Eger Rift ICDP: an observatory for study of non-volcanic, mid-crustal earthquake swarms and accompanying phenomena
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Institute of Earth and Environmental Sciences, University of Potsdam, Karl-Liebknecht-Str. 24, 14476 Golm, Germany
P. Hrubcová
Institute of Geophysics, Academy of Science, 141 31 Prague, Czech Republic
T. Fischer
Faculty of Science, Charles University in Prague, Albertov 6, 128 43, Prague, Czech Republic
J. Horálek
Institute of Geophysics, Academy of Science, 141 31 Prague, Czech Republic
M. Korn
Institut für Geophysik und Geologie, Universität Leipzig, Talstraße 35, 04103 Leipzig, Germany
Institute of Geophysics and Geoinformatics, TU Bergakademie Freiberg, 09599 Freiberg, Germany
D. Wagner
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Institute of Earth and Environmental Sciences, University of Potsdam, Karl-Liebknecht-Str. 24, 14476 Golm, Germany
Related authors
Tomáš Fischer, Pavla Hrubcová, Torsten Dahm, Heiko Woith, Tomáš Vylita, Matthias Ohrnberger, Josef Vlček, Josef Horálek, Petr Dědeček, Martin Zimmer, Martin P. Lipus, Simona Pierdominici, Jens Kallmeyer, Frank Krüger, Katrin Hannemann, Michael Korn, Horst Kämpf, Thomas Reinsch, Jakub Klicpera, Daniel Vollmer, and Kyriaki Daskalopoulou
Sci. Dril., 31, 31–49, https://doi.org/10.5194/sd-31-31-2022, https://doi.org/10.5194/sd-31-31-2022, 2022
Short summary
Short summary
The newly established geodynamic laboratory aims to develop modern, comprehensive, multiparameter observations at depth for studying earthquake swarms, crustal fluid flow, mantle-derived fluid degassing and processes of the deep biosphere. It is located in the West Bohemia–Vogtland (western Eger Rift) geodynamic region and comprises a set of five shallow boreholes with high-frequency 3-D seismic arrays as well as continuous real-time fluid monitoring at depth and the study of the deep biosphere.
Djamil Al-Halbouni, Robert A. Watson, Eoghan P. Holohan, Rena Meyer, Ulrich Polom, Fernando M. Dos Santos, Xavier Comas, Hussam Alrshdan, Charlotte M. Krawczyk, and Torsten Dahm
Hydrol. Earth Syst. Sci., 25, 3351–3395, https://doi.org/10.5194/hess-25-3351-2021, https://doi.org/10.5194/hess-25-3351-2021, 2021
Short summary
Short summary
The rapid decline of the Dead Sea level since the 1960s has provoked a dynamic reaction from the coastal groundwater system, with physical and chemical erosion creating subsurface voids and conduits. By combining remote sensing, geophysical methods, and numerical modelling at the Dead Sea’s eastern shore, we link groundwater flow patterns to the formation of surface stream channels, sinkholes and uvalas. Better understanding of this karst system will improve regional hazard assessment.
Gesa Maria Petersen, Simone Cesca, Sebastian Heimann, Peter Niemz, Torsten Dahm, Daniela Kühn, Jörn Kummerow, Thomas Plenefisch, and the AlpArray and AlpArray-Swath-D working groups
Solid Earth, 12, 1233–1257, https://doi.org/10.5194/se-12-1233-2021, https://doi.org/10.5194/se-12-1233-2021, 2021
Short summary
Short summary
The Alpine mountains are known for a complex tectonic history. We shed light onto ongoing tectonic processes by studying rupture mechanisms of small to moderate earthquakes between 2016 and 2019 observed by the temporary AlpArray seismic network. The rupture processes of 75 earthquakes were analyzed, along with past earthquakes and deformation data. Our observations point at variations in the underlying tectonic processes and stress regimes across the Alps.
Camilla Rossi, Francesco Grigoli, Simone Cesca, Sebastian Heimann, Paolo Gasperini, Vala Hjörleifsdóttir, Torsten Dahm, Christopher J. Bean, Stefan Wiemer, Luca Scarabello, Nima Nooshiri, John F. Clinton, Anne Obermann, Kristján Ágústsson, and Thorbjörg Ágústsdóttir
Adv. Geosci., 54, 129–136, https://doi.org/10.5194/adgeo-54-129-2020, https://doi.org/10.5194/adgeo-54-129-2020, 2020
Short summary
Short summary
We investigate the microseismicity occurred at Hengill area, a complex tectonic and geothermal site, where the origin of earthquakes may be either natural or anthropogenic. We use a very dense broadband seismic monitoring network and apply full-waveform based method for location. Our results and first characterization identified different types of microseismic clusters, which might be associated to either production/injection or the tectonic activity of the geothermal area.
Marco Broccardo, Arnaud Mignan, Francesco Grigoli, Dimitrios Karvounis, Antonio Pio Rinaldi, Laurentiu Danciu, Hannes Hofmann, Claus Milkereit, Torsten Dahm, Günter Zimmermann, Vala Hjörleifsdóttir, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 20, 1573–1593, https://doi.org/10.5194/nhess-20-1573-2020, https://doi.org/10.5194/nhess-20-1573-2020, 2020
Short summary
Short summary
This study presents a first-of-its-kind pre-drilling probabilistic induced seismic risk analysis for the Geldinganes (Iceland) deep-hydraulic stimulation. The results of the assessment indicate that the individual risk within a radius of 2 km around the injection point is below the safety limits. However, the analysis is affected by a large variability due to the presence of pre-drilling deep uncertainties. This suggests the need for online risk updating during the stimulation.
Mohammadreza Jamalreyhani, Pınar Büyükakpınar, Simone Cesca, Torsten Dahm, Henriette Sudhaus, Mehdi Rezapour, Marius Paul Isken, Behnam Maleki Asayesh, and Sebastian Heimann
Solid Earth Discuss., https://doi.org/10.5194/se-2020-55, https://doi.org/10.5194/se-2020-55, 2020
Revised manuscript not accepted
Short summary
Short summary
We model the source of the 24 January 2020 Mw 6.77 Elazığ-Sivrice (Turkey) earthquake using a combination of different data and we analyzed its seismic sequences. This earthquake occurred in the east Anatolian fault and it has filled the large part of the former seismic gap zone. An unbroken part has left after this earthquake and has the potential to host a future earthquake. This work provides information about the fault system and helps to the mitigation of seismic hazard in Southern Turkey.
