fluids were mostly silica-rich, with Na, Al, N
and C being the other major elements, and also contain a
variety of organic constituents (Schlumberger Oilfield Glos-
sary, 2010; Keift et al., 2007; Rabia, 1985). The presence of
compounds such as calcium (Ca), manganese (Mn2+), sulfur
(S), iron (Fe2+), sulfate (SO2−

4 ) and minor amounts of sulfide
(S2−) in DF samples was quite noteworthy, and their concen-
trations increased with increased sampling depth. Normally,
those compounds should not exist in the bentonite-based DF
(Montmorillonite – Handbook of Mineralogy, 2000; http:
//rruff.geo.arizona.edu/doclib/hom/montmorillonite.pdf, last
access: 27 January 2020). With increasing sample depth,
a change of pH to alkalinity and a reduced relative abun-
dance of Si and Al was noted in the samples (Fig. 1).
The granitic subsurface of the Koyna–Warna region was
reported to be sulfur- and iron-rich (Misra et al., 2017).
The availability of sulfate in deeper horizons (> 1000 m)
was widely reported through geochemical analysis of deep
granitic aquifers around the globe (Ino et al., 2017, and refer-
ences within). Compared to other metallic elements present
in mineral form, SO2−

4 and Fe2+ present in rock were able
to dissolve in the DF during drilling; hence it got enriched
with sulfate with an increase in depth. The shift in geochem-
ical parameters suggested gradual infusion of elements from
the crystalline bedrock during the course of drilling. More
evidence of this infusion came from the alkaline nature of
the DF samples obtained from lower depths. These granites
have been reported to contain minerals responsible for cre-
ating alkaline conditions in those environments (Misra et al.,
2017). The mixing of the granitic bedrock with the drilling
fluid had provided alkalinity to the samples. There was a con-
stant increase in temperature with increasing depth (55.6 to
73.9 ◦C) from 1681 to 2908 m b.s. In the subsurface of the
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Figure 7. Microbial abundance of core OTUs at phylum (a) and class (b) level.

Deccan Traps temperature increased with depth at a rate of
∼ 15 ◦C km−1 in granitic bedrock and lithostatic pressure in-
creased by 26.7 MPa km−1 (Roy and Rao, 1999). The initial
fluid used might have contained surface-derived microbial
populations but the deep extreme subsurface environments,
through which it had circulated, could have tended to favour
indigenous, subsurface-adapted microorganisms (Zhang et
al., 2006; Masui et al., 2008). It could also contain the mi-
crobial diversity of rock chips and geological fluids from the
deep subsurface carried along with the DFs to the surface
during drilling. The bacterial and archaeal cell abundance
were detected using qPCR. No significant change in bacte-
rial and archaeal abundance was observed with respect to
sampling depth (Fig. 2). Microbial load in the DF was ob-
served to be persistent across depths. Hence, it could be as-

sumed that the change in biomass and its decay have been
at equilibrium across depths in DF samples. Dynamic con-
ditions encountered by the DF (due to drilling and coring
process) might also have favoured the growth of some of the
microbial populations, whereas others were not able to sus-
tain themselves, thereby keeping the overall microbial load
consistent throughout.

The microbial diversity of DFs were studied by amplicon
sequencing of the V4 region of the 16S rRNA gene. This
primer set (515F–806R) to amplify this region was devel-
oped by Bates et al., 2011, and was designed to be universal
for nearly all bacterial and archaeal taxa. They even demon-
strated in silico that this primer set could amplify 16S rRNA
genes from a broad range of archaeal and bacterial groups
with few biases or excluded taxa. In spite of the short-read
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Figure 8. Microbial abundance comparison at family level of core OTUs of granitic rock cores (up to 1500 m b.s.) (Dutta et al., 2018) and
DF samples (DF; up to 2908 m b.s.).

lengths (∼ 250 bp), this region provided sufficient resolu-
tion for the accurate taxonomic classification of microbial se-
quences. Since then there have been many studies which have
used the V4 region of the 16S rRNA gene to study the micro-
bial diversity of different environments, including the deep
subsurface (Dutta et al., 2018; Gupta et al., 2018; Purkamo et
al., 2017). Considerably higher diversity and bacterial abun-
dance was observed in DF with an increase in depth (Ta-
ble 1). There was a marginal increase in archaeal abundance
in DF with an increase in depth. Increases in Shannon and
Simpson index values (Fig. 3a) confirmed the increase in the
microbial diversity of DF as we went further down (Simpson,
1949; Pielou, 1966). Continuous exposure to the deep sub-
surface environment and its constant mixing with the granitic
subsurface rocks might have enriched the microbial diversity
of DF with an increase in depth (Struchtemeyer et al., 2011;
Zhang et al., 2006). The phylum-level composition of micro-
bial communities of the DF samples was similar to some of
the earlier studies on the microbial diversity of DFs (Fig. 4a
and b). Struchtemeyer et al., 2011, reported the dominance of
Firmicutes (average 55 %) in all the DF samples from ther-
mogenic natural gas wells of the Barnett Shale. Firmicutes
were found to be the major microbial community in six DF
samples collected from 2290 to 3350 m b.s. in the Chinese
continental scientific drilling (CCSD) project (Zhang et al.,
2006). The original in-flow DF which was collected from the
tank before its introduction in the borehole had different mi-
crobial community composition than the returned DF sam-
ples (DF1–DF7) from each depth (Fig. 4a). Bacteriodetes,

which dominated the in-flow DF, decreased considerably in
the returned DF samples (DF1 to DF7). The phylum Bac-
teriodetes is widely distributed in the environment, includ-
ing in soil, sediments and sea water, as well as in the guts
and on the skin of animals; hence it might be indigenous to
drilling fluid (Gibino et al., 2018; Rainey and Oren, 2011).
Similarly, Firmicutes, Alphaproteobacteria, Actinobacteria
and Gammaproteobacteria were increased in the returned
DF samples. Hence, it can be seen that indigenous microbial
community composition of in-flow DF was altered consider-
ably during its interaction with the granitic rock cores during
drilling. It was evident that microbial communities of the re-
turned DF samples also varied with increases in depth due its
extended exposure to deep subsurface conditions and interac-
tion with granitic rocks. The relative abundance of some bac-
terial phyla such as Bacteriodetes, Betaproteobacteria and
Gammaproteobacteria decreased and the relative abundance
of some bacterial phyla such as Firmicutes, Alphaproteobac-
teria and Actinobacteria (relevant to deep subsurface) in-
creased (Fig. 3b). There are several reports that confirmed
the dominance of these phyla in the deep subsurface (Sahl et
al., 2008; Leandro et al., 2018; Ino et al., 2017; Purkamo et
al., 2017; Leblanc et al., 2019). The concentration of some ar-
chaeal phyla (Euryarchaeota and Thaumarchaeota) also in-
creased in the lower depths. Interestingly, archaea were not
detected in the in-flow DF. These archaeal phyla have been
predominantly reported in deep igneous rocks (Nyyssönen et
al., 2014; Breuker et al., 2011; Labonté et al., 2017). A dy-
namic shift in microbial populations was particularly note-
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Figure 9. The phylogeny of the top 20 core OTUs (relative abundance > 82 %) constructed in MEGA7. Coloured stack bar represent their
relative abundance in all the DF samples. Each sample is represented by different colours as follows: DF1: red, DF2: blue, DF3: yellow, DF4:
green, DF6: light blue, DF7: dark red.
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Figure 10.
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Figure 10. The phylogeny of the top 10 unique OTUs of DF1 (a), DF2 (b), DF3 (c), DF4 (d), DF6 (e) and DF7 (f). A phylogenetic tree was
constructed using MEGA 7 software.
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worthy in the DF samples from the deep granitic subsurface
of the Koyna–Warna region. These microbial communities
must have intruded from the deep granitic rocks into the DFs
during the drilling process.

The family- and genus-level data gave us better insight into
the changing microbial dynamics of returning DF samples by
depth (Fig. 5). Comamonadaceae and Pseudomonadaceae
were observed to be dominant in DF1 (1500 m b.s.) and DF2
(1901 m b.s.) and their abundance decreased in the lower
depths. Several microorganisms belonging to Commamon-
adaceae and Pseudomonadaceae families were mesophilic
in nature, mostly found in soil and water (Palleroni, 1981;
Moore et al., 2006; Willems, 2014), and they might have
come either from DF or the surface. Cyclobacteriaceae and
Rhodobacteriaceaeae, though dominant in DF1 and DF2,
were also present in all the DF samples. These two micro-
bial families, found in diverse and extreme habitats (fresh-
water bodies, algal mats, marine waters, alkaline soda lakes,
hot springs, mud volcanoes etc.), manifested the ability to de-
grade a number of polysaccharides and have been deeply in-
volved in sulfur and carbon biogeochemical cycling (Pujalte
et al., 2014; Pinnaka and Tanuku, 2014). Major populations
of these two families in DF1 and DF2 could be indigenous to
DFs and surface soil or water. There is a reasonable chance
that the extremophilic microbial population belonging to Cy-
clobacteriaceae and Rhodobacteriaceaeae might have be-
come enriched in the DFs sampled at lower depths due to the
extreme conditions (Zhang et al., 2006; Kumar et al., 2012).
Alternatively, it could also be concluded that they might be
part of the deep subsurface microbiome (Russell et al., 2016;
Hubalek et al., 2016; Leboulanger et al., 2017). Subsequently
the relative abundance of some of the microbial families,
known to strive in strictly anaerobic and extremophilic en-
vironments (e.g. Thermoanaerobacteraceae, Clostridiaceae,
Bacillaceae, Carnobacteriaceae, Ruminococcaceae) (Tomás
et al., 2013; Deep et al., 2013; Glaring et al., 2015; Toffin
et al., 2005; Ishikawa et al., 2009; Song and Dong, 2009;
Horino et al., 2014), increased in the DFs sampled from
2000 to 3000 m b.s. Some of these microbial families such
as Thermoanaerobacteraceae and Bacillaceae have been re-
ported from deep subsurface environments as well as DFs
from other deep subsurface studies (Chakraborty et al., 2018;
Gaboyer et al., 2015; Zhang et al., 2006; Slobodkina et al.,
2012; Fang et al., 2017) These groups might have intruded
the DFs from the rocks at lower depths during drilling op-
erations (Struchtemeyer et al., 2011). High concentrations of
sulfate and iron in the DFs from lower depths are correlated
with the presence of these microbial families which have
been reported previously to utilize sulfate and iron as termi-
nal electron acceptors (Sylvan et al., 2015; Reyes et al., 2017;
Kjeldsen et al., 2007; Kanso et al., 2002; Emmerich et al.,
2012; Ogg et al., 2010). The presence of thermophilic, alka-
liphilic, halophilic and anaerobic fermentative bacterial gen-
era relevant to the deep subsurface (Opitutus, Mongoliitalea,
Hydrogenophaga, Marinilactibacillus, Anoxybacillus, Sym-

biobacterium, Geosporobacter, Thermoanaerobacter etc.) in
the DFs (Lee et al., 2012; Willems et al., 1989; Toffin et
al., 2005; Ueda et al., 2004; Klouche et al., 2007; Hong et
al., 2015) and their dominating presence in the samples from
lower depths (2500 m b.s.) confirmed the hypothesis of a pos-
sible interaction between the granitic bedrock and DF and
was indicative of the possible alteration in the DF microbial
community due to its exposure to the highly extreme condi-
tions at these depths.

