Scientific drilling and downhole fluid sampling of a natural CO2 reservoir, Green River, Utah
N. Kampman
British Geological Survey, Environmental Science Centre, Nicker Hill, Keyworth, Nottingham NG12 5GG, UK
Lancaster Environment Centre, University of Lancaster, Bailrigg, Lancaster LA1 4YQ, UK
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
A. Maskell
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
M. J. Bickle
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
J. P. Evans
Department of Geology, Utah State University, 4505 Old Main Hill Logan, UT 84322-4505, USA
M. Schaller
Department of Earth and Planetary Sciences, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854-8066, USA
Department of Geological Sciences, Brown University, 324 Brook St., Providence, RI 02912, USA
G. Purser
British Geological Survey, Environmental Science Centre, Nicker Hill, Keyworth, Nottingham NG12 5GG, UK
Z. Zhou
Lancaster Environment Centre, University of Lancaster, Bailrigg, Lancaster LA1 4YQ, UK
J. Gattacceca
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
E. S. Peitre
Department of Geology, Utah State University, 4505 Old Main Hill Logan, UT 84322-4505, USA
C. A. Rochelle
British Geological Survey, Environmental Science Centre, Nicker Hill, Keyworth, Nottingham NG12 5GG, UK
C. J. Ballentine
Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
A. Busch
Shell Global Solutions International, Kessler Park 1, 2288 GS Rijswijk, the Netherlands
Scientists of the GRDP
Related authors
No articles found.
Marci M. Robinson, Kenneth G. Miller, Tali L. Babila, Timothy J. Bralower, James V. Browning, Marlow J. Cramwinckel, Monika Doubrawa, Gavin L. Foster, Megan K. Fung, Sean Kinney, Maria Makarova, Peter P. McLaughlin, Paul N. Pearson, Ursula Röhl, Morgan F. Schaller, Jean M. Self-Trail, Appy Sluijs, Thomas Westerhold, James D. Wright, and James C. Zachos
Sci. Dril., 33, 47–65, https://doi.org/10.5194/sd-33-47-2024, https://doi.org/10.5194/sd-33-47-2024, 2024
Short summary
Short summary
The Paleocene–Eocene Thermal Maximum (PETM) is the closest geological analog to modern anthropogenic CO2 emissions, but its causes and the responses remain enigmatic. Coastal plain sediments can resolve this uncertainty, but their discontinuous nature requires numerous sites to constrain events. Workshop participants identified 10 drill sites that target the PETM and other interesting intervals. Our post-drilling research will provide valuable insights into Earth system responses.
Jesse R. Farmer, Katherine J. Keller, Robert K. Poirier, Gary S. Dwyer, Morgan F. Schaller, Helen K. Coxall, Matt O'Regan, and Thomas M. Cronin
Clim. Past, 19, 555–578, https://doi.org/10.5194/cp-19-555-2023, https://doi.org/10.5194/cp-19-555-2023, 2023
Short summary
Short summary
Oxygen isotopes are used to date marine sediments via similar large-scale ocean patterns over glacial cycles. However, the Arctic Ocean exhibits a different isotope pattern, creating uncertainty in the timing of past Arctic climate change. We find that the Arctic Ocean experienced large local oxygen isotope changes over glacial cycles. We attribute this to a breakdown of stratification during ice ages that allowed for a unique low isotope value to characterize the ice age Arctic Ocean.
Elizabeth S. Petrie, Kelly K. Bradbury, Laura Cuccio, Kayla Smith, James P. Evans, John P. Ortiz, Kellie Kerner, Mark Person, and Peter Mozley
Solid Earth, 11, 1803–1821, https://doi.org/10.5194/se-11-1803-2020, https://doi.org/10.5194/se-11-1803-2020, 2020
Short summary
Short summary
A summary of observed rock properties across the contact between crystalline basement rock and the overlying younger sedimentary rocks from outcrop and core samples is presented. The data span a range of tectonic settings and describe the rock types immediately adjacent to the contact. The range of features observed at these contacts can influence the migration of fluids. The observations presented here are critical for the safe implementation of fluid injection and geothermal production.