Sebastian Heimann, Hannes Vasyura-Bathke, Henriette Sudhaus, Marius Paul Isken, Marius Kriegerowski, Andreas Steinberg, and Torsten Dahm
Solid Earth, 10, 1921–1935, https://doi.org/10.5194/se-10-1921-2019, https://doi.org/10.5194/se-10-1921-2019, 2019
Short summary
Short summary
We present an open-source software framework for fast and flexible forward modelling of seismic and acoustic wave phenomena and elastic deformation. It supports a wide range of applications across volcanology, seismology, and geodesy to study earthquakes, volcanic processes, landslides, explosions, mine collapses, ground shaking, and aseismic faulting. The framework stimulates reproducible research and open science through the exchange of pre-calculated Green's functions on an open platform.
Robert A. Watson, Eoghan P. Holohan, Djamil Al-Halbouni, Leila Saberi, Ali Sawarieh, Damien Closson, Hussam Alrshdan, Najib Abou Karaki, Christian Siebert, Thomas R. Walter, and Torsten Dahm
Solid Earth, 10, 1451–1468, https://doi.org/10.5194/se-10-1451-2019, https://doi.org/10.5194/se-10-1451-2019, 2019
Short summary
Short summary
The fall of the Dead Sea level since the 1960s has provoked the formation of over 6000 sinkholes, a major hazard to local economy and infrastructure. In this context, we study the evolution of subsidence phenomena at three area scales at the Dead Sea’s eastern shore from 1967–2017. Our results yield the most detailed insights to date into the spatio-temporal development of sinkholes and larger depressions (uvalas) in an evaporite karst setting and emphasize a link to the falling Dead Sea level.
Djamil Al-Halbouni, Eoghan P. Holohan, Abbas Taheri, Robert A. Watson, Ulrich Polom, Martin P. J. Schöpfer, Sacha Emam, and Torsten Dahm
Solid Earth, 10, 1219–1241, https://doi.org/10.5194/se-10-1219-2019, https://doi.org/10.5194/se-10-1219-2019, 2019
Short summary
Short summary
A 2-D numerical modelling approach to simulate the mechanical formation of sinkhole cluster inside large-scale karstic depressions is presented. Different multiple cavity growth scenarios at depth are compared regarding the mechanical process and collapse style. The outcomes of the models are compared to results from remote sensing and geophysics for an active sinkhole area in the Dead Sea region.
Marius Kriegerowski, Simone Cesca, Matthias Ohrnberger, Torsten Dahm, and Frank Krüger
Solid Earth, 10, 317–328, https://doi.org/10.5194/se-10-317-2019, https://doi.org/10.5194/se-10-317-2019, 2019
Short summary
Short summary
We developed a method that allows to estimate the acoustic attenuation of seismic waves within regions with high earthquake source densities. Attenuation is of high interest as it allows to draw conclusions on the origin of seismic activity. We apply our method to north-west Bohemia, which is regularly affected by earthquake swarms during which thousands of earthquakes are registered within a few days. We find reduced attenuation within the active volume, which may indicate high fluid content.
Peter Gaebler, Lars Ceranna, Nima Nooshiri, Andreas Barth, Simone Cesca, Michaela Frei, Ilona Grünberg, Gernot Hartmann, Karl Koch, Christoph Pilger, J. Ole Ross, and Torsten Dahm
Solid Earth, 10, 59–78, https://doi.org/10.5194/se-10-59-2019, https://doi.org/10.5194/se-10-59-2019, 2019
Short summary
Short summary
On 3 September 2017 official channels of the Democratic People’s Republic of
Korea announced the successful test of a nuclear device. This study provides a
multi-technology analysis of the 2017 North Korean event and its aftermath using a wide array of geophysical methods (seismology, infrasound, remote sensing, radionuclide monitoring, and atmospheric transport modeling). Our results clearly indicate that the September 2017 North Korean event was in fact a nuclear test.
Djamil Al-Halbouni, Eoghan P. Holohan, Abbas Taheri, Martin P. J. Schöpfer, Sacha Emam, and Torsten Dahm
Solid Earth, 9, 1341–1373, https://doi.org/10.5194/se-9-1341-2018, https://doi.org/10.5194/se-9-1341-2018, 2018
Short summary
Short summary
Sinkholes are round depression features in the ground that can cause high economic and life loss. On the Dead Sea shoreline, hundreds of sinkholes form each year driven by the fall of the water level and subsequent out-washing and dissolution of loose sediments. This study investigates the mechanical formation of sinkholes by numerical modelling. It highlights the role of material strength in the formation of dangerous collapse sinkholes and compares it to findings from a field site in Jordan.
Ulrich Polom, Hussam Alrshdan, Djamil Al-Halbouni, Eoghan P. Holohan, Torsten Dahm, Ali Sawarieh, Mohamad Y. Atallah, and Charlotte M. Krawczyk
Solid Earth, 9, 1079–1098, https://doi.org/10.5194/se-9-1079-2018, https://doi.org/10.5194/se-9-1079-2018, 2018
Short summary
Short summary
The alluvial fan of Ghor Al-Haditha (Dead Sea) is affected by subsidence and sinkholes. Different models and hypothetical processes have been suggested in the past; high-resolution shear wave reflection surveys carried out in 2013 and 2014 showed the absence of evidence for a massive shallow salt layer as formerly suggested. Thus, a new process interpretation is proposed based on both the dissolution and physical erosion of Dead Sea mud layers.
Vera Lay, Christoph Büttner, Stefan Buske, and Ernst Niederleithinger
Saf. Nucl. Waste Disposal, 2, 67–67, https://doi.org/10.5194/sand-2-67-2023, https://doi.org/10.5194/sand-2-67-2023, 2023
Short summary
Short summary
We present a valuable experiment for ultrasonic quality assurance under realistic conditions for underground sealing structures made from shotcrete, where the locations of artificial reflectors are partly known. We apply advanced geophysical imaging methods to further enhance the quality of the obtained ultrasonic images.
