The Volta Grande do Xingu: reconstruction of past environments and forecasting of future scenarios of a unique Amazonian fluvial landscape
A. O. Sawakuchi
CORRESPONDING AUTHOR
Institute of Geosciences, University of São Paulo, Rua do Lago, 562, São Paulo, SP, 05508-080, Brazil
G. A. Hartmann
Coordination of Geophysics, National Observatory, Rua General José Cristino, 77, Rio de Janeiro, RJ, 20921-400, Brazil
H. O. Sawakuchi
Environmental Analysis and Geoprocessing Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Av. Centenário, 303, Piracicaba, SP, 13400-970, Brazil
F. N. Pupim
Institute of Geosciences, University of São Paulo, Rua do Lago, 562, São Paulo, SP, 05508-080, Brazil
D. J. Bertassoli
Institute of Geosciences, University of São Paulo, Rua do Lago, 562, São Paulo, SP, 05508-080, Brazil
Institute of Energy and Environment, University of São Paulo, Av. Prof. Luciano Gualberto 1289, São Paulo, SP, 05508-010, Brazil
J. L. Antinao
Desert Research Institute, Division of Earth and Ecosystems Sciences, 2215 Raggio Parkway, Reno, NV 89512, USA
L. M. Sousa
Federal University of Pará, Campus de Altamira, Rua Coronel José Porfírio, 2514, Altamira, PA, 68372-040, Brazil
M. H. Sabaj Pérez
The Academy of Natural Sciences, 1900 Benjamin Franklin Parkway, Philadelphia, PA 19103, USA
P. E. Oliveira
Institute of Geosciences, University of São Paulo, Rua do Lago, 562, São Paulo, SP, 05508-080, Brazil
R. A Santos
Institute of Geosciences, University of São Paulo, Rua do Lago, 562, São Paulo, SP, 05508-080, Brazil
J. F. Savian
Institute of Geosciences, Federal University of Rio Grande do Sul. Avenida Bento Gonçalves, 9500, Porto Alegre, RS, 91501-970, Brazil
C. H. Grohmann
Institute of Energy and Environment, University of São Paulo, Av. Prof. Luciano Gualberto 1289, São Paulo, SP, 05508-010, Brazil
V. B. Medeiros
Institute of Geosciences, University of São Paulo, Rua do Lago, 562, São Paulo, SP, 05508-080, Brazil
M. M. McGlue
Department of Earth and Environmental Sciences, University of Kentucky, Lexington, KY 40506, USA
D. C. Bicudo
Department of Ecology, Instituto de Botânica, SMA. Av. Miguel Stéfano, 3687, São Paulo, SP, 04301-012, Brazil
S. B. Faustino
Department of Ecology, Instituto de Botânica, SMA. Av. Miguel Stéfano, 3687, São Paulo, SP, 04301-012, Brazil
Related authors
No articles found.
Thomas Kenji Akabane, Cristiano Mazur Chiessi, Paulo Eduardo De Oliveira, Jennifer Watling, Ana Carolina Carnaval, Vincent Hanquiez, Dailson José Bertassoli Jr., Thaís Aparecida Silva, Marília H. Shimizu, and Anne-Laure Daniau
EGUsphere, https://doi.org/10.5194/egusphere-2025-1424, https://doi.org/10.5194/egusphere-2025-1424, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
Vegetation and fire regimes have changed over the last 21,000 years. Here, we compile pollen and charcoal records from the Neotropics to assess tree cover and fire activity trajectories and identify their main controls. We found that landscapes were shaped by an interplay of temperature, atmospheric CO2, precipitation, vegetation-fire feedback, and human impacts. These drivers varied in importance across regions and time periods, leading to distinct responses under different boundary conditions.
James M. Russell, Philip Barker, Andrew Cohen, Sarah Ivory, Ishmael Kimirei, Christine Lane, Melanie Leng, Neema Maganza, Michael McGlue, Emma Msaky, Anders Noren, Lisa Park Boush, Walter Salzburger, Christopher Scholz, Ralph Tiedemann, Shaidu Nuru, and the Lake Tanganyika Scientific Drilling Project (TSDP) Consortium
Sci. Dril., 27, 53–60, https://doi.org/10.5194/sd-27-53-2020, https://doi.org/10.5194/sd-27-53-2020, 2020
Short summary
Short summary
Our planet experienced enormous environmental changes in the last 10 million years. Lake Tanganyika is the oldest lake in Africa and its sediments comprise the most continuous terrestrial environmental record for this time period in the tropics. This workshop report identifies key research objectives in rift processes, evolutionary biology, geomicrobiology, paleoclimatology, paleoecology, paleoanthropology, and geochronology that could be addressed by drilling this globally important site.