Paul E. Olsen, John W. Geissman, Dennis V. Kent, George E. Gehrels, Roland Mundil, Randall B. Irmis, Christopher Lepre, Cornelia Rasmussen, Dominique Giesler, William G. Parker, Natalia Zakharova, Wolfram M. Kürschner, Charlotte Miller, Viktoria Baranyi, Morgan F. Schaller, Jessica H. Whiteside, Douglas Schnurrenberger, Anders Noren, Kristina Brady Shannon, Ryan O'Grady, Matthew W. Colbert, Jessie Maisano, David Edey, Sean T. Kinney, Roberto Molina-Garza, Gerhard H. Bachman, Jingeng Sha, and the CPCD team
Sci. Dril., 24, 15–40, https://doi.org/10.5194/sd-24-15-2018, https://doi.org/10.5194/sd-24-15-2018, 2018
Short summary
Short summary
The Colorado Plateau Coring Project-1 recovered ~ 850 m of core in three holes at two sites in the Triassic fluvial strata of Petrified Forest National Park, AZ, USA. The cores have abundant zircon, U-Pb dateable layers (210–241 Ma) that along with magnetic polarity stratigraphy, validate the eastern US-based Newark-Hartford astrochronology and timescale, while also providing temporal and environmental context for the vast geological archives of the Triassic of western North America.
J. Shervais, J. Evans, V. Toy, J. Kirkpatrick, A. Clarke, and J. Eichelberger
Sci. Dril., 18, 19–33, https://doi.org/10.5194/sd-18-19-2014, https://doi.org/10.5194/sd-18-19-2014, 2014
Cited articles
Allis, R., Chidsey, T., Gwynn, W., Morgan, C., White, S., Adams, M., and Moore, J.: Natural CO2 Reservoirs on the Colorado Plateau and Southern Rocky Mountains: Candidates for CO2 Sequestration, Proc. Nat. Conf. On Carbon Sequestration, 2001.
Allis, R., Bergfeld, D., Moore, J., McClure, K., Morgan, C., Chidsey, T., Heath, J., and McPherson, B.: Implications of results from CO2 flux surveys over known CO2 systems for long-term monitoring, United States Geological Survey, 2005.
Assayag, N., Bickle, M., Kampman, N., and Becker, J.: Carbon isotopic constraints on CO2 degassing in cold-water Geysers, Green River, Utah, Energy Procedia, 1, 2361–2366, 2009.
Baer, J. L. and Rigby, J. K.: Geology of the Crystal Geyser and environmental implications of its effluent, Grand County, Utah, Utah Geology, 5, 125–130, 1978.
Baines, S. J. and Worden, R. H.: The long-term fate of CO2 in the subsurface: natural analogues for CO2 storage, Geological Society, London, Special Publications, 233, 59–85, 2004.
Beitler, B., Chan, M. A., and Parry, W. T.: Bleaching of Jurassic Navajo sandstone on Colorado Plateau Laramide highs: Evidence of exhumed hydrocarbon supergiants?, Geology, 31, 1041–1044, 2003.
Beitler, B., Parry, W., and Chan, M.: Fingerprints of fluid flow: chemical diagenetic history of the Jurassic Navajo Sandstone, southern Utah, USA, J. Sediment. Res., 75, 547–561, 2005.
Bickle, M. J.: Geological carbon storage, Nat. Geosci., 2, 815–818, 2009.
Bickle, M., Kampman, N., and Wigley, M.: Geochemistry of CO2 sequestration: Natural Analogues, Rev. Mineral. Geochem., 77, https://doi.org/10.2138/rmg.2013.77.2, in press, 2013.
Blakey, R. C., Havholm, K. G., and Jones, L. S.: Stratigraphic analysis of eolian interactions with marine and fluvial deposits, Middle Jurassic Page Sandstone and Carmel Formation, Colorado Plateau, USA, J. Sediment. Res., 66, 324–342, 1996.
Burnside, N., Shipton, Z., Dockrill, B., and Ellam, R. M.: Man-made versus natural CO2 leakage: A 400 k.y. history of an analogue for engineered geological storage of CO2, Geology, 41, 471–474, 2013.
Chan, M., Parry, W., and Bowman, J.: Diagenetic hematite and manganese oxides and fault-related fluid flow in Jurassic sandstones, southeastern Utah, AAPG Bull., 84, 1281–1310, 2000.
Crabaugh, M. and Kocurek, G.: Entrada Sandstone: an example of a wet aeolian system, Geological Society, London, Special Publications, 72, 103–126, 1993.
Dockrill, B. and Shipton, Z. K.: Structural controls on leakage from a natural CO2 geologic storage site: Central Utah, USA, J. Struct. Geol., 32, 1768–1782, 2010.
Doelling, H. H.: Geologic map of the Moab and Eastern Part of the San Rafael Desert 30´ × 60´ quadrangles, Grand and Emery counties, Utah and Mesa county, Colorado, Geologic map 180: Utah Geological Survey Geologic Map, 180, scale 1:100,000, 2001.
Duan, Z., Sun, R., Zhu, C., and Chou, I.: An improved model for the calculation of CO2 solubility in aqueous solutions containing Na+, K+, Ca2+, Mg2+, Cl-, and SO42-, Mar. Chem., 98, 131–139, 2006.