Core OTU analysis revealed similar observations to
those stated above (Figs. 6 and 7). Some of the micro-
bial phyla (Cyanobacteria, Chloroflexi, Chlamydiae and
Euryarchaeota) indigenous to deep subsurface environ-
ments (Puente-Sánchez et al., 2014, 2018; Fullerton and
Moyer, 2016; Rempfert et al., 2017) were only observed
in the core OTUs of lower depths (DF4 onwards). The
microbial families (Carnobacteriaceae, Rhodobacteraceae,
Clostridiaceae 1, Cellulomonadaceae, Erysipelotrichaceae,
Cyclobacteriaceae, Opitutaceae, Bradyrhizobiaceae and
Desulfovibrionaceae) detected in the core OTUs of DF
were different from the microbial families (Idiomarinaceae,
Moraxellaceae, Methylophilaceae, Nocardioidaceae, Ni-
trosomonadaceae, Enterobacteriaceae, Comamonadaceae,
Chitinophagaceae) detected in granitic core OTUs at higher
depths (1500 m b.s.) (Dutta et al., 2018) (Fig. 8). These mi-
crobial families might have either come from the intru-
sions of subsurface deep granitic bedrock at lower depths
(1600 m b.s. onwards) or might have got enriched due to the
extreme environmental conditions at the deep granitic sub-
surface. Phylogenetic analysis of the core OTUs revealed
that most of the sequences belonged to anaerobic, deep sub-
surface microbial communities (Fig. 9). Core OTUs dis-
played a good match with extremophilic microorganisms
(cultured and uncultured), namely Amphibacillus (anaero-
bic, alkaline), Marinilactibacillus (halo-alkaliphilic, peizo-
tolerant), Pannonibacter phragmitetus (alkalitolerant), Ther-
motalea metalivorans (anaerobic,thermophilic), Crassamini-
cella profunda (anaerobic, chemo-organotrophic bacterium),
Geosporobacter subterraneus (obligate anaerobe), Anaer-
obranca horikoshii (alkalitolerant thermophile), Anaer-
obranca californiensis (obligately anaerobic, alkalither-
mophilic, chemo-organotroph), Crassaminicella profunda
(anaerobic, chemo-organotrophic) and Mongoliitalea lutea
(alkaliphilic, halotolerant). These organisms have been re-
ported from deep subsurface environments and extreme habi-
tats such as alkaline soda lakes, hot and alkaline springs,
sulfur-containing springs, methane bedrock, deep sea sedi-
ments, and aquifers (Engle et al., 1995; Borsodi et al., 2003;
Gorlenko et al., 2004; Toffin et al., 2005; Klouche et al.,
2007; Wu et al., 2010; Yang et al., 2012; Lakhal et al.,
2015; Ogg and Patel, 2009). Very few OTUs showed a match
with both types of habitats, namely moderate as well as ex-
treme. Phylogenetic analysis of unique OTUs pertaining to
each DF sample revealed similar results (Fig. 10). Some of
the OTUs unique to each sample (3 %–15 % relative abun-
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dance per sample) showed relatedness to extremophilic as
well as deep subsurface microbial groups while few OTUs
showed a match with mesophilic bacteria reported from
surface environments. Unique OTUs corresponding to the
DF1 sample showed close NCBI BLASTn matches with
Hydrogenophaga aquatica, which is isolated from the hot
spring (Lin et al., 2017) and Tepidicella (alkaliphilic bacte-
ria isolated from hot spring runoff) (França et al., 2006) and
other uncultured bacteria from hyperalkaline saline lakes and
deep basaltic aquifers. The top 10 unique OTUs correspond-
ing to DF2 showed matches with Peptostreptococcaceae (a
moderately thermophilic anaerobic bacterial family which
consists of bacteria reported from pristine rock cores, deep-
sea hydrothermal vents and other extreme environments)
(Slobodkin, 2014) and Sphingobacteriales (reported from
deep rocks) (Dutta et al., 2018). They are similar to vari-
ous Pseudomonas strains reported from river and petroleum
muck environment and other uncultured bacteria from mud
microbiomes as well. Uncultured bacteria from the Oukilito
borehole, geothermal deep aquifer, Atlantic coast sediment
(Desulfomicrobium) (Dias et al., 2008) and hydraulic fracture
fluids showed close lineage with most of the top 10 unique
OTUs pertaining to sample DF3, whereas a few uncul-
tured bacteria from waste water and sewage sludge (Porphy-
romonadaceae) (Sakamoto, 2014) also showed relatedness
to some of the unique OTUs of this sample. Some unique
OTUs among the top 10 of the DF4 sample showed correla-
tion with Alishawanella (Salah et al., 2016) and other halo-
alkalophilic bacteria and were representative of hypersaline
lake and deep subsurface clay rocks, and some unique OTUs
were related to hydrocarbon-contaminated soil and anaero-
bic sludge. Unique OTUs (top 10) of sample DF6 exhibited
close lineage with Marinilactibacillus piezotollerans, which
is a known peizotolerant bacterium, and other representatives
from hydraulic fracture fluids, deep bedrock aquifer and sub-
surface aquifer sediments (Toffin et al., 2005). Subsequently
most of the top 10 unique OTUs of DF7 were similar to
Thermincola (anaerobic, thermophilic, chemolithotrophic or-
ganism), Thermosinus (anaerobic, thermophilic and carbon
monoxide oxidizing bacterium), extremotolerant Paenibacil-
lus and other representatives from geothermal deep aquifers
(Zavarina et al., 2007; Sokolova et al., 2004). Based on these
observations we hypothesized that due to the prolonged in-
teraction of DF with the subsurface granitic crust these or-
ganisms might have become infused in the DF. The interac-
tion between DF and crust has altered the geochemistry of
DF, which is evident from the altered geochemical properties
of the DF. This interaction (infusion of crustal particle car-
rying cells) led to the enrichment of DF with extremophilic
microbial populations pertaining to the deep granitic subsur-
face (represented by the core OTUs). On the contrary in the
OTUs unique to each DF, a mixed bacterial population (both
extremophilic as well as mesophilic) was observed. The pres-
ence of deep subsurface and extremophilic bacterial popula-
tions in unique as well as core OTUs confirms our hypothesis

of the presence of deep subsurface microbial populations in
DF samples collected at different depths below the surface.
Apart from that, the presence of diverse heterotrophic bacte-
rial populations in DF samples is quite interesting, and dur-
ing core OTU analysis we observed that many OTUs showed
lineages with heterotrophic bacteria. As already discussed
above, DF consists of a variety of organic carbon compounds
(Keift et al., 2007; Rabia, 1985). These organic carbon com-
pounds could be efficiently utilized by heterotrophic bacte-
ria as a carbon source and hence played an active role in
shaping up the functional diversity of the DF microbial com-
munities. Incubation of DF samples (DF1 and DF3) under
sulfate-reducing conditions was quite successful and it led
to increase in the abundance of Firmicutes members (Anaer-
obranca, Clostridium sensu stricto 8, Anoxybacillus, Bacil-
lus) capable of anaerobic sulfate reduction (Fig. S1). All
these members of the phylum Firmicutes were well known
for their facultative to strict anaerobic metabolism and have
been reported from several deep subsurface studies and ex-
tremophilic environments (Sahl et al., 2008; Purkamo et al.,
2017; Leblanc et al., 2019; Gupta et al., 2018). Purkamo et
al. (2017) detected Anaerobranca in their enrichment sam-
ples, which were set up to understand the response of ac-
etate (carbon source) and sulfate (electron acceptor) in the
fracture water collected at a depth of 2516 m b.s. at the Out-
okumpu drill site. As already shown these genera were also
detected in DF samples (DF1 to DF7) and showed phyloge-
netic lineages with the bacteria isolated from extremophilic
environments or the deep subsurface. A dynamic shift in the
microbial community structure of DF with increases in depth
was observed due to its exposure to deep subsurface environ-
mental conditions.

5 Conclusion

Drilling fluid, often regarded as a source of contamination
during investigations of deep subsurface microbiology, could
be a vector for the sampling of geological fluids and sig-
natures of microbial life from such environments. The geo-
chemical investigation of DF that circulated through the deep
borehole (down to 3000 m b.s.) from the granitic subsurface
confirmed a possible interaction of DFs and igneous rocks.
These interactions had conferred the DF with unique con-
ditions (reducing, hot, alkaline and saline environments) that
partly reflected the deep subsurface. Our investigations of the
DFs suggested that although such circulating fluids could be
responsible for contaminating the deep subsurface rock sam-
ples by introducing extraneous microbes, enrichment of these
fluids with subsurface organisms was inevitable due to pro-
longed interaction with subsurface rocks. Successful identi-
fication and enrichment of anaerobic, thermophilic sulfate-
reducing and deep subsurface relevant microbial populations
from DF samples confirmed that DF could be used as a proxy
to study the deep subsurface. Hence, the study of the mi-
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crobial ecology of the DF that circulated through the deep
borehole (down to 3000 m) from granitic subsurface of the
Koyna–Warna region of the Deccan Traps provided a win-
dow through which to look into the broader spectrum of deep
life residing within the deep crystalline bedrock of the Dec-
can Traps. The DF microbiome could also be used as a proxy
for bedrock to isolate and characterize deep biosphere related
microorganisms.
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Abstract. The Chikyu Shallow Core Program (SCORE) has been started to provide more opportunities for
the scientific ocean drilling of shallow boreholes (up to 100 m) during a short-term expedition. The proposal
flow is a simplified version of that of the International Ocean Discovery Program (IODP). Although there are
several limitations for a SCORE project, the opportunity to retrieve 100 m of continuous core samples will be
of great interest for the scientific ocean drilling community in multiple disciplines. The first expedition of the
SCORE program was implemented off Cape Erimo, Hokkaido, northern Japan. The target of the drilling was to
investigate the impact of submarine mass transport on the subseafloor sedimentary biosphere. In the preliminary
observation of the core samples, including X-ray computed tomography (CT) scan image analysis, chaotic and
inclined beds were found and interpreted as mass transport deposit (MTD) units.
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1 Introduction

The drilling vessel Chikyu has implemented more than 20
scientific ocean drilling expeditions for the IODP (Integrated
Ocean Drilling Program and International Ocean Discovery
Program) since 2007. Because the Chikyu is the only riser
drilling platform for scientific ocean drilling, previous IODP
expeditions have mainly focused on very deep subseafloor
targets such as seismogenic zones in accretionary prisms and
the deep biosphere within coal and shale beds. However, op-
portunities for utilizing the Chikyu might have been limited
for the exploration of relatively shallow horizons, because
the riser drilling expeditions often tend to be long, expensive,
and complicated, taking years from the initial proposal sub-
mission to the implementation. To maximize the use of the
Chikyu for the broader science and educational community, a
new framework for scientific ocean drilling, the Chikyu Shal-
low Core Program (SCORE), has been initiated under a col-
laboration between the Japan Drilling Earth Science Consor-
tium (J-DESC) and Japan Agency for Marine-Earth Science
and Technology (JAMSTEC). SCORE is designed to imple-
ment short-term expeditions in a relatively simple process
using hydraulic piston coring. It would add extra value to
the Chikyu if more opportunities were made available for the
ocean drilling community to take part in Chikyu expeditions
without the time, effort, and cost necessary for major long-
term expeditions. In this article, the concept of SCORE and
preliminary results from its first expedition (910) off Cape
Erimo in September 2017 are introduced.

1.1 SCORE

SCORE is a new programme of J-DESC to utilize the Chikyu
for drilling shallow boreholes during a short-term expedition.
Any scientist from a member institution of J-DESC can sub-
mit a drilling proposal with a format similar in length to an
IODP pre-proposal. Although the lead proponent must be as-
sociated with a member institution of J-DESC, any scientist
may be a co-proponent and is eligible to participate in an ex-
pedition. The proposal flow of SCORE is a simplified version
of that of the IODP (the format is available at the J-DESC
website https://www.j-desc.org/score/, last access: 13 Febru-
ary 2020). The IODP section in J-DESC reviews the proposal
and forwards it to the Institute for Marine-Earth Exploration
and Engineering (MarE3) in JAMSTEC with recommenda-
tions, if the proposal is scientifically mature enough for im-
plementation in the future. MarE3 determines whether the
proposal fits within operational constraints (budget, sched-
ule, logistics, etc.).

Due to the short timeframe of the drilling, there are several
limitations for a SCORE project. First, drilling operations
are limited to hydraulic piston coring of sediment down to
∼ 100 m below seafloor (m b.s.f.). Second, proposed drilling
sites located on, or nearby, the planned ship track of the
Chikyu (see the J-DESC website) are preferred. Third, ship-

board flow of analyses is limited as compared to the stan-
dard measurement procedures on an IODP expedition due to
the short duration of the expedition and a reduced number of
shipboard technical staff. Typically, non-destructive analysis
of whole-round cores and image scanning after core splitting
are conducted onboard. In addition to the limitations in such
operational and analytical conditions, proponents should be
aware that J-DESC provides no financial support for expe-
dition participants (as of today). While MarE3 implements
drilling operations and provides support for core curation
and minimal data collection, proponents and team members
should prepare necessary costs for travel and accommoda-
tions, sample shipping, onboard and post-expedition research
activities, etc. Nevertheless, in addition to supplementing full
IODP expeditions, the opportunity to retrieve 100 m of con-
tinuous core samples will be of great interest for the scientific
ocean drilling community in multiple disciplines.