Kleiton R. de Araújo, Henrique O. Sawakuchi, Dailson J. Bertassoli Jr., André O. Sawakuchi, Karina D. da Silva, Thiago B. Vieira, Nicholas D. Ward, and Tatiana S. Pereira
Biogeosciences, 16, 3527–3542, https://doi.org/10.5194/bg-16-3527-2019, https://doi.org/10.5194/bg-16-3527-2019, 2019
Short summary
Short summary
Run-of-the-river (ROR) reservoirs have reduced flooded areas that maintain natural river characteristics; however, little is known about their influence on carbon dioxide (CO2) emission. In this regard, we evaluated the spatiotemporal CO2 fluxes (FCO2) and partial CO2 pressure (pCO2) of the Belo Monte hydropower complex. Our results emphasize that ROR dams contribute to CO2) emissions. Only FCO2 varies through reservoirs; in addition, both FCO2 and pCO2 are spatially heterogeneous.
Diani F. S. Less, Alan C. Cunha, Henrique O. Sawakuchi, Vania Neu, Aline M. Valério, Nicholas D. Ward, Daimio C. Brito, Joel E. M. Diniz, William Gagne-Maynard, Carlos M. Abreu, Milton Kampel, Alex V. Krusche, and Jeffrey E. Richey
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-465, https://doi.org/10.5194/bg-2018-465, 2018
Preprint withdrawn
Short summary
Short summary
Biogeochemistry studies focused in carbon cycle in the Amazon River mouth are scarce. Our study provided a long-term quantification of CO2 fluxes and pCO2 and evaluation of the most important hydrodynamic, biogeochemical and meteorological parameters related to them. The highest FCO2 and pCO2 was obtained at high discharge season, water and air temperatures, dissolved oxygen, dissolved organic carbon, nitrate, dissolved inorganic nitrogen and pH could be considered predictors for pCO2 and FCO2.
Related subject area
Location/Setting: Continental | Subject: Geology | Geoprocesses: Earth science methods
Shaped and filled by the Rhine Glacier: the overdeepened Tannwald Basin in southwestern Germany
Design of the subsurface observatory at Surtsey volcano, Iceland
Bennet Schuster, Lukas Gegg, Sebastian Schaller, Marius W. Buechi, David C. Tanner, Ulrike Wielandt-Schuster, Flavio S. Anselmetti, and Frank Preusser
Sci. Dril., 33, 191–206, https://doi.org/10.5194/sd-33-191-2024, https://doi.org/10.5194/sd-33-191-2024, 2024
Short summary
Short summary
The Tannwald Basin, explored by drilling and formed by repeated advances of the Rhine Glacier, reveals key geological insights. Ice-contact sediments and evidence of deformation highlight gravitational and glaciotectonic processes. ICDP DOVE 5068_1_C core data define lithofacies associations, reflecting basin infill cycles, marking at least three distinct glacial advances. Integrating these findings aids understanding the broader glacial evolution of the Lake Constance amphitheater.
Andreas Türke, Marie D. Jackson, Wolfgang Bach, Wolf-Achim Kahl, Brian Grzybowski, Beau Marshall, Magnús T. Gudmundsson, and Steffen Leth Jørgensen
Sci. Dril., 25, 57–62, https://doi.org/10.5194/sd-25-57-2019, https://doi.org/10.5194/sd-25-57-2019, 2019
Cited articles
Acselrad, H., Antonaz, D., Baines, S. G., Birindelli, J. L. O., Buckup, P. A., Castro, E., Couto, R. C. S., Cunha, M. A. F., Fearnside, P. M., Gorayeb, I., Hernández, F. M., Lima, F. C. T., Magalhães, A. C., Magalhães, S. B., Marin, R. A., Medeiros, H. F., Mello, C. C. A., Molina, J., Ravena, N., Santos, G. M., Silva, J. M., Sevá Filho, A. O., Sousa Júnior, W. C., and Vainer, C. B.: Painel de Especialistas: Análise Crítica do Estudo de Impacto Ambiental do Aproveitamento Hidrelétrico de Belo Monte, Organizado por Sônia Maria Simões Barbosa Magalhães Santos e Francisco del Moral Hernandez, Belém, 29 Outubro 2009, 230 pp., 2009.
Almeida, R. M., Barros, N., Cole, J. J., Tranvik, L., and Roland, T.: CORRESPONDENCE: Emissions from Amazonian dams, Nature Climate Change, 3, p. 1005, https://doi.org/10.1038/nclimate2049, 2013.
Bahia, R. B. C., Faraco, M. T. L., Monteiro, M. A. S., and Oliveira, M. A. O.: Folha SA.22-Belém, in: Carta Geológica do Brasil ao Milionésimo. Sistema de Informações Geográficas. Programa Geologia do Brasil, edited by: Schobbenhaus, C., Gonçalves, J.H., Santos, J.O.S., Abram, M. B., Leão Neto, R., Matos, G. M. M., Vidotti, R. M., Ramos, M. A. B., and Jesus, J. D. A. de, CPRM, Brasilia, CD-ROM, 2004.