Nicolás Riveras-Muñoz, Steffen Seitz, Kristina Witzgall, Victoria Rodríguez, Peter Kühn, Carsten W. Mueller, Rómulo Oses, Oscar Seguel, Dirk Wagner, and Thomas Scholten
SOIL, 8, 717–731, https://doi.org/10.5194/soil-8-717-2022, https://doi.org/10.5194/soil-8-717-2022, 2022
Short summary
Short summary
Biological soil crusts (biocrusts) stabilize the soil surface mainly in arid regions but are also present in Mediterranean and humid climates. We studied this stabilizing effect through wet and dry sieving along a large climatic gradient in Chile and found that the stabilization of soil aggregates persists in all climates, but their role is masked and reserved for a limited number of size fractions under humid conditions by higher vegetation and organic matter contents in the topsoil.
Tomáš Fischer, Pavla Hrubcová, Torsten Dahm, Heiko Woith, Tomáš Vylita, Matthias Ohrnberger, Josef Vlček, Josef Horálek, Petr Dědeček, Martin Zimmer, Martin P. Lipus, Simona Pierdominici, Jens Kallmeyer, Frank Krüger, Katrin Hannemann, Michael Korn, Horst Kämpf, Thomas Reinsch, Jakub Klicpera, Daniel Vollmer, and Kyriaki Daskalopoulou
Sci. Dril., 31, 31–49, https://doi.org/10.5194/sd-31-31-2022, https://doi.org/10.5194/sd-31-31-2022, 2022
Short summary
Short summary
The newly established geodynamic laboratory aims to develop modern, comprehensive, multiparameter observations at depth for studying earthquake swarms, crustal fluid flow, mantle-derived fluid degassing and processes of the deep biosphere. It is located in the West Bohemia–Vogtland (western Eger Rift) geodynamic region and comprises a set of five shallow boreholes with high-frequency 3-D seismic arrays as well as continuous real-time fluid monitoring at depth and the study of the deep biosphere.
Brij Singh, Michał Malinowski, Andrzej Górszczyk, Alireza Malehmir, Stefan Buske, Łukasz Sito, and Paul Marsden
Solid Earth, 13, 1065–1085, https://doi.org/10.5194/se-13-1065-2022, https://doi.org/10.5194/se-13-1065-2022, 2022
Short summary
Short summary
Fast depletion of shallower deposits is pushing the mining industry to look for cutting-edge technologies for deep mineral targeting. We demonstrated a joint workflow including two state-of-the-art technologies: full-waveform inversion and reverse time migration. We produced Earth images with significant details which can help with better estimation of areas with high mineralisation, better mine planning and safety measures.
Felix Hloušek, Michal Malinowski, Lena Bräunig, Stefan Buske, Alireza Malehmir, Magdalena Markovic, Lukasz Sito, Paul Marsden, and Emma Bäckström
Solid Earth, 13, 917–934, https://doi.org/10.5194/se-13-917-2022, https://doi.org/10.5194/se-13-917-2022, 2022
Short summary
Short summary
Methods for mineral exploration play an important role within the EU. Exploration must be environmentally friendly, cost effective, and feasible in populated areas. Seismic methods have the potential to deliver detailed images of mineral deposits but suffer from these demands. We show the results for a sparse 3D seismic dataset acquired in Sweden. The 3D depth image allows us to track the known mineralizations beyond the known extent and gives new insights into the geometry of the deposit.
Václav Vavryčuk, Petra Adamová, Jana Doubravová, and Josef Horálek
Earth Syst. Sci. Data, 14, 2179–2194, https://doi.org/10.5194/essd-14-2179-2022, https://doi.org/10.5194/essd-14-2179-2022, 2022
Short summary
Short summary
We present a unique catalogue of more than 5100 highly accurate seismic moment tensors of earthquakes that occurred in West Bohemia, Czech Republic, in the period 2008–2018. The catalogue covers a long period of seismicity with several prominent earthquake swarms. The dataset is ideal for being utilized by a large community of researchers for various seismological purposes such as for studies of migration of foci, spatiotemporal evolution of seismicity, tectonic stress, or fluid flow on faults.
Tomi Jusri, Stefan Buske, Olaf Hellwig, and Felix Hloušek
Solid Earth Discuss., https://doi.org/10.5194/se-2021-143, https://doi.org/10.5194/se-2021-143, 2022
Preprint withdrawn
Short summary
Short summary
This study presents a method for constructing angle-domain common-image gathers (ADCIGs) and common-angle stacks from Fresnel volume migration, which can facilitate prestack amplitude analysis from the migrated seismic data in the angle-domain. The results obtained in this study may eventually help improve the feasibility of rock characterization in challenging geological settings, such as in hard-rock environments.
Hossein Hassani, Felix Hloušek, Stefan Buske, and Olaf Wallner
Solid Earth, 12, 2703–2715, https://doi.org/10.5194/se-12-2703-2021, https://doi.org/10.5194/se-12-2703-2021, 2021
Short summary
Short summary
Passive seismic imaging methods use natural earthquakes as seismic sources, while in active seismic imaging methods, artificial sources (e.g. explosives) are used to generate seismic waves. We imaged some structures related to a major fault plane through a passive seismic imaging approach using microearthquakes with magnitudes smaller than 0.9 (Mw). These structures have not been illuminated by a previously conducted 3D active seismic survey due to their large dip angles.
Nikita Afonin, Elena Kozlovskaya, Suvi Heinonen, and Stefan Buske
Solid Earth, 12, 1563–1579, https://doi.org/10.5194/se-12-1563-2021, https://doi.org/10.5194/se-12-1563-2021, 2021
Short summary
Short summary
In our study, we show the results of a passive seismic interferometry application for mapping the uppermost crust in the area of active mineral exploration in northern Finland. The obtained velocity models agree well with geological data and complement the results of reflection seismic data interpretation.