1.2 Expedition 910: drilling west off Cape Erimo

The first SCORE expedition with the Chikyu was conducted
from 19 to 23 September 2017, based on the proposal “Deep
Learning of Deep Life: Exploring impact of submarine land-
slides on the deep biosphere-evolution off Cape Erimo” pro-
posed by the lead proponent Fumio Inagaki of JAMSTEC.
Since the Ocean Drilling Program (ODP) Leg 201, numerous
microbiological and biogeochemical studies have demon-
strated that Earth’s biosphere extends far below its surface,
at least down to ∼ 2.5 km beneath the ocean floor on the
continental margin (Inagaki et al., 2015). Based on the accu-
mulated evidence of microbial biomass in subseafloor sed-
iments in various oceanographic and geological settings,
a recent numerical model study estimated that a total of
1029 microbial cells are present in the global subseafloor
biosphere, accounting for 4 Pg of biomass carbon on Earth
(Kallmeyer et al., 2012). Previous scientific ocean drilling
also demonstrated that activity of aerobic and anaerobic sub-
seafloor microbial communities is generally extraordinarily
low; i.e. mean organic-fuelled respiration rates range from
2.8×10−18 moles e- per cell per year in anaerobic sediments
in the eastern equatorial Pacific to 1.1× 10−14 moles e- per
cell per year in aerobic SPG sediments (D’Hondt et al., 2004,
2015; Hoehler and Jørgensen, 2013). In addition, these sed-
imentary communities in both aerobic and anaerobic sub-
seafloor habitats consist mainly of species evolutionarily
very distinct from known microbes in Earth’s surface bio-
sphere (e.g. Inagaki et al., 2003, 2006). Previous metage-
nomic and metatranscriptomic studies have found that those
physiology and metabolic functions are also very distinct and
adapted to the sedimentary biosphere where the energy flux
is extremely low (Biddle et al., 2006; Orsi et al., 2013; Tully
and Heidelberg, 2016; Valentine, 2007). To date, however,
little is known about how such deeply buried “slow life” re-
sponds to changes in the surrounding environment.
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In SCORE Expedition 910 off Cape Erimo, we targeted
the community response and succession of the sedimen-
tary biosphere associated with earthquake- and/or climate
change-triggered mass transport deposits (MTDs) in that
area. During the past decade, our knowledge of submarine
mass movements including submarine landslides has signifi-
cantly expanded worldwide, with realization of their destruc-
tive impact and tsunami-generation potential (e.g. Yamada
et al., 2012). However, it still remains unknown how en-
vironmental changes caused by submarine landslides have
impacted the modern subseafloor biosphere, how the deeply
buried microbial communities have responded to the phys-
ical and chemical changes in their stable habitat, and what
the succession and resilience of the microbial ecosystem and
potential roles are in biogeochemical element cycling. Es-
tablishing high-resolution depth–age profiles of various en-
vironmental factors in this site is also useful for consider-
ing the occurrence mechanism of the MTDs. These scientific
objectives are highly relevant to Biosphere Frontiers: Chal-
lenge 7 “How sensitive are ecosystems and biodiversity to
environmental change?” and Earth in Motion: Challenge 12
“What mechanisms control the occurrence of destructive
earthquakes, landslides, and tsunami?” in IODP Science Plan
2013–2023.

2 Geological background

The drilling site is located in the Hidaka Trough, which cor-
responds to an arc–arc junction between the north-eastern
Japan arc and Kuril arc in the southern part of Hokkaido
and extends southward to offshore of the Shimokita Penin-
sula (Fig. 1). The Hidaka Trough originated from a fore-
arc basin that developed along the Pacific Plate subduc-
tion zone (∼ 8 cm yr−1, west–northwest plate motion vec-
tor; Seno et al., 1996) and later converted to a foreland
basin adjacent to the Hidaka Block collision zone due to
the westward migration of the Kuril forearc sliver (Kimura
and Kusunoki, 1997; Takano 2017). A large-scale fore-deep
subsidence and a tremendous amount of clastic inflow that
derived from the uplifted Hidaka Mountains resulted in the
thick sedimentary piles of the Neogene foreland basin suc-
cession in the Hidaka Trough (Itoh and Tsuru, 2005; Noda et
al., 2013). The 5000 m thick foreland basin-filling succession
comprises submarine-fan turbidites, MTDs, siliceous shale
and hemipelagic mudstones, depending on the background
tectonic conditions at the depositional time and the inside-
basin locations (JOGMEC, 2013).

Multiple seismic surveys have been conducted in the Hi-
daka Trough (JOGMEC, 2013, 2014), providing seismic
stratigraphic and structural information on both the deeper
and shallower parts of the basin-filling succession. Some
seismic sections indicate that the shallower part below the
seafloor is dominated by interbedded MTDs and hemipelagic
shales. The 3-D topographic maps of the seafloor clearly in-

Figure 1. Site C9033 is located west off Cape Erimo, Hokkaido,
northern Japan. The site is located 70 km north of IODP Site C0020.

dicate that a large-scale slump scar structure (escarpment)
developed along the shelf break westward offshore from
Cape Erimo and debris flow lobes and fragmented slump
blocks widely distributed in the downstream part of the shelf
break slump scar (Fig. 2).

The shallowest sedimentary sequence (∼ 100 m b.s.f.) at
the drilling site primarily consists of a Quaternary sedi-
mentary sequence including two MTDs (Upper and Mid-
dle MTDs in Fig. 3), overlying Pliocene units with a thicker
MTD (Lower MTD in Fig. 3) (Takano, 2017; von Huene et
al., 1980).

3 Coring operation and analytical flow

In the 4 d SCORE expedition, the Chikyu successfully
drilled three holes using the hydraulic piston coring sys-
tem (Table 1). Coring of the first hole, C9033A, reached
100 m b.s.f. and formation temperature measurements using
the APCT-3 tool were attempted five times. Core samples
from C9033A were used for shipboard sampling and anal-
ysis. Plug-sediment samples for cell count and headspace
gas analysis were collected from the interiors of freshly cut
section ends. After whole sections were scanned with X-CT
and logged with MSCL-W, whole round core samples for
geochemistry and microbiology were retrieved, and the re-
maining sections were split for shipboard observation and
sampling. The other cored sections were used for physical
property measurements such as moisture and density, ther-
mal conductivity and penetration strength. Basic geochem-
istry of both interstitial water and gas components was ob-
tained by the shipboard scientific party. For microbiology,
whole round core samples were collected immediately after
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Figure 2. Three-dimensional view of topography around the drill site C9033. Rugged features indicate occurrences of mass transport.
Seafloor topography detection from the seismic survey data (JOGMEC, 2013, 2014).

Figure 3. Seismic profiles at the drill site C9033 show transparent and/or chaotic intervals interpreted as mass transport deposits. There are
three such intervals in the top 100 m. Seismic profiles are from JOGMEC (2013, 2014).

X-CT scan and processed for the appropriate storage prior to
the post-cruise analysis (Morono and Inagaki, 2016).

Because of time constraints of the cruise, only one core
from the seafloor was recovered from the second hole
C9033B, and the entire core was used for high-frequency
sampling of interstitial water after X-CT observation (Fig. 4).
The sections were then packed under the anaerobic condi-
tion (filled with N2 and vacuumed with oxygen-impermeable
bags) for post-cruise use. From the third hole C9033C, 11

cores to 99.5 m b.s.f. were taken mainly for geological ob-
servations and post-cruise studies. The cores were split on-
board after the non-destructive analysis and the split surface
of archive halves was scanned for image archive. All sections
were packed and stored at +4 ◦C for shipping to Kochi Core
Center, where all split sections were observed and described
for lithostratigraphic study.
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Table 1. Hole and coring summary.

Hole Latitude Longitude Water depth Cores Cored Recovered Recovery
(m b.s.l.) (N ) (m) (m) (%)

910-C0033A 41◦48′08.33′′ N 142◦21′27.88′′ E 1068.5 12 100.0 109.64 109.6
910-C0033B 41◦48′08.33′′ N 142◦21′27.88′′ E 1069.0 1 7.0 7.25 103.6
910-C0033C 41◦48′08.33′′ N 142◦21′27.88′′ E 1069.0 11 99.5 107.47 108.0

Figure 4. High-frequency pore water samples were taken from
C9033B core sections using Rhizon samplers in a refrigerator room
on the Chikyu.

4 Preliminary results and discussion

The main lithology of the cores was dark olive to olive grey
silty clay with quartz, feldspar, volcanic glass, and microfos-
sils of calcareous nannofossils, diatoms, and sponge spicules
(Fig. 5). These massive sediments were unconsolidated,
moderately bioturbated, and intercalated with sandy layers
of various thicknesses commonly showing sharp bases and
normal grading. There were several layers of volcaniclastic
sediments, consisting of pumice, scoria, and volcanic glass
(Fig. 5). The volcaniclastic sediments in the top 10 m b.s.f.
contained coarse pumice, whereas tuffaceous sands were
dominant in deeper intervals. Many of the volcaniclastic lay-

ers showed inverse grading, and some thick layers were com-
prised of multiple units, each of which showed inverse or
normal grading.

Four chaotic deposits characterized by scattered mud
clasts and lack of stratification were observed in both Holes
A and C (Fig. 5). Neither normal nor inverse grading was ob-
served in the chaotic deposits. Mud clasts were matrix sup-
ported without preferred orientation (Fig. 6). The mud clasts
were predominantly silty clay, usually darker olive grey in
colour than that of the surrounding matrix, with sub-rounded
to sub-angular forms. The size of the clasts varied from cen-
timetres to tens of centimetres in length.

The most distinct chaotic deposits were observed in 60.3–
64.4 m b.s.f. in C9033A. A folded mud clast was found at
C9033A-8H-10, 63 cm (Fig. 6). An overturned sand bed,
which apparently showed a sharp top and inversed grad-
ing in appearance, was observed at C9033A-9H-4, 19 cm
(Fig. 6). Another good example of chaotic bedding was found
in 45.0–49.4 m b.s.f. in C9033C, which included a sandy tur-
bidite at the top.

The chaotic deposits were accompanied by intervals show-
ing inclined bedding. The bedding angle was mostly 5–15◦,
but was up to 40◦ in some cases. Except for the inclination,
the lithologies of the inclined bedding were similar to those
of other hemipelagic sediments with horizontal laminae.

The combinations of inclined bedding and chaotic de-
posits are often reported from MTDs in other present deep-
water basins (e.g. Algar et al., 2011; Alves, 2015) and ex-
posed ancient MTDs (Ogata et al., 2012; Sola et al., 2018).
Assuming the combination of the two features indicates
MTD, there were three MTD units in both Holes A and C
(Fig. 5). The first unit (46.0–56.6 m b.s.f. in 9033A and 45.0–
56.1 m b.s.f. in 9033C) is about 10 m thick and contains two
chaotic deposits, which sandwich an interval of inclined bed-
ding. The second unit (60.3–69.0 m b.s.f. in 9033A and 59.5–
69.0 m b.s.f. in 9033C) consists of a chaotic deposit underlain
by silty clay with inclined laminae. The third unit consists of
the bottom 8 m, continuing deeper, in 9033A and has thin
chaotic deposits and silty clay with inclined bedding. The
upper boundary of this unit at Hole 9033C is unclear due
to flow-in material during coring. In addition to these three
MTD units, inclined bedding was observed without chaotic
deposits at the top of all three holes.

The observed MTD units in the core can be clearly corre-
lated with those observed in the seismic profile (Fig. 3). The

https://doi.org/10.5194/sd-27-25-2020 Sci. Dril., 27, 25–33, 2020



30 Y. Kubo et al.: New Chikyu Shallow Core Program (SCORE)

Figure 5. Lithologic column figure of Holes A and C at Site C9033. The combination of chaotic deposits and inclined beds is interpreted
as mass transport deposits (MTDs). Two MTD units observed in the middle part of the core comprise “Middle MTD” in the seismic profile,
whereas the MTD unit in the bottom corresponds to the top of “Lower MTD”. Inclined bedding in the top 20 m may be another MTD layer.
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Figure 6. Three examples of deformation structures in the core
samples: scattered mud clasts in C9033A-8H-6 (a, b, c), folded
block in C9033A-8H-10 (d, e, f) and overturned bed with a sharp
top and inverse grading in C9033A-9H-4 (g, h, i).

first and second MTD units comprise the Middle MTD in the
seismic profile, whereas the third MTD corresponds to the
top of the Lower MTD. Similarly, the inclined bedding at the
top of all three holes may correspond to the Upper MTD of
the seismic profile.