Evans, J. P., Heath, J., Shipton, Z. K., Kolesar, P. T., Dockrill, B., Williams, A., Kirchner, D., Lachmar, T. E., and Nelson, S. T.: Natural Leaking CO2-charged Systems as Analogs for Geologic Sequestration Sites, in: Third Annual Conference on Carbon Capture and Sequestration, Alexandria, VA, 2004.
Garden, I. R., Guscott, S. C., Burley, S. D., Foxford, K. A., Walsh, J. J., and Marshall, J.: An exhumed palaeo-hydrocarbon migration fairway in a faulted carrier system, Entrada Sandstone of SE Utah, USA, Geofluids, 1, 195–213, 2001.
Gilfillan, S. M. V., Lollar, B. S., Holland, G., Blagburn, D., Stevens, S., Schoell, M., Cassidy, M., Ding, Z., Zhou, Z., Lacrampe-Couloume, G., and Ballentine, C. J.: Solubility trapping in formation water as dominant CO2 sink in natural gas fields, Nature, 458, 614–618, 2009.
Gilfillan, S., Wilkinson, M., Haszeldine, R. S., Shipton, Z. K., Nelson, S. T., and Poreda, R. J.: He and Ne as tracers of natural CO2 migration up a fault from a deep reservoir, Int. J. Greenh. Gas Con., 5, 1507–1516, 2011.
Gouveia, F. and Friedmann, S.: Timing and prediction of CO2 eruptions from Crystal Geyser, UT, United States. Dept. of Energy, 2006.
Gouveia, F., Johnson, M., Leif, R., and Friedmann, S.: Aerometric measurement and modeling of the mass of CO2 emissions from Crystal Geyser, Utah, UCRL-TR-211870, Lawrence Livermore National Lab., Livermore, CA (USA), 2005.
Han, W. S., Lu, M., McPherson, B. J., Keating, E. H., Moore, J., Park, E., Watson, Z. T., and Jung, N.-H.: Characteristics of CO2-driven cold-water geyser, Crystal Geyser in Utah: experimental observation and mechanism analyses, Geofluids, 13, 283–297, 2013.
Harvey, O. R., Qafoku, N. P., Cantrell, K. J., Lee, G., Amonette, J. E., and Brown, C. F.: Geochemical Implications of Gas Leakage associated with Geologic CO2 Storage – A Qualitative Review, Environ. Sci. Technol., 47, 23–36, 2012.
Heath, J.: Hydrogeochemical Characterization of Leaking Carbon Dioxide-Charged Fault Zones in East-Central Utah, Masters thesis, Utah State University, USA, 2004.
Hood, J. and Patterson, D.: Bedrock aquifers in the northern San Rafael Swell area. Utah, with special emphasis on the Navajo Sandstone, State of Utah Department of Natural Resources Technical Publication, 78, p. 139, 1984.
Jun, Y.-S., Giammar, D. E., and Werth, C. J.: Impacts of Geochemical Reactions on Geologic Carbon Sequestration, Environ. Sci. Technol., 47, 3–8, 2012.
Kampman, N., Bickle, M., Becker, J., Assayag, N., and Chapman, H.: Feldspar dissolution kinetics and Gibbs free energy dependence in a CO2-enriched groundwater system, Green River, Utah, Earth Planet. Sc. Lett., 284, 473–488, 2009.
Kampman, N., Burnside, N. M., Shipton, Z. K., Chapman, H. J., Nicholl, J. A., Ellam, R. M., and Bickle, M. J.: Pulses of carbon dioxide emissions from intracrustal faults following climatic warming, Nat. Geosci., 5, 352–358, 2012.
Kampman, N., Bickle, M., Wigley, M., and Dubacq, B.: Fluid flow and CO2-fluid-mineral interactions during CO2-storage in sedimentary basins, Chem. Geol. Rev., in press, 2013a.
Kampman, N., Maskell, A., Chapman, H. J., Bickle, M. J., Evans, J. P., Purser, G., Zhou, Z., Gattacceca, J., Schaller, M., Bertier, P., Chen, F., Turchyn, A. V., Assayag, N., Rochelle, C., Ballentine, C., and Busch, A.: Drilling and fluid sampling a natural CO2 reservoir: implications for fluid flow and fluid-rock reaction during CO2 migration through the overburden, Chemi. Geol., in press, 2013b.
Kietäväinen, R., Ahonen, L., Kukkonen, I. T., Hendriksson, N., Nyyssönen, M., and Itävaara, M.: Characterisation and isotopic evolution of saline waters of the Outokumpu Deep Drill Hole, Finland – Implications for water origin and deep terrestrial biosphere, Appl. Geochem., 32, 37–51, 2013.