Bush, M. B., McMichael, C., Raczka, M. F., Toledo, M. B., Power, M. J., Mayle, F. E., and de Oliveira, P. E.: The Holocene of the Amazon, in: Paleoclimas – Série Paleontologia: Cenários de Vida, Ed: Interciência, 5, 369–385, 2014.
Camargo, M. and Ghilardi Jr., R.: Entre a terra, as águas e os pescadores do médio rio Xingu: uma abordagem ecológica, Belém, PA, 329 pp., 2009.
Camargo, M., Giarrizzo, T., and Isaac, V.: Review of the geographic distribution of fish fauna of the Xingu River Basin, Brazil, Ecotropica, 10, 123–147, 2004.
Dearing, J. A., Dann, R. J. L., Hay, K., Lees, J. A., Loveland, P. J., Maher, B. A., and O'Grady, K.: Frequency-dependent susceptibility measurements of environmental materials, Geophys. J. Int., 124, 228–240, 1996.
Evans, M. E. and Heller, F.: Environmental Magnetism: Principles and Applications of Enviromagnetics, Academic, San Diego, California, 299 pp., 2003.
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf, D.: The shuttle radar topography mission, Rev. Geophys., 45, RG2004, https://doi.org/10.1029/2005RG000183, 2007.
Fearnside, P. M.: Dams in the Amazon: Belo Monte and Brazil's hydroelectric development of the Xingu River Basin, Environ. Manage, 38, 16–27, 2006.
Fujioka, T., Fink, D., Nanson, G., Mifsud, C., and Wende, R.: Flood-flipped boulders: In-situ cosmogenic nuclide modeling of flood deposits in the monsoon tropics of Australia, Geology, 45, 43–46, 2015.
Galbraith, R. F., Roberts, R. G., Laslett, G. M., Yoshida, H., and Olley, J. M.: Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: part I, experimental design and statistical models, Archaeometry, 41, 339–364, 1999.
Gell, P. and Reid, M.: Assessing change in floodplain wetland condition in the Murray Darling Basin, Australia, Anthropocene, 8, 39–45, 2014.
Grohmann, C. H.: Morphometric analysis in Geographic Information Systems: applications of free software GRASS and R, Computers & Geosciences, 30, 1055–1067, 2004.
Grohmann, C. H., Riccomini, C., and Alves, F. M.: SRTM-based morphotectonic analysis of the Pocos de Caldas Alkaline Massif, southeastern Brazil, Computers & Geosciences, 33, 10–19, 2007.
Heckenberger, M. J., Kuikuro, A., Kuikuro, U. T., Russell, J. C., Schimidt, M., Fausto, C., and Franchetto, B.: Amazonia 1492: Pristine Forest or Cultural Parkland?, Science, 301, 1710–1714, https://doi.org/10.1126/science.1086112, 2003.
Heyman, J.: Paleoglaciation of the Tibetan Plateau and surrounding mountains based on exposure ages and ELA depression estimates, Quaternary Sci. Rev., 91, 30–41, 2014.
Hippe, K., Ivy-Ochs, S., Kober, F., Zasadni, J., Wieler, R., Wacker, L., Kubik, P. W., and Schlüchter, C.: Chronology of Lateglacial ice flow reorganization and deglaciation in the Gotthard Pass area, Central Swiss Alps, based on cosmogenic 10Be and in situ 14C, Quat. Geochronol., 19, 14–26, 2014.
Kohl, C. P. and Nishiizumi, K.: Chemical isolation of quartz for measurement of in situ-produced cosmogenic nuclides, Geochim. Cosmochim. Ac., 56, 3583–3587, 1992.
Lal, D.: Cosmic ray labeling of erosion surfaces; in situ nuclide production rates and erosion models, Earth Planet. Sc. Lett., 104, 424–439, 1991.
McGlue, M. M., Silva, A., Zani, H., Corradini, F. A., Parolin, M., Abel, E., Cohen, A. S., Assine, M. L., Ellis, G. S., Trees, M. A., Kuerten, S., Gradella, F., and Rasbold, G. G.: Lacustrine records of Holocene flood pulse dynamics in the Upper Paraguay River watershed (Pantanal wetlands, Brazil), Quaternary Res., 78, 285–294, 2012.
McMichael, C., Piperno, D. R., Bush, M. B., Silman, M. R., Zimmerman, A. R., Raczka, M. F., and Lobato, L. C.: Sparse pre-Columbian human habitation in western Amazonia, Science, 336, 1429–1431, 2012a.