5 Summary

Chikyu’s new coring programme, SCORE, provides the
ocean drilling community with the opportunity to conduct
short-term drilling expeditions for the drilling of shallow
holes of up to 100 m b.s.f. With the simplified proposal re-
view process, SCORE will open up possibilities for new
research in a timely manner. The first SCORE expedition
drilled three holes down to a maximum depth of 100 m b.s.f.
off Cape Erimo, northern Japan. The sediment cores showed
features such as chaotic deposits and inclined bedding, in-
dicating repeated occurrences of mass transport deposits in
the foreland basin. Post-cruise shore-based analyses will in-
vestigate the impact of such geological events on the local
subseafloor microbial biosphere.
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Abstract. Today, coastal cities worldwide are facing major changes resulting from climate change and anthro-
pogenic forcing, which requires adaptation and mitigation strategies to be established. In this context, sedimen-
tological archives in many Mediterranean cities record a multi-millennial history of environmental dynamics and
human adaptation, revealing a long-lasting resilience. Founded by the Phoenicians around 3000 years ago, Cádiz
(south-western Spain) is a key example of a coastal resilient city. This urban centre is considered to be one of the
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first cities of western Europe and has experienced major natural hazards during its long history, such as coastal
erosion, storms, and also tsunamis (like the one in 1755 CE following the destructive Lisbon earthquake).

In the framework of an international, joint archaeological and geoarchaeological project, three cores have
been drilled in a marine palaeochannel that ran through the ancient city of Cádiz. These cores reveal a ≥ 50 m
thick Holocene sedimentary sequence. Importantly, most of the deposits date from the 1st millennium BCE
to the 1st millennium CE. This exceptional sedimentary archive will allow our scientific team to achieve its
research goals, which are (1) to reconstruct the palaeogeographical evolution of this specific coastal area; (2) to
trace the intensity of activities of the city of Cádiz based on archaeological data, as well as geochemical and
palaeoecological indicators; and (3) to identify and date high-energy event deposits such as storms and tsunamis.

1 Introduction

Focusing on the city of Cádiz (Figs. 1, 2, 3), this starting in-
ternational, geoarchaeological project offers outstanding re-
search perspectives for two main reasons. To begin with,
Cádiz is considered to be one of the first cities of west-
ern Europe and has remained a maritime crossroads since
its creation (Botto, 2014). Given its prominent position, di-
rectly northward of the Strait of Gibraltar, Cádiz has been a
first-order port since its founding (Bernal Casasola, 2012).
When Phoenicians originally settled, Cádiz was on the tin
road between the Mediterranean and Atlantic coasts (Ben-
dala Galán, 1988; Domínguez Monedero, 2012). Afterwards,
its history was closely linked to the main Mediterranean
societies developing along its shores, experiencing succes-
sive Punic (Ramírez Delgado, 1982) and Roman domination
(Bernal Casasola, 2008; Lara Medina, 2016; Bernal Casasola
et al., 2019a). During late antiquity, it was conquered by the
Visigoths, and later by Moors in the 8th century (Fresnadillo
García et al., 2008). Finally, Christians took over the city in
the 13th century during the Reconquista. Whilst the city port
of Cádiz was of secondary importance during the Medieval
period, it regained a major role during the modern period,
coinciding with the discovery of the Americas and the devel-
opment of transatlantic trade (O’Flanagan, 2016).

Secondly, Cádiz was founded in a specific geographic sit-
uation off the mainland of Spain (Carayon, 2011) and pro-
vides Late Holocene high-resolution sedimentary archives
located in the heart of the city. Based on topographical obser-
vations and descriptions by ancient authors, an E–W-oriented
palaeochannel running through Cádiz was first identified by
Ponce Cordones (1985). The topography of Cádiz reveals
lowlands across the city (Fig. 2), and ancient texts mention a
channel in the city (Strabo, 1923, 3, 5, 3; Pliny, 1942, 4, 119–
120) (Corzo Sánchez, 1980). Two decades later, complemen-
tary geoarchaeological studies gathered geotechnical reports,
and new sedimentary cores reaching a maximum depth of
9 m were drilled (Arteaga et al., 2001). The bedrock contact
was identified at several places along the lateral borders of
this palaeochannel, but this information remains unknown
in its central part (Arteaga et al., 2001). More recently, it
was demonstrated that this east–west palaeochannel was void

of any antique archaeological remains (Lara Medina, 2018).
Other hypotheses of palaeochannels running through the spit
of Cádiz were also proposed, but no clear evidence is avail-
able yet (Márquez Carmona and Alonso Villalobos, 2016).

In 2018, the University of Cádiz started to rehabili-
tate the Valcárcel building located above the Bahía-Caleta
palaeochannel. In this context, an interdisciplinary project
was initiated: archaeological excavations were conducted
alongside drilling of three sedimentary cores from the same
area. The excavations demonstrate that La Caleta beach was
a built area only from the 18th century CE (Bernal Casasola
et al., 2018) and confirm the absence of structures from an-
tiquity within the limits of the palaeochannel defined by
Lara Medina (2018) (Fig. 3). The cores reveal a significant
depth of at least 50 m along the northern side of the ma-
rine palaeochannel (Val-18/Core 3) (Fig. 4). The three cores
yielded a high density of artefacts, dated from the beginning
of the 1st millennium BCE to the Roman period, at depths be-
tween 15 and 40 m below sea level (b.s.l.) (Bernal-Casasola
et al., 2020b). These archaeological findings associated with
silty-clay and sand deposits highlight the existence of a deep
anchorage (Bernal-Casasola et al., 2020a).

From a geological and geomorphological perspective, the
palaeochannel filled by these thick sedimentary sequences
points to the existence of a deep gorge in the past, proba-
bly of Pleistocene age. From a geoarchaeological perspec-
tive, the marine deposits filling this palaeochannel represent
high-resolution sedimentary archives to study the evolution
of the local palaeogeography and trace the urban activities
of the city. Initial geochronological results via radiocarbon
and thermoluminescence (TL) dating attest that at least the
upper 40 m b.s.l. of the sequence date from the 1st millen-
nium BCE and later. Whilst these sedimentary sequences
represent a unique opportunity to undertake high-resolution
palaeoenvironmental analyses, the associated high sedimen-
tation rates simultaneously challenge future geomorpholog-
ical reconstructions. Finally, given its location off the main-
land of Spain and within a tectonically active area, storms
and tsunamis could have struck the city, like in 1755 CE
right after the destructive Lisbon earthquake. Sedimentologi-
cal and palaeoenvironmental evidence of high-energy events
could be documented in this palaeochannel.
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Figure 1. Location of the study area and overview of the geological, geomorphological, and geoarchaeological researches focusing on the
lower part of the Guadalete River to the Bay of Cádiz. It includes core and trench locations and radiocarbon dates available.

Figure 2. Palaeogorge of Cádiz – evidence from (1) seismic profiles possibly recording the filling of the palaeogorge of Cádiz (Llave et
al., 1999); (2) bathymetric data showing a turn of the palaeogorge west of Cádiz (Higueras-Milena Castellano and Sáez Romero, 2014); and
(3) new deep cores in Cádiz (this paper).

https://doi.org/10.5194/sd-27-35-2020 Sci. Dril., 27, 35–47, 2020
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Figure 3. Locations of the three new deep cores in the context of the studied area. Bathymetric data (http://www.gpsnauticalcharts.com, last
access: 11 February 2020), topographical data (collected in 1911; Ramírez Delgado, 1982), and previous cores (Arteaga et al., 2001) are
reported in this figure.

This project aims to understand how this city faced coastal
hazards and adapted to environmental change across its his-
tory, especially during the 1st millennium BCE to the 1st
millennium CE. This includes how the landscape of Cádiz
appeared at the time of its foundation and how it evolved
through time.

2 Geological and geomorphological context of the
Bay of Cádiz

2.1 Geodynamic background

The Bay of Cádiz and its neighbouring coastal areas are af-
fected by active Quaternary tectonics and seismicity. This
is materialised by an intricate network of SW–NE and
SSE–NNW-striking normal faults, sometimes prolonged by
strike–slip faults (e.g. underneath the present extension of
the city; Gracia et al., 2008). The low to moderate histori-
cal seismicity in this area, i.e. magnitudes between 2.5 and
4 (Gracia et al., 2008), is apparently related to the Azores–
Gibraltar transform fault zone and, more specifically, to N–
S compressive motion in the Gibraltar area (Buforn et al.,

1988; Luque et al., 2002). In the latter, a mean uplift rate of
0.1 to 0.15 mm yr−1 is suggested over the Late Pleistocene–
Holocene (Zazo et al., 1999). Given this geodynamic con-
text, the whole Bay of Cádiz and coastal areas were regu-
larly impacted by high-energy events. Offshore sediments in
the bay (Gutiérrez-Mas et al., 2009a), the Valdelagrana spit
bar (Luque et al., 2002), and the marshlands of the Guadalete
River bay (Gutiérrez Mas, 2011) bear witness to historical
tsunamis (Fig. 1).

2.2 Coastal areas around the Bay of Cádiz

According to the 1 : 50 000 geological map (Baena Pérez et
al., 1984), two main types of rocks or deposits constitute
the coastal areas of the Bay of Cádiz. The first one, a rock
formation locally known as “roca ostionera”, is composed
of well-compacted conglomerates and calcareous sandstones
enriched in oyster shells assigned to the Late Pliocene–
Pleistocene (Llave et al., 1999; Vázquez et al., 2000) (Fig. 1).
These rocks exhibit a folded structure (MacPherson, 1873;
Gutiérrez Mas et al., 1991), referred to as the Cádiz anticline,
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Figure 4. Stratigraphic sequences of VAL-18/Cores 1, 2, and 3 with preliminary dates (radiocarbon dates, thermoluminescence dates, and
archaeological dates available from the cores under investigation – see also Bernal-Casasola et al., 2020b).
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and form the bulk of the Cádiz peninsula upon which the city
lies at the northernmost tip (Domínguez-Bella, 2008).

The second types of deposits encompass Holocene sedi-
ments (Luque et al., 2002; Moral Cardona, 1994; Moral Car-
dona et al., 1996; Gutiérrez Mas et al., 1996) (Fig. 1). To
the south, estuarine, intertidal silts and clays (marshlands or
slikke) occur around the city of San Fernando (Arteaga and
Roos, 2008). They are limited to the west by a sandy coastal
spit. To the north, the mesotidal, N–S-oriented Valdelagrana
spit-barrier system exhibits sandy beaches and beach ridges,
this structure having been extensively studied over the last 3
decades (Zazo et al., 1994; Dabrio et al., 1995, 1998, 2000;
Lario et al., 1995; Goy et al., 1996; Borja Barrera et al.,
1997; Luque et al., 2002; Lobo et al., 2005; Arteaga and
Roos, 2008; Rodríguez-Polo et al., 2009; Gutiérrez-Mas et
al., 2009a, b; Gutierrez-Mas, 2011). It encloses Holocene in-
tertidal clays and silts to the east. The lower part of the San
Pedro River most probably corresponds to a palaeocourse of
the Guadalete River (Dabrio et al., 1998). Finally, fringing
the Cádiz peninsula, Holocene bioclastic sandy sediments
delimit the “Bahía-Caleta” palaeochannel to the north and
the south (Fig. 3).

2.3 Geoarchaeological and geomorphological studies of
the Guadalete River

The paragraphs below synthesise the research conducted on
the Guadalete River and towards the Bay of Cádiz since the
1990s.

Fluvial dynamics in the lower reach of the Guadalete
River

Recent research mostly focused on the reconstruction of
the floodplain evolution in this lower reach (Wolf et al.,
2014; Wolf and Faust, 2015). In relation to the post-LGM
sea-level rise, terrace formation is reported during the Late
Pleistocene, with contrasting morphologies along the val-
ley reach. The prominent sub-continuous landform upstream
is buried below the Holocene floodplain deposits down-
stream. Holocene floodplain aggradation is recorded for the
last 10 000 years and enhanced phases of fluvial sedimenta-
tion are identified around 6050, 4150, 2650, and 250 BCE
and 1050 CE (Wolf et al., 2014). The strongest sedimen-
tation episode occurred around 1550 CE during the Little
Ice Age. Stability phases are suggested during the Bølling–
Allerød interstadials, prior to 6050, 4150, and 3150 BCE
and after 2350 BCE and 50 CE (Wolf et al., 2014). High-
resolution analysis of lake sediments from the neighbouring
Laguna de Medina reveals an aridification during the Late
Holocene (Reed et al., 2001). Whilst local palaeoenviron-
mental studies suggest important wine production already
existing in the 8th–7th centuries BCE at Castillo de Doña
Blanca (Chamorro, 1994; Buxó, 2008; Iriarte-Chiapusso et

al., 2017), a generalised human impact seems more difficult
to infer along this river reach (Wolf et al., 2014).