Djamil Al-Halbouni, Robert A. Watson, Eoghan P. Holohan, Rena Meyer, Ulrich Polom, Fernando M. Dos Santos, Xavier Comas, Hussam Alrshdan, Charlotte M. Krawczyk, and Torsten Dahm
Hydrol. Earth Syst. Sci., 25, 3351–3395, https://doi.org/10.5194/hess-25-3351-2021, https://doi.org/10.5194/hess-25-3351-2021, 2021
Short summary
Short summary
The rapid decline of the Dead Sea level since the 1960s has provoked a dynamic reaction from the coastal groundwater system, with physical and chemical erosion creating subsurface voids and conduits. By combining remote sensing, geophysical methods, and numerical modelling at the Dead Sea’s eastern shore, we link groundwater flow patterns to the formation of surface stream channels, sinkholes and uvalas. Better understanding of this karst system will improve regional hazard assessment.
Gesa Maria Petersen, Simone Cesca, Sebastian Heimann, Peter Niemz, Torsten Dahm, Daniela Kühn, Jörn Kummerow, Thomas Plenefisch, and the AlpArray and AlpArray-Swath-D working groups
Solid Earth, 12, 1233–1257, https://doi.org/10.5194/se-12-1233-2021, https://doi.org/10.5194/se-12-1233-2021, 2021
Short summary
Short summary
The Alpine mountains are known for a complex tectonic history. We shed light onto ongoing tectonic processes by studying rupture mechanisms of small to moderate earthquakes between 2016 and 2019 observed by the temporary AlpArray seismic network. The rupture processes of 75 earthquakes were analyzed, along with past earthquakes and deformation data. Our observations point at variations in the underlying tectonic processes and stress regimes across the Alps.
Alireza Malehmir, Magdalena Markovic, Paul Marsden, Alba Gil, Stefan Buske, Lukasz Sito, Emma Bäckström, Martiya Sadeghi, and Stefan Luth
Solid Earth, 12, 483–502, https://doi.org/10.5194/se-12-483-2021, https://doi.org/10.5194/se-12-483-2021, 2021
Short summary
Short summary
A smooth transition toward decarbonization demands access to more minerals of critical importance. Europe has a good geology for many of these mineral deposits, but at a depth requiring sensitive, environmentally friendly, and cost-effective methods for their exploration. In this context, we present a sparse 3D seismic dataset that allowed identification of potential iron oxide resources at depth and helped to characterise key geological structures and a historical tailing in central Sweden.
Camilla Rossi, Francesco Grigoli, Simone Cesca, Sebastian Heimann, Paolo Gasperini, Vala Hjörleifsdóttir, Torsten Dahm, Christopher J. Bean, Stefan Wiemer, Luca Scarabello, Nima Nooshiri, John F. Clinton, Anne Obermann, Kristján Ágústsson, and Thorbjörg Ágústsdóttir
Adv. Geosci., 54, 129–136, https://doi.org/10.5194/adgeo-54-129-2020, https://doi.org/10.5194/adgeo-54-129-2020, 2020
Short summary
Short summary
We investigate the microseismicity occurred at Hengill area, a complex tectonic and geothermal site, where the origin of earthquakes may be either natural or anthropogenic. We use a very dense broadband seismic monitoring network and apply full-waveform based method for location. Our results and first characterization identified different types of microseismic clusters, which might be associated to either production/injection or the tectonic activity of the geothermal area.
Patryk Krauze, Dirk Wagner, Diogo Noses Spinola, and Peter Kühn
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-203, https://doi.org/10.5194/bg-2020-203, 2020
Manuscript not accepted for further review
Short summary
Short summary
Soils from the recently deglaciated foreland of the Ecology Glacier, King George Island, were analyzed using soil chemical and microbiological methods to gain insight into the state of soil formation and its interplay with microbial activity. In the foreland of the Ecology Glacier, acidification, soil carbon/nitrogen accumulation, and changes in microbial communities and vegetation were observable on a decadal timescale, whereas weathering processes occur centuries/millenia after deglaciation.
Tomáš Fischer, Josef Vlček, and Martin Lanzendörfer
Solid Earth, 11, 983–998, https://doi.org/10.5194/se-11-983-2020, https://doi.org/10.5194/se-11-983-2020, 2020
Short summary
Short summary
Data on CO2 degassing help understanding the relations of the gas flow on geodynamic processes. Long-term gas flow measurements in rough field conditions present a challenge due to technical problems. We describe methods used for CO2 flow monitoring in West-Bohemia/Vogtland, which is typical for high CO2 flow, and present a new robust method based on pressure measurements in a water column. The results of 10 years of CO2 flow measurements and their relation to seismic activity are discussed.
Marco Broccardo, Arnaud Mignan, Francesco Grigoli, Dimitrios Karvounis, Antonio Pio Rinaldi, Laurentiu Danciu, Hannes Hofmann, Claus Milkereit, Torsten Dahm, Günter Zimmermann, Vala Hjörleifsdóttir, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 20, 1573–1593, https://doi.org/10.5194/nhess-20-1573-2020, https://doi.org/10.5194/nhess-20-1573-2020, 2020
Short summary
Short summary
This study presents a first-of-its-kind pre-drilling probabilistic induced seismic risk analysis for the Geldinganes (Iceland) deep-hydraulic stimulation. The results of the assessment indicate that the individual risk within a radius of 2 km around the injection point is below the safety limits. However, the analysis is affected by a large variability due to the presence of pre-drilling deep uncertainties. This suggests the need for online risk updating during the stimulation.
Mohammadreza Jamalreyhani, Pınar Büyükakpınar, Simone Cesca, Torsten Dahm, Henriette Sudhaus, Mehdi Rezapour, Marius Paul Isken, Behnam Maleki Asayesh, and Sebastian Heimann
Solid Earth Discuss., https://doi.org/10.5194/se-2020-55, https://doi.org/10.5194/se-2020-55, 2020
Revised manuscript not accepted
Short summary
Short summary
We model the source of the 24 January 2020 Mw 6.77 Elazığ-Sivrice (Turkey) earthquake using a combination of different data and we analyzed its seismic sequences. This earthquake occurred in the east Anatolian fault and it has filled the large part of the former seismic gap zone. An unbroken part has left after this earthquake and has the potential to host a future earthquake. This work provides information about the fault system and helps to the mitigation of seismic hazard in Southern Turkey.