Knauss, K., Johnson, J., and Steefel, C.: Evaluation of the impact of CO2, co-contaminant gas, aqueous fluid and reservoir rock interactions on the geologic sequestration of CO2, Chem. Geol., 217, 339–350, 2005.
Loope, D. B., Kettler, R. M., and Weber, K. A.: Follow the water: Connecting a CO2 reservoir and bleached sandstone to iron-rich concretions in the Navajo Sandstone of south-central Utah, USA, Geology, 38, 999–1002, 2010.
Loope, D. B., Kettler, R. M., and Weber, K. A.: Morphologic Clues to the Origins of Iron Oxide–Cemented Spheroids, Boxworks, and Pipelike Concretions, Navajo Sandstone of South-Central Utah, USA, J. Geol., 119, 505–520, 2011.
O'Sullivan, R. B.: The Middle Jurassic San Rafael Group and related rocks in east-central Utah. New Mexico Geological Society Guidebook, 32, 89–95, 1981.
Parry, W. T., Chan, M. A., and Beitler, B.: Chemical bleaching indicates episodes of fluid flow in deformation bands in sandstone, AAPG Bull., 88, 175–191, 2004.
Parry, W. T., Chan, M. A., and Nash, B. P.: Diagenetic characteristics of the Jurassic Navajo Sandstone in the Covenant oil field, central Utah thrust belt, AAPG Bull., 93, 1039–1061, 2009.
Pasala, S. M., Forster, C. B., Deo, M., and Evans, J. P.: Simulation of the impact of faults on CO2 injection into sandstone reservoirs, Geofluids, 13, 344–358, 2013.
Peterson, F. and Turner-Peterson, C.: Geology of the Colorado Plateau: Grand Junction to Denver, Colorado June 30–July 7, 1989, 130, American Geophysical Union, 1989.
Potter-McIntyre, S., Allen, J., Chan, M., Shik Han, W., Lee, S.-Y., and McPherson, B.: Iron precipitation in a natural CO2 reservoir: Jurassic Navajo Sandstone in the northern San Rafael Swell, UT, USA, Geofluids, 2013.
Regenspurg, S., Wiersberg, T., Brandt, W., Huenges, E., Saadat, A., Schmidt, K., and Zimmermann, G.: Geochemical properties of saline geothermal fluids from the in-situ geothermal laboratory Groß Schönebeck (Germany), Chemie der Erde – Geochemistry, 70, Suppl. 3, 3–12, 2010.
Shipton, Z. K., Evans, J. P., Kirschner, D., Kolesar, P. T., Williams, A. P., and Heath, J.: Analysis of CO2 leakage through "low-permeability" faults from natural reservoirs in the Colorado Plateau, east-central Utah, Geological Society London Special Publications, 233, 43–58, 2004.
Shipton, Z. K., Evans, J. P., Dockrill, B., Heath, J., Williams, A., Kirchner, D., and Kolesar, P. T.: Natural leaking CO2-charged systems as analogues for failed geologic storage reservoirs Carbon dioxide capture for storage in deep geologic formations: results from the CO2 capture project, 2, 699–712, 2005.
Song, J. and Zhang, D.: Comprehensive Review of Caprock-Sealing Mechanisms for Geologic Carbon Sequestration, Environ. Sci. Technol., 47, 9–22, 2012.
Verlander, J. E.: The Navajo Sandstone, Geology Today, 11, 143–146, 1995.
White, A. and Brantley, S.: The effect of time on the weathering of silicate minerals: why do weathering rates differ in the laboratory and field?, Chem. Geol., 202, 479–506, 2003.
Wigley, M., Kampman, N., Dubacq, B., and Bickle, M.: Fluid-mineral reactions and trace metal mobilization in an exhumed natural CO2 reservoir, Green River, Utah, Geology, 40, 555–558, 2012.
Wigley, M., Dubacq, B., Kampman, N., and Bickle, M.: Controls of sluggish, CO2-promoted, hematite and K-feldspar dissolution kinetics in sandstones, Earth Planet. Sc. Lett., 362, 76–87, 2013a.
Wigley, M., Kampman, N., Chapman, H., Dubacq, B., and Bickle, M.: In-situ re-deposition of trace metals mobilized by CO2-charged fluids, Geochem. Geophy. Geosys., 12, 1321–1332, 2013b.
Wilkinson, M., Gilfillan, S. V. M., Haszeldine, R. S., and Ballentine, C. J.: Plumbing the depths: Testing natural tracers of subsurface CO2 origin and migration, Utah, in: Carbon dioxide sequestration in geological media – State of the science, AAPG Stud. Geol., edited by: Grobe, M., Pashin, J. C., and Dodge, R. L., 619–634, 2009.