Evolution of the Guadalete River mouth

Concomitant to a decelerated sea-level rise, progradation at
the mouth of the Guadalete River began in the middle of
the 5th millennium BCE. Goy et al. (1996) identified two
periods of progradation: between 4500 and 1050 BCE with
a gap around 2050 BCE and from 800 BCE to the present
with a gap between 750 and 900 CE. The formation of the
Valdelagrana spit likely started in the 2nd millennium BCE
(1850–1650 BCE) based on archaeological dates (in Gómez
Ponce et al., 1997) and radiocarbon dates (in Dabrio et al.,
2000), accelerated around 450 BCE (radiocarbon dates in
Zazo et al., 1996), and reduced during 50–150 CE (based
on archaeological and radiocarbon dates in Gómez Ponce et
al., 1997). High sedimentation recorded during the Little Ice
Age (Dabrio et al., 2000; Lario et al., 1995) was related to
strong human impact as well as land-use changes (Dabrio et
al., 2000). The formation of the Valdelagrana spit is likely
to have affected the sedimentation of the delta front and to
have contributed to the sedimentation in the palaeochannel
of Cádiz (Gracia and Benavente, 2000).

3 Methodology

Three new sedimentary sequences were extracted from
the area of the Valcárcel building in Cádiz: Val-18/Core 1
(36◦31′48.73′′ N, 6◦18′14.45′′W; 3.78 m a.s.l.), Val-
18/Core 2 (36◦31′49.85′′ N, 6◦18′14.75′′W; 3.80 m a.s.l.),
and Val-18/Core 3 (36◦31′51.70′′ N, 6◦18′17.27′′W;
3.00 m a.s.l.) (Figs. 2, 3, and 4).

These cores were retrieved by the Concadiz company us-
ing a rotary drilling device between August and October
2018. The cores have a diameter of 10 cm. Val-18/Core 1 was
drilled down to 31.50 m, Val-18/Core 2 to 45.00 m, and Val-
18/Core 3 to 50 m. Only Val-18/Core 3 reached the substra-
tum. Val-18/Core 1 is not described in this paper since the
stratigraphy is shorter and similar to Val-18/Core 2. These
drillings are due to a great opportunity. It is generally very
difficult to drill in a dense urban area. However, due to the
renovation of the Valcárcel building by the University of
Cádiz, an archaeological assessment was undertaken (Lara
Medina et al., 2020). The sedimentary cores were drilled on
that occasion.

Visual recognition of sedimentary units and core descrip-
tion was completed quickly after extraction and followed by
sampling. The first samples extracted were reserved for op-
tically stimulated luminescence (OSL) datings. OSL sam-
ples were chosen from the best preserved sections within
the stratigraphic sequence. Archaeological material was ex-
tracted during the sampling and analysed by specialists (see
Bernal-Casasola et al., 2020a, b). The analysis of the ar-
chaeological artefacts presented a preliminary chronologi-
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cal framework. The absolute datings were implemented on
Val-18/Core 2. Radiocarbon dates were performed by Beta
Analytics on seeds and bones, and a ceramic was dated by
the thermoluminescence technique by the Dating and Ra-
diochemistry Laboratory of the Universidad Autónoma of
Madrid (Table 1).

4 New sedimentary sequences from the city centre
of Cádiz

Figure 4 displays the combined stratigraphy of VAL-
18/Core 2 and VAL-18/Core 3, respectively drilled in the
central and northern parts of the palaeochannel. Because
VAL-18/Core 2 exhibits the highest concentration of arte-
facts, it was first targeted for numerical dating (radiocar-
bon and TL). VAL-18/Core 3 reached the Plio-Pleistocene
substratum. Detailed analysis of the artefacts is available in
Bernal-Casasola et al. (2020a, b).

4.1 Val-18/Core-2

This core reaches a depth of 41.20 m b.s.l. The bottom Unit A
is at least 9 m thick (41.20 to 32.20 m b.s.l.) since the bedrock
was not attained. It is composed of dark grey sandy silts with
some pebbles. A fragment of ceramic found at the bottom
of the unit is dated by TL at 850± 191 BCE (Table 1). Ad-
ditionally, radiocarbon dates of a grape seed (41.57 m b.s.l.)
and a bone fragment (40.85 m b.s.l.) respectively yield simi-
lar ages of 755–410 BCE (2450± 30 BP) and 730–400 BCE
(2400± 30 BP) (Table 1). The consistent dating results in-
dicate that Unit A was deposited in the first part of the 1st
millennium BCE.

Unit B (32.20 to 20.20 m b.s.l.) is composed of grey sandy
silts and coarse sands. Additionally, several silty-clay layers
are intercalated at depths between 23.00 and 20.20 m b.s.l.
This unit is characterised by a high content of artefacts and
ecofacts. At the bottom of the unit (32 m b.s.l.), a figurine
in terracotta was dated to the 4th–3rd centuries BCE (arte-
fact 15 in Bernal-Casasola et al., 2020a). Between 20.20
and 23.00 m, several ceramics are identified and date to the
Roman period (artefacts 2, 3, and 5 in Bernal-Casasola et
al., 2020a). This chrono-typological date is confirmed by
a radiocarbon-dated seed at 55–215 CE (1890± 30 BP) in
the upper part of the unit (20.48 m b.s.l.; Table 1). At 24.00
and 25.15 m b.s.l., a murex Bolinus brandaris and a murex
Hexaplex trunculus are respectively found.

Unit C (20.20 to 6.05 m b.s.l.) is characterised by a no-
ticeable sedimentation change, i.e. mostly very well-sorted
lighter grey sands, together with the absence of artefacts.
The first yellow sand layers are observed in this unit too. The
sedimentation turns into beige–yellow sands in the upper se-
quence of VAL-18/Core 2 in Unit D (6.05 to 0.70 m b.s.l.).
Past hydrodynamic conditions seem to have quickly changed
within this unit made of medium- to coarse-sand deposits
containing some pebbles. Ceramic fragments are found again
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in the upper part of the unit (not identifiable) along with char-
coals.

Unit E (0.70 m b.s.l. to 0.80 m a.s.l), mostly composed of
sands embedding pebbles and charcoals, corresponds to a
transitional environment between coastal deposits (Unit D)
and the uppermost archaeological layers (Unit F). Unit F
is composed of heterometric material of anthropic origin.
These deposits were excavated and studied using archaeo-
logical trenches (Lara Medina et al., 2020).

4.2 Val-18/Core-3

This core reaches a depth of 48.00 m b.s.l. No dates are
available for this core yet. The bottom Unit A (48.00 to
47.30 m b.s.l.) corresponds to the Plio-Pleistocene conglom-
erates, upon which the city of Cádiz presently lies.

The first unconsolidated deposit appears in Unit B (47.30
to 43.50 m b.s.l.). It is composed of very well-sorted, dark
grey medium to fine sands (marine environment). Very well-
preserved barnacles are observed at 46.40 m b.s.l. Barnacles
are suspension feeders and mostly inhabit the intertidal zone
fixed on the substrate.

Unit C (43.50 to 37.50 m b.s.l.) is subdivided into six sub-
units (C1 to C6). Sub-unit C1 suggests a hydrodynamic
change with grey silty-clay deposits. Other sub-units express
regular alternations from very well-sorted grey sands (C2,
C4, and C6) to grey silty clay (C3 and C5). Some small peb-
bles are observed in C6 too.

Unit D (37.50 to 26.00 m b.s.l.) is composed of bedded
silty clay, sands, and silty sands. Although technical difficul-
ties experienced during the drilling impede a clear identifi-
cation of the bedding limits, ongoing analyses will hopefully
provide a better picture of the shift in the energy controlling
the deposition.

Unit E (26.00 to 18.00 m b.s.l.) is composed of bedded
black–grey sands with regularly intercalated 10 cm thick clay
layers. This sedimentation change is coeval with the presence
of ceramics, which are not observed in Units B to D.

A sharp limit is observed between Units E and F at
18.00 m b.s.l. Unit F (18.00 to 15.00 m b.s.l.) is composed of
yellow very well-sorted coarse sands (> 1 mm) and small
gravels (> 2 mm). Few clayey elements are scarcely dis-
tributed and no ceramics are observed in this unit. This coarse
deposit can be related to a quick change in the hydrodynamic
conditions.

Unit G (15.00 and 6.95 m b.s.l.) is subdivided into seven
sub-units (G1 to G7), which are mostly characterised by
alternations between grey sandy silts and silty sands. The
coarsest, mostly yellow deposits of G3 and G5 are very well
rounded and are similar to the sedimentary facies in Unit F.
Unit H (6.95 to 0.10 m b.s.l.) is subdivided into four sub-units
(H1 to H4) and is composed of well-sorted yellow sands.
H1 is characterised by the coarsest sediments at the bottom,
while other subunits show medium to fine sands at the top.

Unit I (0.10 m b.s.l. and 3.00 m a.s.l.) is composed of het-
erometric material belonging to the archaeological layers of
Cádiz. Excavations on modern archaeological materials lo-
cated in the Valcárcel building were conducted by Bernal
Casasola et al. (2018).

5 The Bahía-Caleta palaeochannel in Cádiz: a deep
palaeogorge?

Based on the new cores, a maximum depth of the Bahía-
Caleta palaeochannel around 47 m below the current sea level
was recorded (i.e. the depth at which the contact with the
Pliocene–Pleistocene deposits was reached in Val-18/Core-
3; see Sect. 4.2). Unfortunately, these data cannot be ex-
trapolated to the whole palaeochannel. A cross section in
the palaeochannel of Cádiz would be necessary to infer the
maximum bathymetry above the Plio-Pleistocene conglom-
erate. However, a sharp height difference in the underwater
topography of the conglomerate is observed. The substratum
is located close to the subaerial surface below the shallow
archaeological deposits northwards of Val-18/Core-3, and it
drops down to 47 m b.s.l. in the palaeochannel where Val-
18/Core-3 was drilled. Also, based on the ca. 1 km long off-
shore palaeochannel visible to the west of the coring (Fig. 2),
its width is estimated between 150 and 250 m. Consider-
ing these morphological features (i.e. large height differ-
ence combined with the channel width), we suggest that the
palaeochannel of Cádiz may represent a palaeogorge. In-
terestingly, very well-sorted marine sands are deposited di-
rectly over the Plio-Pleistocene substratum in VAL-18/Core3
(Unit B). No fluvial deposits are observed. A marine origin
of these sediments is confirmed by the occurrence of well-
preserved barnacles (currently processed for a 14C dating)
at 46.40 m b.s.l. If the fluvial origin of the palaeogorge can
hardly be questioned, the presence of fluvial deposits in other
areas of the palaeogorge may be expected.

This palaeogorge can be tracked to the west using high-
resolution bathymetry proposed by Higueras-Milena Castel-
lano and Sáez Romero (2014) and reported in Fig. 2. This
topographical survey clearly shows that the palaeochan-
nel was flowing northwards after passing through the area
of Cádiz. This is confirmed by a geophysical survey,
where geopulse seismic data exhibit an identical offshore
bathymetry westwards of our corings (northward orientation
of the palaeogorge, Fig. 2; Llave et al., 1999). As for its ori-
gin, two main hypotheses were suggested. First, the currently
underwater gorge might be related to a palaeocourse of the
Guadalete River (Dabrio et al., 2000; Wolf et al., 2014) or
secondly to the Guadalquivir River (Chic García, 1979; Gra-
cia and Benavente, 2000; Arteaga Matute and Roos, 2002).
As for its age, it has been suggested that given the differ-
ent palaeogeography of the Bay of Cádiz during the marine
lowstand associated with the LGM, generalised fluvial inci-
sion might have occurred at that time in this area (Hernández
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Molina et al., 1996). Future results obtained in the framework
of this project will provide new insights into these unan-
swered questions.