Sebastian Heimann, Hannes Vasyura-Bathke, Henriette Sudhaus, Marius Paul Isken, Marius Kriegerowski, Andreas Steinberg, and Torsten Dahm
Solid Earth, 10, 1921–1935, https://doi.org/10.5194/se-10-1921-2019, https://doi.org/10.5194/se-10-1921-2019, 2019
Short summary
Short summary
We present an open-source software framework for fast and flexible forward modelling of seismic and acoustic wave phenomena and elastic deformation. It supports a wide range of applications across volcanology, seismology, and geodesy to study earthquakes, volcanic processes, landslides, explosions, mine collapses, ground shaking, and aseismic faulting. The framework stimulates reproducible research and open science through the exchange of pre-calculated Green's functions on an open platform.
Julia Mitzscherling, Fabian Horn, Maria Winterfeld, Linda Mahler, Jens Kallmeyer, Pier P. Overduin, Lutz Schirrmeister, Matthias Winkel, Mikhail N. Grigoriev, Dirk Wagner, and Susanne Liebner
Biogeosciences, 16, 3941–3958, https://doi.org/10.5194/bg-16-3941-2019, https://doi.org/10.5194/bg-16-3941-2019, 2019
Short summary
Short summary
Permafrost temperatures increased substantially at a global scale, potentially altering microbial assemblages involved in carbon mobilization before permafrost thaws. We used Arctic Shelf submarine permafrost as a natural laboratory to investigate the microbial response to long-term permafrost warming. Our work shows that millennia after permafrost warming by > 10 °C, microbial community composition and population size reflect the paleoenvironment rather than a direct effect through warming.
Robert A. Watson, Eoghan P. Holohan, Djamil Al-Halbouni, Leila Saberi, Ali Sawarieh, Damien Closson, Hussam Alrshdan, Najib Abou Karaki, Christian Siebert, Thomas R. Walter, and Torsten Dahm
Solid Earth, 10, 1451–1468, https://doi.org/10.5194/se-10-1451-2019, https://doi.org/10.5194/se-10-1451-2019, 2019
Short summary
Short summary
The fall of the Dead Sea level since the 1960s has provoked the formation of over 6000 sinkholes, a major hazard to local economy and infrastructure. In this context, we study the evolution of subsidence phenomena at three area scales at the Dead Sea’s eastern shore from 1967–2017. Our results yield the most detailed insights to date into the spatio-temporal development of sinkholes and larger depressions (uvalas) in an evaporite karst setting and emphasize a link to the falling Dead Sea level.
Djamil Al-Halbouni, Eoghan P. Holohan, Abbas Taheri, Robert A. Watson, Ulrich Polom, Martin P. J. Schöpfer, Sacha Emam, and Torsten Dahm
Solid Earth, 10, 1219–1241, https://doi.org/10.5194/se-10-1219-2019, https://doi.org/10.5194/se-10-1219-2019, 2019
Short summary
Short summary
A 2-D numerical modelling approach to simulate the mechanical formation of sinkhole cluster inside large-scale karstic depressions is presented. Different multiple cavity growth scenarios at depth are compared regarding the mechanical process and collapse style. The outcomes of the models are compared to results from remote sensing and geophysics for an active sinkhole area in the Dead Sea region.
Lars A. Meier, Patryk Krauze, Isabel Prater, Fabian Horn, Carlos E. G. R. Schaefer, Thomas Scholten, Dirk Wagner, Carsten W. Mueller, and Peter Kühn
Biogeosciences, 16, 2481–2499, https://doi.org/10.5194/bg-16-2481-2019, https://doi.org/10.5194/bg-16-2481-2019, 2019
Short summary
Short summary
James Ross Island offers the opportunity to study the undisturbed interplay of microbial activity and pedogenesis. Soils from two sites representing coastal and inland conditions were chosen and analyzed with a wide range of techniques to describe soil properties. We are able to show that coastal conditions go along with more intense weathering and therefore favor soil formation and that microbial communities are initially more affected by weathering and structure than by chemical parameters.
Marius Kriegerowski, Simone Cesca, Matthias Ohrnberger, Torsten Dahm, and Frank Krüger
Solid Earth, 10, 317–328, https://doi.org/10.5194/se-10-317-2019, https://doi.org/10.5194/se-10-317-2019, 2019
Short summary
Short summary
We developed a method that allows to estimate the acoustic attenuation of seismic waves within regions with high earthquake source densities. Attenuation is of high interest as it allows to draw conclusions on the origin of seismic activity. We apply our method to north-west Bohemia, which is regularly affected by earthquake swarms during which thousands of earthquakes are registered within a few days. We find reduced attenuation within the active volume, which may indicate high fluid content.
Peter Gaebler, Lars Ceranna, Nima Nooshiri, Andreas Barth, Simone Cesca, Michaela Frei, Ilona Grünberg, Gernot Hartmann, Karl Koch, Christoph Pilger, J. Ole Ross, and Torsten Dahm
Solid Earth, 10, 59–78, https://doi.org/10.5194/se-10-59-2019, https://doi.org/10.5194/se-10-59-2019, 2019
Short summary
Short summary
On 3 September 2017 official channels of the Democratic People’s Republic of
Korea announced the successful test of a nuclear device. This study provides a
multi-technology analysis of the 2017 North Korean event and its aftermath using a wide array of geophysical methods (seismology, infrasound, remote sensing, radionuclide monitoring, and atmospheric transport modeling). Our results clearly indicate that the September 2017 North Korean event was in fact a nuclear test.
Djamil Al-Halbouni, Eoghan P. Holohan, Abbas Taheri, Martin P. J. Schöpfer, Sacha Emam, and Torsten Dahm
Solid Earth, 9, 1341–1373, https://doi.org/10.5194/se-9-1341-2018, https://doi.org/10.5194/se-9-1341-2018, 2018
Short summary
Short summary
Sinkholes are round depression features in the ground that can cause high economic and life loss. On the Dead Sea shoreline, hundreds of sinkholes form each year driven by the fall of the water level and subsequent out-washing and dissolution of loose sediments. This study investigates the mechanical formation of sinkholes by numerical modelling. It highlights the role of material strength in the formation of dangerous collapse sinkholes and compares it to findings from a field site in Jordan.