McMichael, C., Bush, M. B., Piperno, D., Silman, M. R., Zimmerman, A. R., and Anderson, C.: Scales of pre-Columbian disturbance associated with western Amazonian lakes, The Holocene, 22, 131–141, 2012b.
Moreira, L. S., Moreira-Turcq, P., Turcq, B., Cordeiro, R. C., Kim, J.-H., Caquineau, S., Magloire, M.-Y., Macario, K. D., and Sinninghe-Damsté, J. S.: Palaeohydrological controls on sedimentary organic matter in an Amazon floodplain lake, Lake Maracá (Brazil) during the late Holocene, The Holocene, 23, 1903–1914, 2013.
Murray, A. S. and Wintle, A. G.: The single aliquot regenerative dose protocol: potential for improvement in reliability, Radiat. Meas., 37, 377–381, 2003.
Neu, V., Neill, C., and Krusche, A. V.: Gaseous and fluvial carbon export from an Amazon forest watershed, Biogeochemistry, 105, 133–147, 2011.
Nogueira, C., Buckup, P. A., Menezes, N. A., Oyakawa, O. T., Kasecker, T. P., Ramos Neto, M. B., and Silva, J. M. C. da: Restricted-range fishes and the conservation of Brazilian freshwaters, PLoS ONE, 5, e11390, https://doi.org/10.1371/journal.pone.0011390, 2010.
Ometto, J. P., Cimbleris, A. C. P., Santos, M. A., Rosa, L. P., Abe, D., Tundisi, J. G., Stech, J. L., Barros, N., and Roland, F.: Carbon emission as a function of energy generation in hydroelectric reservoirs in Brazilian dry tropical biome, Energ. Policy, 58, 109–116, 2013.
Sabaj Pérez, M.: Where the Xingu Bends and Will Soon Break, Am. Sci., 103, 395–403, https://doi.org/10.1511/2015.117.395, 2015.
Sawakuchi, H. O., Bastviken, D., Sawakuchi, A. O., Krusche, A. V., Ballester, M. V. R., and Richey, J.: Methane emissions from Amazonian Rivers and their contribution to the global methane budget, Glob. Change Biol., 20, 2829–2840, https://doi.org/10.1111/gcb.12646, 2014.
Silva, F. A. and Rebellato, L.: Use space and formation of Terra Preta: the Asurini do Xingu case study, in: Amazonian dark earths: explorations in space and time, edited by: Lehmann, J., Kern, D., Galser, B., and Woods, W. I., New York, Springer, 159–168, 2003.
Sioli, H.: Amazônia: Fundamentos de Ecologia da Maior Região de Florestas Tropicais, EditoraVozes, Petrópolis, 72 pp. 1985.
Sousa, W. C. and Reid, J. B.: Uncertainties in Amazon hydropower development: Risk scenarios and environmental issues around the Belo Monte dam, Water Alternatives, 3, 249–268, 2010.
Stickler, C. M., Coe, M. T., Costa, M. H., Nepstad, D. C., McGrath, D. G., Dias, L. C. P., Rodrigues, H. O., and Soares-Filho, B. S.: Dependence of hydropower energy generation on forests in the Amazon basin at local and regional scales, P. Natl. Acad. Sci. USA, 110, 9601–9606, 2013.
Stone, J. O.: Air pressure and cosmogenic isotope production, J. Geophys. Res.-Sol. Ea., 105, 23753–23759, 2000.
Tachikawa, T., Hato, M., Kaku, M., and Iwasaki, A.: Characteristics of ASTER GDEM version 2, Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE International, 3657–3660, 2011.
Thompson, R. and Oldfield, F.: Environmental Magnetism, London, Allenand Unwin., https://doi.org/10.1007/978-94-011-8036-8, 1986.
von Blanckenburg, F.: The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment, Earth Planet. Sc. Lett., 237, 462–479, 2005.
Wiesenburg, D. A. and Guinasso, N. L.: Equilibrium solubilities of methane, carbon-monoxide, and hydrogen in water and sea-water, J. Chem. Eng. Data, 24, 356–360, 1979.
Wittmann, H., von Blanckenburg, F., Maurice, L., Guyot, J.-L., Filizola, N., and Kubik, P. W.: Sediment production and delivery in the Amazon River basin quantified by in situ–produced cosmogenic nuclides and recent river loads, Geol. Soc. Am. Bull., 123, 934–950, 2011.
Wohl, E. E. and Merritt, D. M.: Bedrock channel morphology, Geol. Soc. Am. Bull., 113, 1205–1212, 2001.
Zuanon, J.: História natural da ictiofauna de corredeiras do Rio Xingu, na região de Altamira, Pará, Unpublished Ph.D. dissertation, Instituto de Biologia da Universidade Estadual de Campinas, 183 pp., 1999.