6 Late Holocene coastal dynamics and preliminary
results

6.1 A fast coastal sedimentation rate inferred from
VAL-18/Cores 2 and 3

The dated VAL-18/Core 2 reveals an important sedimenta-
tion rate over more than 20 m. Over the entirety of Units A
and B (41.2 to 20.2 m b.s.l.), the sedimentation rate is esti-
mated between 1.6 and 2.8 cm yr−1. The time range of this
sedimentation starts at least from the beginning of the 1st
millennium BCE and ends after the beginning of the 1st mil-
lennium CE. This is concomitant with the Phoenician origins
of the city and includes the development of Cádiz during the
Roman period, when Cádiz was one of the major ports of the
western Mediterranean.

The interpretation of the high sedimentation rate, possi-
bly lasting over 1 millennium, will be a key question to fu-
ture research. It probably results from a combination of lo-
cal factors, related to the waste of the ancient city of Cádiz,
and regional factors, related to the progradation of the river
mouth of the Guadalete, or else to sediment trapped during
tsunami/storm events. Additionally, these local and regional
considerations will take into account possible anthropic im-
pacts within the Guadalete River watershed as well as global
palaeoclimatic drivers.

Some authors have already argued that waste from the
city could have contributed to the filling of the palaeochan-
nel (Ramírez Delgado, 1982). The high content of archae-
ological material (e.g. Unit B of VAL-18/Core 2) points to
this hypothesis, but this must be completed by complemen-
tary and systematic analyses. The > 45 m thick sedimentary
archives of the 3 millennium long history of Cádiz are also to
be compared with the 7 m thick sequence related to the his-
tory of Cádiz studied in the “Testaccio haliéutico de Gades”
(Bernal Casasola et al., 2019a). This garbage mount was re-
cently excavated close to the cores drilled in the Bahía-Caleta
palaeochannel (Bernal Casasola et al., 2019a). Debris could
have been transported into the palaeochannel either naturally
or anthropogenically.

6.2 High-energy events from the sea: palaeostorms and
palaeotsunamis

The palaeochannel of Cádiz corresponds to an offshore sed-
imentation trap for high-energy events such as palaeostorms
and palaeotsunamis. Yellow coarse sand layers observed in
the upper sequences of Cores 2 and 3 will be thoroughly in-
vestigated and dated. The difference between yellow–beige
deposits in the upper 10 m (Unit D in VAL-18/Core 2 and
Unit H in VAL-18/Core 3) and the dark grey deposits below

this limit is most probably due to local factors. This limit at
ca. 10 m b.s.l. is probably the fair-weather wave base. How-
ever, the coarse-grained yellow–beige layers observed below
10 m in VAL-18/Core 2/Unit C and VAL-18/Core 3/Unit G
and F are most probably related to regional events, possibly
storms or tsunamis.

These high-energy events will contribute to the recon-
struction of the history of the coastal hazards of this littoral
area (Lario et al., 2010, 2011; Ruiz et al., 2013). Whilst
the spit of Cádiz and the palaeo-islands are exposed to
storms (Benavente et al., 2006; Del Río et al., 2012), palaeot-
sunami occurrences are evidenced in various depositional
settings in and around the Bay of Cádiz. This includes litho-
facies recording high-energy events in offshore sediments
(Gutiérrez-Mas et al., 2009a), washover fans on the Valde-
lagrana spit (Luque et al., 2002), and coarse-grained shelly
layers intercalated in the marshlands of the Guadalete/San
Pedro River (Dabrio et al., 1997; Luque et al., 2002; de
Duque, 2008; Gutiérrez-Mas, 1992, 2011; Gutiérrez-Mas et
al., 2009b). The Lisbon tsunami of 1755 CE was the focus of
much research in this context (Dabrio et al., 1997; Cuven et
al., 2013; Font et al., 2013).

7 Future research perspectives

The palaeogeographical considerations listed above will be
considered in regard to new analyses in process (e.g. sedi-
mentological data, bioindicator identification, and absolute
dating). Three main research topics will be explored.

7.1 Palaeogeography

Palaeogeographical and palaeotopographical reconstructions
will be proposed for the infill of the palaeogorge in re-
lation to regional palaeoclimatic data, sea-level evolution,
and sediment input from the watershed. Ultimately, we will
discuss the interconnection of the Cádiz archipelago dur-
ing the Phoenician–Punic and Roman periods. A more ro-
bust chronology of the stratigraphic sequences will be pro-
posed with additional OSL and radiocarbon dates, along with
palaeoenvironmental analysis (e.g. grain size, mineralogy,
organic and inorganic geochemistry, ostracod, foraminifera,
and pollen analysis).

7.2 Urban geoarchaeology

The impact of the city through time will also be explored
based on the analysis of the high-resolution sedimentary se-
quences. Based on new dates, geochemical analyses (e.g.
ICP-MS and GC-MS analyses, especially looking at lead pol-
lution), pollen analyses, plant macroremains, and charcoals,
our research group will characterise the origins of the set-
tlement, the resilience of the city against coastal hazards,
the evolution of the urban impacts, the possible productions
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in the city, the evolution of the vegetal landscape, and the
palaeopollution records.

7.3 Palaeoeconomy

Finally, new information related to the palaeoeconomy of
the city of Cádiz will be proposed (e.g. plant macroremains,
charcoals, pollens, malacofauna, organic and inorganic geo-
chemistry). Notably, we will look at the introduction of some
cultivated plants, the development of vineyards and olive
trees, or Murex exploitation during the Phoenician–Punic and
Roman periods. A first date obtained from radiocarbon dat-
ing of a grape seed in VAL-18/Core3 (755–410 BCE) may
confirm observations made in Spain (Buxó, 2008; Pérez-
Jordà et al., 2017) and locally in the Bay of Cádiz at Castillo
de Doña Blanca (Chamorro, 1994). Important wine produc-
tion is confirmed in the 8th–7th centuries BCE in this archae-
ological site (Chamorro, 1994). Complementary and system-
atic analyses will shed new light on commercial activity in
Cádiz.
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Abstract. Drilling and coring during IODP Expedition 362 in the eastern Indian Ocean encountered probably
the largest wood fragment ever recovered in scientific ocean drilling. The wood is Late Miocene in age and buried
beneath ∼ 800 m of siliciclastic mud and sand of the Bengal–Nicobar Fan. The wood is well preserved. Possible
origins include the hinterland to the north, with sediment transported as part of the submarine fan sedimentary
processes, or the Sunda subduction zone to the east, potentially as a megathrust tsunami deposit.

IODP Expedition 362 drilled offshore at two sites (U1480
and U1481) in August–October 2016 on the Indian oceanic
plate subducting at the Sumatra seismogenic zone (Fig. 1).
The primary objective of the expedition was to character-
ize the input sediments that control the properties of the
plate boundary fault zone responsible for the December 2004
magnitude 9.1 Sumatra–Andaman earthquake and resulting
tsunami. The drill sites are situated on the Nicobar Fan –
part of the wider Bengal–Nicobar fan system composed of
deep-water siliciclastic sediments derived from the uplift-
ing Himalaya–Tibetan Plateau collisional system (McNeill et
al., 2017a). At 3◦ N, the latitude of sites U1480 and U1481,
1.5 km of sediment overlies the oceanic basement with wa-
ter depths of 4.5 km. In situ temperature measurements doc-
ument a local geothermal gradient of 44.4 ◦C km−1 with a
seafloor temperature of approximately 1.5 ◦C (McNeill et al.,
2017b).

During coring at Site U1480, two adjacent cores of in-
terbedded sediment gravity flow and hemipelagic siliciclas-

tic sediment containing large pieces of fossilized wood were
recovered at ∼ 840–860 m below the seafloor. The sedi-
ments at this depth are Late Miocene in age (∼ 9 Ma), based
on biostratigraphic analysis (Backman et al., 2019). The
largest wood fragment (in Core 362-U1480G-11R) is 14 cm
in length along the core axis (Fig. 2). The second fragment
is 6 cm in length within the next underlying core (U1480G-
12R). Both fragments have a black, lignitic appearance.
Binocular microscope and SEM images of the large frag-
ment from Core 11R (Fig. 3) reveal cellular and tubular struc-
tures that are slightly compressed in the plane of bedding by
sediment compaction (Fig. 3c). This preliminary examina-
tion indicates that these are examples of angiosperm wood,
based on pitted ray cells and fibers as well as the stacked lay-
ers of horizontal ray cells. Although the definitive vessels of
angiosperm wood are not observed, these other characteris-
tics support an angiosperm interpretation; moreover, we do
not find any convincing evidence for the wood being conifer.
The wood appears to be mummified rather than charcoalified
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Figure 1. Eastern Indian Ocean map showing the IODP Expedi-
tion 362 drill sites (red dots) and the extent of the Nicobar Fan
(white line). The yellow shaded area indicates the rupture area of the
2004 Sumatra–Andaman subduction earthquake. The wood could
have originated from the north as part of the Bengal–Nicobar Fan
transport or from the islands of the Sunda subduction zone to the
northeast and east; this includes a possible tsunami transport origin
triggered by a northern Sunda subduction zone earthquake, sim-
ilar to the 2004 Sumatra–Andaman event (black arrows indicate
possible pathways). Map uses GEBCO bathymetric data from the
GEBCO_08 Grid data set obtained from the National Centers for
Environmental Information (NCEI; previously NGDC). After Mc-
Neill et al. (2017a).

or coalified (Mustoe, 2018). We rule out charcoal because
this would display crushing rather than compressional bend-
ing and plastic deformation in compaction, whereas coali-
fied wood would require greater burial and thermal maturity
(Mustoe, 2018). Mummification of the wood indicates that it
was buried in a manner that protected it from oxidation and
microbial degradation (Mustoe, 2018).

This find is extremely unusual, in terms of the size of the
wood pieces, the age of the sediments within which they
were deposited and preserved, and the depth of burial. Based
on a search through previous DSDP, ODP, and IODP re-
ports, the fragment from Core 362-U1480G-11R is believed
to be the largest wood fragment cored in scientific ocean
drilling history. Investigations are ongoing to try to identify
the wood/tree type as well as its taxonomy and geographic

Figure 2. Section of Core 362-U1480G-11R, including the largest
of the wood fragments. The image is lightened to highlight these
fragments.

origin. The preservation state of these wood fragments may
also provide qualitative information on seafloor conditions
(e.g., oxygen and burial rate) that augment expedition sedi-
mentary analyses. It is likely that the along-core length rep-
resents the width of the tree trunk and that the wood sample’s
long axis is laying horizontal, meaning that it is perpendic-
ular to the core axis as a consequence of deposition on the
seafloor. Therefore, we infer that the coring process sampled
what would be a much larger section of woody material. In-
spection of the wood fragment surfaces revealed no borings
or epibionts.

Possible origins and transport processes of this wood
material include (1) large-scale flooding and long-distance
transport of material from the north within the Bengal–
Nicobar submarine fan system, (2) more regional transport
from the islands of the Sunda subduction zone to the north-
east and east (Sumatra, the Nicobar islands, and the An-
daman islands), or (3) subduction zone tsunami debris simi-
lar to that created by the 2004 Sumatra–Andaman earthquake
and tsunami that removed and washed away thousands of
trees, whose settling locations are not known. Figure 1 shows
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Figure 3. Shipboard SEM images of angiosperm wood fragments
from IODP Site U1480 cores. (a) Radial view of ray cells showing
rays cells (horizontal orientation in the original tree) with tiny pits
on ray cell walls, and several ray cell lumen with infills. (b) Oblique
view showing the tangential cross section of a ray composed of nu-
merous cells (some with infilling). Vertical fibers are visible on the
left. (c) Oblique transverse view showing the transverse section of
fiber walls, which have been slightly compressed.

these geographic regions relative to the drill sites and poten-
tial transport pathways.