Ulrich Polom, Hussam Alrshdan, Djamil Al-Halbouni, Eoghan P. Holohan, Torsten Dahm, Ali Sawarieh, Mohamad Y. Atallah, and Charlotte M. Krawczyk
Solid Earth, 9, 1079–1098, https://doi.org/10.5194/se-9-1079-2018, https://doi.org/10.5194/se-9-1079-2018, 2018
Short summary
Short summary
The alluvial fan of Ghor Al-Haditha (Dead Sea) is affected by subsidence and sinkholes. Different models and hypothetical processes have been suggested in the past; high-resolution shear wave reflection surveys carried out in 2013 and 2014 showed the absence of evidence for a massive shallow salt layer as formerly suggested. Thus, a new process interpretation is proposed based on both the dissolution and physical erosion of Dead Sea mud layers.
Robert Bussert, Horst Kämpf, Christina Flechsig, Katja Hesse, Tobias Nickschick, Qi Liu, Josefine Umlauft, Tomáš Vylita, Dirk Wagner, Thomas Wonik, Hortencia Estrella Flores, and Mashal Alawi
Sci. Dril., 23, 13–27, https://doi.org/10.5194/sd-23-13-2017, https://doi.org/10.5194/sd-23-13-2017, 2017
Juliane Bischoff, Robert B. Sparkes, Ayça Doğrul Selver, Robert G. M. Spencer, Örjan Gustafsson, Igor P. Semiletov, Oleg V. Dudarev, Dirk Wagner, Elizaveta Rivkina, Bart E. van Dongen, and Helen M. Talbot
Biogeosciences, 13, 4899–4914, https://doi.org/10.5194/bg-13-4899-2016, https://doi.org/10.5194/bg-13-4899-2016, 2016
Short summary
Short summary
The Arctic contains a large pool of carbon that is vulnerable to warming and can be released by rivers and coastal erosion. We study microbial lipids (BHPs) in permafrost and shelf sediments to trace the source, transport and fate of this carbon. BHPs in permafrost deposits are released to the shelf by rivers and coastal erosion, in contrast to other microbial lipids (GDGTs) that are transported by rivers. Several further analyses are needed to understand the complex East Siberian Shelf system.
Cited articles
Babuška, V., Plomerová, J., and Fischer, T.: Intraplate seismicity in the western Bohemian Massif (central Europe): a possible correlation with a paleoplate junction, J. Geodyn., 44, 149–159, 2007.
Bankwitz, P., Schneider, G., Kämpf, H., and Bankwitz, E.: Structural characteristics of epicentral areas in Central Europe: study case Cheb Basin (Czech Republic), J. Geodyn., 35, 5–32, https://doi.org/10.1016/S0264-3707(02)00051-0, 2003.
Becken, M., Ritter, O., Bedrosian, P. A., and Weckmann, U.: Correlation between deep fluids, tremor and creep along the central San Andreas fault, Nature, 480, 87–90, https://doi.org/10.1038/nature10609, 2011.
Behr, H. J., Dürbaum, H. J., and Bankwitz, P.: Crustal structure of the Saxothuringian Zone: Results of the deep seismic profile MVE-90 (East), Z. Geol. Wiss., 22, 647–769, 1994.
Bräuer, K., Kämpf, H., Niedermann, S., Strauch, G., and Weise, S. M.: Evidence for a nitrogen flux directly derived from the European subcontinental mantle in the Western Eger Rift, central Europe, Geochim. Cosmochim. Ac., 68, 4935–4937, 2004.
Bräuer, K., Kämpf, H., Faber, E., Koch, U., Nitzsche, H.-M., and Strauch, G.: Seismically triggered microbial methane production relating to the Vogtland – NW Bohemia earthquake swarm period 2000, Central Europe, Geochem. J., 39, 441–450, 2005.
Bräuer, K., Kämpf, H., Koch, U., Niedermann, S., and Strauch, G.: Seismically-induced changes of the fluid signature detected by a multi-isotope approach (He, CO2, CH4, N2) at the "Wettinquelle", Bad Brambach (Central Europe), J. Geophys. Res., 112, B04307, https://doi.org/10.1029/2006JB004404, 2007.
Bräuer, K., Kämpf, H., Niedermann, S., Strauch, G., and Tesař, J.: The natural laboratory NW Bohemia – Comprehensive fluid studies between 1992 and 2005 used to trace geodynamic processes, Geochem. Geophy. Geosy., 9, Q04018, https://doi.org/10.1029/2007GC001921, 2008.
Bräuer, K., Kämpf, H., and Strauch, G.: Earthquake swarms in non-volcanic regions: What fluids have to say, Geophys. Res. Lett., 36, L17309, https://doi.org/10.1029/2009GL039615, 2009.
Bräuer, K., Kämpf, H., Koch, U., and Strauch, G.: Monthly monitoring of gas and isotope compositions in the free gas phase at degassing locations close to the Nový Kostel focal zone in the western Eger Rift, Czech Republic, Chem. Geol., 290, 163–176, https://doi.org/10.1016/j.chemgeo.2011.09.012, 2011.
Br\Huckl, E., Bleibinhaus, F., Gosar, A., Grad, M., Guterch, M., Hrubcová, P., Keller, G. R., Majda\'nski, M., Sumanovac, F., Tiira, T., Yliniemi, J., Heged\Hus, E., and Thybo, H.: Crustal structure due to collisional and escape tectonics in the Eastern Alps region based on profiles Alp01 and Alp02 from the ALP 2002 seismic experiment, J. Geophys. Res., 112, B06308, https://doi.org/10.1029/2006JB004687, 2007.
Colwell, F. S., Nunoura, T., Delwiche, M. E., Boyd, S., Bolton, R., Reed, D. W., Takai, K., Lehman, R. M., Horikoshi, K., Elias, D. A., and Phelps, T. J.: Evidence of minimal methanogenic numbers and activities in sediments collected from JAPEX/JNOC/GSC et al. Mallik 5L-38 gas hydrate production research well, in: Scientific Results from the Mallik 2002 Gas Hydrate Production Research Well Program, Mackenzie Delta, Northwest Territories, Canada, Geological Survey of Canada, Bulletin, edited by: Dallimore, S. R. and Collett, T. S., 585, 1–11, 2005.
Dahm, T. and Brandsdottir, B.: Moment tensors of micro-earthquakes from the Eyjafjallajökull volcano in South Iceland, Geophys. J. Int., 130, 183–192, 1997.