Data availability. All IODP core and logging data related to the
IODP Expedition 362 are open and available. These can be accessed
at the following sites: http://web.iodp.tamu.edu/OVERVIEW/ (last
access: 6 February 2020; McNeill et al., 2017b), and http://mlp.
ldeo.columbia.edu/logdb/ (last access: 6 February 2020; McNeill et
al., 2017b).
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Abstract. The Neogene and Quaternary are characterized by enormous changes in global climate and environ-
ments, including global cooling and the establishment of northern high-latitude glaciers. These changes reshaped
global ecosystems, including the emergence of tropical dry forests and savannahs that are found in Africa today,
which in turn may have influenced the evolution of humans and their ancestors. However, despite decades of
research we lack long, continuous, well-resolved records of tropical climate, ecosystem changes, and surface
processes necessary to understand their interactions and influences on evolutionary processes. Lake Tanganyika,
Africa, contains the most continuous, long continental climate record from the mid-Miocene (∼ 10 Ma) to the
present anywhere in the tropics and has long been recognized as a top-priority site for scientific drilling. The lake
is surrounded by the Miombo woodlands, part of the largest dry tropical biome on Earth. Lake Tanganyika also
harbors incredibly diverse endemic biota and an entirely unexplored deep microbial biosphere, and it provides
textbook examples of rift segmentation, fault behavior, and associated surface processes. To evaluate the inter-
disciplinary scientific opportunities that an ICDP drilling program at Lake Tanganyika could offer, more than 70
scientists representing 12 countries and a variety of scientific disciplines met in Dar es Salaam, Tanzania, in June
2019. The team developed key research objectives in basin evolution, source-to-sink sedimentology, organismal
evolution, geomicrobiology, paleoclimatology, paleolimnology, terrestrial paleoecology, paleoanthropology, and
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geochronology to be addressed through scientific drilling on Lake Tanganyika. They also identified drilling tar-
gets and strategies, logistical challenges, and education and capacity building programs to be carried out through
the project. Participants concluded that a drilling program at Lake Tanganyika would produce the first continuous
Miocene–present record from the tropics, transforming our understanding of global environmental change, the
environmental context of human origins in Africa, and providing a detailed window into the dynamics, tempo
and mode of biological diversification and adaptive radiations.

1 Introduction

The Earth has experienced enormous environmental changes
during the last 10 million years, including global cooling
that culminated in permanent ice in the northern high lati-
tudes, the expansion of C4 grasslands and other dry tropi-
cal biomes, and the development of globally synchronized
glacial–interglacial cycles (Cerling et al., 1993; Zachos et
al., 2001). Our knowledge of these transitions and their
global impacts is primarily based on deep-sea drill cores, yet
many of these transitions unfolded on land, where they re-
shaped the continents and influenced organismal evolution
and dispersal, including that of our own species. Scientific
drilling under the auspices of the International Continental
Drilling Program (ICDP) has begun to elucidate the terres-
trial environmental changes that accompanied these events
(Soreghan and Cohen, 2013), yet we still lack long, contin-
uous, independently dated sedimentary records to document
the rates, amplitudes, and dynamics of continental environ-
mental change from the Miocene to the present. This is par-
ticularly the case in the tropics, despite their critical role in
maintaining Earth’s climate and biodiversity.

Lake Tanganyika (LT), East Africa (Fig. 1) is one of the
oldest, largest, and deepest lakes on Earth and is a truly
unrivaled site for scientific drilling. Its stratigraphy, which
spans the Miocene–present, is the most continuous continen-
tal record for this time interval known in the tropics (Col-
man, 1996). Scientific drilling in LT could thus provide a
unique, high-resolution record of tropical continental climate
in the late Cenozoic. LT is also one of the most biodiverse
lakes on Earth (Salzburger et al., 2014, and fills one of the
most deeply subsided parts of the East African rift (Ebinger,
1989). Drilling LT offers outstanding opportunities to inves-
tigate evolutionary transitions in aquatic and terrestrial or-
ganisms and ecosystems, and the geological evolution of a
large continental rift system. In the last 6 years we have con-
vened a series of disciplinary workshops that developed a
strong consensus that drilling LT will transform our under-
standing of climatic, evolutionary, and rift processes (Cohen
and Salzburger, 2017; McGlue and Scholz, 2016; Russell et
al., 2012). To expand on these objectives, and to develop a
fully integrated, interdisciplinary scientific drilling program
on Lake Tanganyika, we held an ICDP workshop in Dar es
Salaam, Tanzania, from 17 to 20 June 2019, attended by more
than 70 scientists. Workshop attendees defined the scientific

Figure 1. Topographic map of East Africa from SRTM data show-
ing the location of Lake Tanganyika; figure modified from Russell
et al. (2012). The lower left inset shows the location of the region
within Africa. In panel (b), a bathymetric map of Tanganyika illus-
trates the major depositional sub-basins within the lake.

rationale, drilling targets and logistics, and other plans for the
Lake Tanganyika Scientific Drilling Project (TSDP).

2 Lake Tanganyika: a world-class site for scientific
drilling

Lake Tanganyika (32 600 km2, 1470 m deep, 4–9◦ S, 29–
31◦ E) is near the center of the western branch of the East
African Rift on the border between Tanzania, the Democratic
Republic of Congo (DRC), Burundi, and Zambia (Fig. 1).
Precipitation is strongly seasonal, with a pronounced dry sea-
son from June to August when the tropical rain belt shifts
northward. During this season, strong southerly winds asso-
ciated with the East African and Indian monsoons flow over
the basin and cause lake upwelling that drives primary pro-
duction by algae, especially diatoms, forming the basis for
a fishery that has yielded up to ∼ 200000 t of fish annually
(Descy et al., 2005), one of the largest inland fisheries in
the world. All of these components of LT vary in response
to climate, as documented in intricate detail by geochemi-
cal and fossil records in shallow sediment cores (Cohen and
Salzburger, 2017; Tierney and Russell, 2007).

Sci. Dril., 27, 53–60, 2020 https://doi.org/10.5194/sd-27-53-2020



J. M. Russell et al.: ICDP workshop on the Lake Tanganyika Scientific Drilling Project 55

Figure 2. In panel (a), a contour map shows the two-way travel
time from lake surface to acoustic basement (i.e., the Nyanja Event)
deduced from seismic reflection data shown within a regional digi-
tal elevation model based on 90 m Surface Radar Topography Mis-
sion data. Major interpreted faults are shown. In panel (b), a map
of seismic lines collected from Lake Tanganyika overlain on a
satellite image (© Esri imagery – source: Esri, i-cubed, USDA,
USGS, AEX, GeoEye, Getmapping, Aerogrid, IGN, IGP, UPR-
EGP, and the GIS). Light blue lines are 24-fold multichannel seis-
mic lines collected by Project PROBE 1993–1984. Green lines are
single-channel sparker profiles collected during the Nyanza Project
(McGlue et al., 2008). Yellow profiles are 60-fold data acquired
in 2012 as part of a commercial exploration program. Magenta
lines are single-channel high-resolution air-gun profiles collected
in 1997.

Lake Tanganyika is part of East Africa’s western rift
(Rosendahl, 1987; Ebinger, 1989). Extension is accommo-
dated by steeply dipping border faults that commonly form
the coastlines of the lake (Fig. 2). Nine border faults link
together to form the Lake Tanganyika rift, producing sev-
eral sub-basins with water depths of 1000 m or more sep-
arated by deep-water horsts (Scholz and Rosendahl, 1988).
The Rungwe Volcanic Province (RVP) lies ∼ 250 km south
of LT. RVP volcanism has been ongoing since at least 9 Ma
and is dominated by effusive and explosive eruptions, with
the oldest pyroclastic units dated to ∼ 8.6 Ma (Fontijn et al.,
2012). Several volcanic ash beds derived from the RVP have
been found in shallow cores from southern LT (e.g., Living-
stone, 1965), suggesting great potential for tephra-based age
control in our project.

Several thousand kilometers of reflection seismic data
have been acquired on Lake Tanganyika (McGlue et al.,
2008; Muirhead et al., 2019; Rosendahl, 1988; Scholz et

al., 2003), including a commercial survey of the southeast-
ern part of the Tanzanian side of the lake completed in 2012
(Fig. 2). LT’s seismic stratigraphic section is comprised of a
set of four major depositional sequences (Fig. 3) that overlie
a set of reflections referred to as the “Nyanja Event”, which
is interpreted to mark the onset of the current phase of rifting
and the initiation of the present-day LT (Rosendahl, 1988).
Its Cenozoic sedimentary succession has been divided into
six sequences (Muirhead et al., 2019) that vary widely in
thickness across the basin. These sequences include the fol-
lowing:

– Sequence S1, characterized by low-amplitude, discon-
tinuous reflections. The relatively uniform thickness and
character of this sequence implies low-relief, shallow
lacustrine and fluvial environments formed during the
earliest phase of the formation of LT.

– Sequence S2, which consists of high-frequency reflec-
tors and thickens westward, indicating subsidence of the
western border fault. Zones of high continuity extend
over tens of kilometers, implying that a deep rift lake
was in place by this time.

– Sequences S3–S5 are characterized by alternating high-
and low-amplitude reflectors, often with incised chan-
nels and paleodeltaic deposits. This suggests varying
lake levels, probably caused by Plio-Pleistocene cli-
matic changes, with water-level changes of up to 600 m.

– Sequence S6, characterized by low-amplitude but high-
frequency, high-continuity sediments. The character, lat-
eral extent, and external draping form are all similar to
fine-grained hemipelagic muds drilled in nearby Lake
Malawi (Scholz et al., 2011).

Most core-based research at LT has focused on the last
glacial cycle to the present, as only short piston cores
(∼ 10 m or less from within S6) are available. Sedimento-
logical data documented a lake lowstand of ∼ 200 m during
the Last Glacial Maximum (McGlue et al., 2008), when tem-
peratures ∼ 3 ◦C cooler than present allowed Afromontane
forests to expand around the lake (Ivory and Russell, 2016).
Following these cold, dry conditions, climate rebounded dur-
ing the Pleistocene–Holocene transition, marked by a very
warm, wet early-Holocene interval known as the “African
Humid Period” (Tierney et al., 2008). These events occurred
throughout much of equatorial and northern Africa (Otto-
Bliesner et al., 2014), highlighting LT’s potential as a “mas-
ter record” of African environmental history. Organic geo-
chemical analyses of short cores have shown that the lake
has warmed by 1–2 ◦C in the last century in response to an-
thropogenic greenhouse gas forcing, resulting in significant
reductions in nutrient upwelling, primary productivity, mol-
lusks, and fish (Cohen et al., 2016). These results highlight
the potential of an LT drill core to provide quantitative esti-
mates of tropical climate, to record climate variations, and to
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Figure 3. Seismic reflection profiles showing potential drilling sites at Lake Tanganyika. Panel (a) illustrates a potential drilling site that
captures the major seismic sequences (S1–S6) present in the lake. Sequences S3–S5 are condensed and likely truncated by erosion at this
site, but these sequences can be drilled at a nearby site in deeper water (b). Panels (c) and (d) illustrate sections in shallower water where
fossiliferous sediments can be drilled for evolutionary biological studies. In all panels, black lines indicate potential drill holes, blue lines
trace the lake floor; red lines indicate the Nyanja event (the interpreted base of the modern rift); and pink, orange, and green lines trace the
boundaries between sequences 1 and 2, 2 and 3, and 5 and 6, respectively.

record the response of equatorial climate to global forcings
and processes.

3 Workshop structure and findings

We convened a workshop to define scientific priorities and
analyses, logistics, drilling targets, and education and out-
reach plans for a deep scientific drilling project in Lake
Tanganyika. Presentations on the first day focused on the
limnology of Lake Tanganyika and the evolutionary his-
tory of its biota, the structural geology of the East African
and Tanganyikan rifts, the sedimentary architecture of LT,
and the environmental history of East Africa. Participants
then spent the next three days in breakout groups to de-
velop scientific hypotheses and strategies in the broad ar-
eas of paleoclimatology, basin evolution, source-to-sink sed-
imentology, organismal evolution, paleolimnology, terres-
trial paleoecology, paleoanthropology, geomicrobiology, and
geochronology. These scientific breakout discussions led to
prioritized research goals within each group linked to drilling
targets, from which we developed a coordinated, parsimo-
nious drilling plan.