Dahm, T., Šílený, J., and Horálek, J.: Comparison of moment tensor solutions for the January 1997 West Bohemia earthquake swarm. Stud, Geoph. et Geod., 44, 233–250, 2000.
Dahm, T., Fischer, T., and Hainzl, S.: Mechanical intrusion models and their implications for the possibility of magma-driven swarms in NW Bohemia region, Stud. Geophys. Geod., 52, 529–548, 2008.
DEKORP Research Group: The deep reflection seismic profiles DEKORP 3/MVE-90, Z. Geol. Wiss., 22, 623–824, 1994.
D'Hondt, S. L., Inagaki, F., Ferdelman, T., Joergensen, B. B., Kato, K., Kemp, P., Sobecky, P., Sogin, M. L., and Takai, K.: Exploring Subseafloor Life with the Integrated Ocean Drilling Program, Scientific Drilling, 5, 26–37, 2007.
Dreger, D. S., Tkalcic, H., and Jonston, M.: Dilational processes accompanying earthquakes in the Long Valley Caldera, Science, 288, 122–125, 2000.
Enderle, U., Schuster, K., Prodehl, C., Schultze, A., and Briebach, J.: The refraction seismic experiment GRANU'95 in the Saxothuringian belt, southeastern Germany, Geophys. J. Int., 133, 245–259, 1998.
Fischer, T. and Horálek, J.: Space-time distribution of earthquake swarms in the principal focal zone of the NW Bohemia/Vogtland seismoactive region?, J. Geodyn., 35, 125–144, 2003.
Fischer, T. and Michálek, J.: Post 2000-swarm microearthquake activity in the principal focal zone of West Bohemia/ Vogtland: space-time distribution and waveform similarity analysis, Stud. Geophys. Geod., 52, 493–511, 2008.
Geissler, W. H., Kämpf, H., Bankwitz, P., and Bankwitz, E.: The Quaternary tephra-tuff deposit of Mýtina (southern rim of the western Eger Graben/Czech Republic): Indications for eruption and deformation processesn, Z. Geol. Wiss., 32, 31–54, 2004 (in German with summary in English).
Geissler, W. H., Kämpf, H., Kind, R., Klinge, K., Plenefisch, T., Horálek, J., Zedník, J., and Nehybka, V.: Seismic structure and location of a CO2 source in the upper mantle of the western Eger rift, Central Europe, Tectonics, 24, TC5001, https://doi.org/10.10292004TC001672, 2005.
Glombitza, C., Stockhecke, M., Schubert, C. J., Vetter, A., and Kallmeyer, J.: Sulfate reduction controlled by organic matter availability in deep sediment cores from the saline, alkaline Lake Van (Eastern Anatolia, Turkey), Frontiers in Microbiology, https://doi.org/10.3389/fmicb.2013.00209, in press, 2013.
Gohn, G. S., Koeberl, C., Miller, K. G., Reimold, W. U., Browning, J. V., Cockell, C. S., Horton, J. W., Kenkmann, T., Kulpecz, A. A., Powars, D. S., Sanford, W. E., and Voytek, M. A.: Deep drilling into the Chesapeake Bay impact structure, Science, 320, 1740–1745, 2008.
Grad, M., Guterch, A., Mazur, S., Keller, G. R., Špičák, A., Hrubcová, P., and Geissler, W. H.: Lithospheric structure of the Bohemian Massif and adjacent Variscan belt in central Europe based on profile S01 from the SUDETES 2003 experiment, J. Geophys. Res., 113, B10304, https://doi.org/10.1029/2007JB005497, 2008.
Hainzl, S., Fischer, T., and Dahm, T.: Seismicity-based estimation of the driving fluid pressure in the case of swarm activity in Western Bohemia, Geopy. J. Int., 191, 271–281, https://doi.org/10.1111/j.1365-246X.2012.05610, 2012.
Heuer, B., Geissler, W. H., Kind, R., and Kämpf, H.: Seismic evidence for asthenospheric updoming beneath the western Bohemian Massif, central Europe, Geophys. Res. Lett., 33, L05311, https://doi.org/10.1029/2005GL025158, 2006.
Horálek, J. and Fischer, T.: Role of crustal fluids in triggering the West Bohemia/Vogtland earthquake swarms: just what we know (a review), Stud. Geophys. Geod., 52, 455–478, 2008.
Horálek, J. and Šílený, J.: Source mechanisms of the 2000-earthquake swarm in the West Bohemia/Vogtland region (Central Europe), Geophys. J. Int., 194, 979–999, https://doi.org/10.1093/gji/ggt138, 2013.
Hrubcová, P. and Geissler, W. H.: The Crust-Mantle Transition and the Moho beneath the Vogtland/West Bohemian Region in the Light of Different Seismic Methods, Stud. Geophys. Geod., 53, 275–294, 2009.
Hrubcová, P., \'Sroda, P., Špičák, A., Guterch, A., Grad, M., Keller, G. R., Brückl, E., and Thybo, H.: Crustal and uppermost mantle structure of the Bohemian Massif based on CELEBRATION 2000 data, J. Geophys. Res., 110, B11305, https://doi.org/10.1029/2004JB003080, 2005.
Hrubcová, P., Vavryčuk, V., Boušková, A., and Horálek, J.: Moho depth determination from waveforms of microearthquakes in the West Bohemia/Vogtland swarm area, J. Geophys. Res., 118, 120–137, https://doi.org/10.1029/2012JB009360, 2013.
Ibs-von Seht, M., Plenefisch, T., and Klinge, K.: Earthquake swarms in continental rifts – A comparison of selected cases in America, Africa and Europe, Tectonophysics, 452, 66–77, 2008.
Klemt, C.: Seismic imaging of the crustal structure in the central European Variscan orogen by reprocessing of the deep seismic reflection profiles GRANU9501 und GRANU9502, Master thesis, TU Bergakademie Freiberg, 2013.
Knett, J.: Das Erzgebirgische Schwarmbeben zu Hartenberg vom 1. Jänner bis 5. Feber 1824. – Sitzungsber. Dt. Naturwiss.-Med. Verein Böhmen Lotos Prag N.F. 19, 167–191, 1899.