Sub-Saharan Africa is highly socioeconomically vulner-
able to future climate change. However, considerable uncer-

tainty remains in climate predictions for the continent (Niang
et al., 2014), demanding that we test climate model simula-
tions against reconstructions of climate under higher green-
house gas concentrations than the present. The Miocene–
Pliocene presents the best analog for future climate, as conti-
nental configurations were similar to the present yet green-
house gas concentrations were higher than present (Hay-
wood et al., 2016; Zhang et al., 2013). Shallow cores from
LT have provided outstanding records of late Quaternary to
recent changes in climate (Cohen et al., 2016; Tierney et
al., 2008) and benchmark targets for late-Pleistocene pale-
oclimate modeling (Otto-Bliesner et al., 2014), highlighting
the lake’s potential to establish a tropical paleoclimate ref-
erence section for the late Neogene. Thus, LT offers an un-
matched opportunity to evaluate the response of tropical rain-
fall and temperature to changes in high-latitude glaciation,
greenhouse gas concentrations, insolation forcing, and other
changes in global climate boundary conditions during the last
∼ 10 million years. The occurrence of severe hydroclimate
fluctuations and lake level draw-downs over the past 200 kyr
in the Malawi Rift are well-documented (Scholz et al., 2011),
and other extant lakes in Africa, including LT (Burnett et al.,
2011), show evidence of similar variability. Drilling in LT
is critical for determining the phasing of this high-amplitude
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variability across the African tropics. Moreover, TSDP will
represent the culmination of several decades of scientific
drilling and coring in East African lakes and paleolakes.
ICDP records from Lake Malawi, the Hominin Sites and Pa-
leolakes Drilling Project (HSPDP), and Lake Challa have
provided considerable insight into East African climate but
continuously span only the last ∼ 1.2 Myr at Lake Malawi
(Ivory et al., 2016), with more discontinuous HSPDP records
back to 3.3 Ma (Campisano et al., 2017). A long, continuous
record from LT will therefore provide a master stratigraphy
from the region to contextualize the Lake Malawi, HSPDP,
and Lake Challa records within late Miocene–present envi-
ronmental change.

The western branch of the East African rift is the global
archetype of an active, amagmatic early-stage rift, and its
thick sediments preserve a multimillion-year record of exten-
sional tectonics and landscape evolution. The western branch
of the rift experiences the largest magnitude earthquakes of
the African continent, and presents textbook examples of rift
segmentation and fault behavior (Lavayssière et al., 2019).
This deep, anoxic, freshwater body is also commonly cited
as a classic example of a continental basin accumulating
lacustrine petroleum source rocks (Katz, 1996), yet strati-
graphic prediction in ancient low-latitude rift basins has been
a major challenge. TSDP will provide opportunities to in-
vestigate (1) how along-strike basin segmentation and fault
growth impact sedimentation and source-to-sink processes;
(2) the dynamics of fault slip, propagation and linkage, and
whether they conform to rifting models; (3) the history of
magmatic activity and geothermal gradients and how they
relate to basin evolution in a “cold rift”; and (4) how these
processes influence Tanganyika’s limnological and biologi-
cal evolution, stratigraphy, and resources.

Understanding how ecosystems are assembled and altered
through time, and how speciation, dispersal, and extinc-
tion shape species assemblages and communities has been
a fundamental problem in ecology and evolutionary biology
ever since Darwin. LT harbors spectacular endemic faunas,
with hundreds of unique species of fish, in particular cich-
lids, as well as mollusks, and crustaceans that have evolved
over the lake’s long history (Salzburger et al., 2014). These
endemic species form unique communities in benthic and
pelagic habitats, and many of these organisms have left fos-
sil records in LT’s sediments (e.g., Cohen et al., 2016). To-
gether with ancient DNA (aDNA) analyses these fossils will
provide records of the evolution, radiation, and extinction
of endemic taxa and coevolved ecosystems. The combina-
tion of LT’s antiquity and size probably accounts for its ex-
traordinary diversity, but the role of limnological, climatic,
and tectonic changes in shaping LT’s flora and fauna remain
largely hypothetical. The availability of a continuous pale-
olimnological record of the lake together with fossil and, in
the younger intervals, aDNA records of the lake’s endemic
organisms would allow us for the first time to understand the

rates, dynamics, and drivers of adaptive radiation – a truly
transformative advance for evolutionary biology.

Lake Tanganyika is surrounded by Miombo woodlands,
part of the largest dry forest tropical biome on Earth. It is gen-
erally assumed that these ecosystems arose at the expense of
the Guineo-Congolian rainforests to the west, but there is lit-
tle evidence to support this hypothesis. Palynological records
from LT have highlighted the sensitivity of Miombo and
other surrounding ecosystems to climate and environmen-
tal changes, including human impacts (Ivory and Russell,
2016). Our understanding of the processes that generated the
present-day structure of these ecosystems would be greatly
enhanced by records spanning the larger range of climate
variations occurring from the Miocene to the present. More-
over, Africa has a long history of hominin–environmental in-
teractions. A Miocene–present record from LT will provide a
benchmark record of the environmental context in which our
ancestors lived and evolved.

While Lake Tanganyika is renowned for its aquatic biodi-
versity, its microbial diversity in the water column and sed-
iments remain largely unknown. Drill cores will allow us to
explore LT’s deep biosphere, the role it plays in the lake’s
carbon, nitrogen, sulfur, and other elemental cycles, and how
the water column and sedimentary microbial communities
vary in relation to climatic and tectonic changes. Changes in
the microbial community, acting in concert with limnological
processes and climatically and tectonically driven changes in
the lake’s physical structure, should govern key aspects of
the lake ecosystem, including primary productivity, and ulti-
mately its biodiversity.

Investigations of Lake Tanganyika’s depositional history
will require a robust geochronology. Participants reviewed
state-of-the-art geochronological techniques and their appli-
cability to LT sediments. In addition to the Rungwe Volcanic
Province (RVP) in southern Tanzania, significant Neogene–
Quaternary volcanic events in the Central Kenyan Rift, north-
ern Tanzania and the Virunga Volcanic Province could have
transported ash to the LT basin. RVP-derived tephra are rel-
atively rich in potassium (Fontijn et al., 2012), and several
are known to be present in Holocene-age sediments from
southern LT (e.g., Livingstone, 1965). Ar–Ar ages from RVP
tephra in the lake core, or from coarser correlative proximal
outcrops, will provide multiple anchor points for our core
chronology, and this opportunity guides us to concentrate our
drilling efforts in LT’s southern basin. Ar–Ar, together with
14C, luminescence dating, paleomagnetic, and other dating
techniques, will provide vital independent age estimates for
the LT core chronology, as well as contributing to future re-
gional geochronologic and earth system studies. This effort
will provide a new eastern African palaeomagnetic reference
curve back to the Miocene and a stratified multi-million-year
record of explosive volcanism from the southern East African
rift volcanic provinces.

Ultimately our goal is to integrate information from these
different fields to understand the coupled climatic, geologic,
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and biological processes that control the evolution of Africa’s
largest rift lake. Participants discussed possible drilling tar-
gets and strategies to address these issues, and the need for
continuity, resolution, and lithologies through the different
sedimentary units (sequences S1–S6) to address the goals
outlined above. Participants emphasized the importance of
determining LT’s age and early conditions, and the trans-
formative nature of a Miocene–present paleoclimate record
from the tropics. Subsidence and sedimentation rate esti-
mates suggest the Nyanja Event occurred between 9 and
12 Ma (Cohen et al., 1993). Accordingly, sequences S1 and
S2 could date to the Miocene and Pliocene, and S3–S6 to
the Pleistocene and Holocene. Thus, the team agreed on the
importance of obtaining a complete representative section
from the lake – i.e., a record extending to the Nyanja Event.
Participants also highlighted the importance of obtaining
fine-grained, continuous sediments for state-of-the-art pale-
oenvironmental analyses and for essential geochronologic
control. It is prohibitively expensive to drill 2–3 km holes
from LT’s deep basins, where sedimentation rates are rapid
(0.5 m kyr−1 or more). However, our team has identified
hemipelagic sections that include all of the major sedimen-
tary units in LT, in water depths below the maximum depth
of lake lowstands and with combined water and sediment
depths of ∼ 1500 m (Fig. 3), achievable with intermediate-
scale drilling technology.

Based on these needs, we anticipate an offset drilling
program at two sites in southern Lake Tanganyika, proxi-
mal to the Rungwe volcanoes and where we have excellent
seismic stratigraphic constraints. Two offset holes drilled to
∼ 1500 m depth (combined water and sediment) will allow
recovery of a relatively complete Miocene–present record
(Fig. 3a and b). A shallow (∼ 100 m) hole at one of these
sites will provide sediment for geomicrobiological investiga-
tions across the strong biogeochemical gradients that should
exist in the uppermost sediment column. We anticipate also
recovering a set of shallow holes in central LT to evalu-
ate evolutionary and paleolimnological gradients during lake
level lowstands that might bifurcate LT into multiple basins
(Fig. 3c and d). We are now pursuing pre-drilling logisti-
cal and scientific activities including the assembly of a Tan-
ganyika database to improve access to information about
the lake, drilling platform design, safety evaluations and
project permitting, methodological tests using existing sed-
iment cores, and educational and outreach activities within
the riparian countries.

Data availability. No data sets were used in this article.
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Message from ECORD/
IODP by Gilbert Camoin, 
Director ECORD Manage-
ment Agency

Science knowledge over the last 50 
years of ocean drilling has greatly 
enhanced our understanding of the 
Earth system. Since its creation in 
2003, ECORD has played a leading 
role in the successive ocean drill-
ing programmes. During 2019, the 
scientific ocean drilling commu-
nity took a unique multi-decadal 
approach to formulating the future 
of this international program in the 
new 2050 Science Framework: Ex-
ploring Earth by Scientific Ocean 
Drilling. The unprecedented health 
crisis related to the COVID-19 dis-
ease outbreak is severely affecting 
the activities of our programme, but 
the scientific ocean drilling commu-
nity remains mobilized for a bright-
er future. In these different times, 
I do hope that you and your loved 
ones will stay safe and healthy.

Message from the ICDP 
Executive Director Marco 
Bohnhoff

COVID-19 is having a huge impact 
on society as a whole and the person-
al life of most of us has been turned 
upside down. However, ICDP is 
also active in times of COVID-19. 
A new ICDP Science Plan for the 
time after 2021 is currently being 
prepared and will be published in 
the second half of 2020. For those 
who submitted drilling or workshop 
proposals to ICDP this year: the 
ICDP Panels met online between 
May 11–15 and decided about your 
proposals. Good news is also that 
the second phase of  drilling into the 

Collisional Orogeny in the Scandi-
navian Caledonides (COSC-2) in 
Sweden runs very successful, pass-
ing a depth of 1000 m on May 16. 
Whether the ICDP training course 
can take place in October as planned 
is currently still open. Please check 
the ICDP website or our social me-
dia channels regularly for updates. 

EGU 2020 General 
Assembly 

Due to the COVID-19 situation, the 
EGU 2020 General Assembly was 
held online May 3–8. The joint IO-
DP-ICDP session "Achievements 
and perspectives in scientific ocean 
and continental drilling" was per-
formed via chat and joined by 177 
interested participants on Tuesday 
afternoon. 18 contributions were 
presented in the chat and lively dis-
cussed. Even if the chat has been 
received very positively, ICDP and 
IODP are looking forward to meet 
the community in Vienna in 2021.

 
GeoUtrecht 2020

The upcoming GeoUtrecht 2020 
conference will take place August 
24–26 as online conference 
(https://www.geoutrecht2020.org/) 
free of charge. The chairs of the 
scientific drilling session 'Latest 
Achievements in Scientific Ocean 
and Continental Drilling', Martin 
Ziegler, Timme Donders, Jan Behr-
mann, and Lucas Lourens, kindly 
invite to submit abstracts. Abstract 
submission is possible until June 
26.
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www.scientific-drilling.net



Schedules

IODP – Expedition schedule http://www.iodp.org/expeditions/

USIO operations Platform Dates Port of origin

1 Exp 395: Reykjanes Mantle 

Convection and Climate

JOIDES Resolution 26 Jun−26 Aug 2020 Reykjavik

2 Exp 390: South Atlantic 

Transect #1

JOIDES Resolution 5 Oct−5 Dec 2020 Rio de Janeiro

ICDP – Project schedule http://www.icdp-online.org/projects/

ICDP project Drilling dates Location

1 GRIND Jun 2019−summer 2021 Namibia, Brazil, China

2 COSC-2 Apr−Jul 2020 Jämtland, Sweden

3 JET after July 2020 Wales, UK

4 Trans-Amazon after August 2020 Brazil (multiple locations)

Locations

Topographic/Bathymetric world map with courtesy from NOAA (Amante, C. and B.W. Eakins, 2009. ETOPO1 1 Arc-Minute Global 
Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical 
Data Center, NOAA. doi:10.7289/V5C8276M).
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