Lees, J. M.: Multiplet analysis at Coso geothermal, B. Seismol. Soc. Am., 88, 1127–1143, 1998.
Lehman, R. M.: Microbial distribution and their potential controlling factors in terrestrial subsurface environments, in: The spatial distribution of microbes in the environment, edited by: Franklin, R. B. and Mills, A. L., Springer, 135–178, 2007.
Matte, P., Maluski, H., Rajlich, P., and Franke, W.: Terrane boundaries in the Bohemian Massif: result of large-scale Variscan shearing, Tectonophysics, 177, 151–170, https://doi.org/10.1016/0040-1951(90)90279-H, 1990.
McNutt, S. R.: Volcano seismology, Annu. Rev. Earth Pl. Sc., 33, 461–491, 2005.
Mogi, K.: Some discussions on aftershocks, foreshocks and earthquake swarms – the fracture of semi-infinite body caused by an inner stress origin and its relation to the earthquake phenomena, Bull. Earthquake Res. Inst., 41, 615–658, 1963.
Mrlina, J., Kämpf, H., Kroner, C., Mingram, J., Stebich, M., Brauer, A., Geissler, W. H., Kallmeyer, J., Matthes, H., and Seidl, M.: Discovery of the first Quaternary maar in the Bohemian Massif, Central Europe, based on combined geophysical and geological surveys, J. Volc. Geoth. Res., 182, 97–112, https://doi.org/10.1016/j.jvolgeores.2009.01.027, 2009.
Mullick, N., Buske, S., Shapiro, S., and Wigger, P.: Reflection seismic investigation of the geodynamically active West-Bohemia/Vogtland region. Basalt 2013 – Cenozoic Magmatism in Central Europe, Görlitz, 24–28 April, Görlitz/Germany, 2013.
Parkes, R. J., Cragg, B. A., Bale, S. J., Getliff, J. M., Goodman, K., Rochelle, P. A., Fry, J. C., Weightman, A. J., and Harvey, S. M.: Deep bacterial biosphere in Pacific Ocean sediments, Nature, 371, 410–413, 1994.
Parkes, R. J., Cragg, B. A., and Wellsbury, P.: Recent studies on bacterial populations and processes in subseafloor sediments: a review, Hydrogeol. J., 8, 11–28, 2000.
Pedersen, K.: Exploration of deep intraterrestrial microbial life: current perspectives, Federation of European Microbiological Societies Microbiology Letters, 185, 9–16, 2000.
Pitra, P., Burg, J. P., and Guiraud, M.: Late Variscan strike-slip tectonics between the Tepla-Barrandian and Moldanubian terranes (Czech Bohemian Massif): Petrostructural evidence, J. Geol. Soc. London, 156, 1003–1020, 1999.
Prodehl, C., Mueller, S., and Haak, V.: The European Cenozoic Rift System, in: Continental rifts: evolution, structure, tectonics, edited by: Olsen, K. H., Developments in Geotectonics, Elsevier, 133–212, 1995.
Proft, E.: Kammerbühl und Eisenbühl, die Schichtvulkane des Egerer Beckens, Jahrb. Geol. Reichsanstalt Wien, 44, 25–85, 1894.
Schimschal, S.: Seismic imaging of the crustal structure in the Münchberg/Vogtland/Erzgebirge area by reprocessing of the deep seismic reflection profile MVE90, Master thesis, TU Bergakademie Freiberg, 2013.
Schreiber, U., Locker-Grütjen, O., and Mayer, C.: Hypothesis: origin of life in the deep-reaching tectonic faults, Orig. Life Evol. Biosph., 42, 47–54, https://doi.org/10.1007/s11084-012-9267-4, 2012.
Seifert, W. and Kämpf, H.: Ba-enrichment in phlogopite of a nephelinite from Bohemia, Eur. J. Mineral., 6, 497–502, 1994.
Tomek, Č., Dvořáková, V., and Vrána, S.: Geological interpretation of the 9HR and 503M seismic profiles in Western Bohemia, in: Geological model of Western Bohemia related to the KTB borehole in Germany, edited by: Vrána, S. and Štědrá, V., J. Geol. Sci. Geology, 47, 43–50, 1997.
Ulrych, J., Dostal, J., Adamovič, J., Jelínek, E., Špaček, P., Hegner, E., and Balogh, K.: Recurrent Cenozoic volcanic activity in the Bohemian Massif (Czech Republic), Lithos, 123, 133–144, 2011.
Vavryčuk, V.: Crustal anisotropy from local observations of shear-wave splitting in West Bohemia, Czech Republic, Bull. Seism. Soc. Am., 83, 1420–1441, 1993.
Vavryčuk, V.: Principal earthquakes: Theory and observations from the 2008 West Bohemia swarm, Earth Planet. Sci. Lett., 305, 290–296, https://doi.org/10.1016/j.epsl.2011.03.002, 2011.
Vavryčuk, V., Bouchaala, F., and Fischer, T.: High-resolution fault image from accurate locations and focal mechanisms of 2008 swarm earthquakes in West Bohemia, Czech Republic, Tectonophysics, 590, 189–195, https://doi.org/10.1016/j.tecto.2013.01.025, 2013.
Vuillemin, A. and Ariztegui, D.: Geomicrobiological investigations in subsaline maar lake sediments over the last 1500 years, Quaternary Sci. Rev., 71, 119–130, https://doi.org/10.1016/j.quascirev.2012.04.011, 2013.
Weinlich, F. H., Bräuer, K., Kämpf, H., Strauch, G., Tesař, J., and Weise, S. M.: An active subcontinental mantle volatile system in the western Eger rift, Central Europe: Gas flux, isotopic (He, C, and N) and compositional fingerprints, Geochim. Cosmochim. Ac., 63, 3653–3671, 1999.
Whitman, B., Coleman, D. C., and Wiebe, W. J.: Prokaryotes: the unseen majority, P. Natl. Acad. Sci. USA, 95, 6578–6583, 1998.
Wyss, M., Shimazaki, K., and Wiemer, S.: Mapping active magma chambers by b values beneath the off-Ito volcano, Japan, J. Geophys. Res., 102, 20413–20422, https://doi.org/10.1029/97JB01074, 1997.