Workshop report on hard-rock drilling into mid-Cretaceous Pacific oceanic crust on the Hawaiian North Arch
Tomoaki Morishita
CORRESPONDING AUTHOR
School of Geosciences and Civil Engineering, College of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
Lamont-Doherty Earth Observatory, Columbia University, New York, NY
10027, USA
Susumu Umino
School of Geosciences and Civil Engineering, College of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
Jun-Ichi Kimura
Volcanoes and Earth's Interior Research Center, Research Institute
for Marine Geodynamics, Japan Agency for Marine-Earth Science and Technology
(JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa 237-0061, Japan
Mikiya Yamashita
Tectonics and Resources Research Group, Research Institute of Geology and
Geoinformation, National Institute of Advanced Industrial Science and
Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
Subduction Dynamics Research Center, Research Institute for Marine Geodynamics (IMG), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 3173-25, Showa-machi, Kanazawa, Yokohama, Kanagawa 236-0001, Japan
Shigeaki Ono
Volcanoes and Earth's Interior Research Center, Research Institute
for Marine Geodynamics, Japan Agency for Marine-Earth Science and Technology
(JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa 237-0061, Japan
Katsuyoshi Michibayashi
Department of Earth Planetary Sciences, Graduate School of Environmental Studies, Nagoya University, Nagoya 464-8601, Japan
Masako Tominaga
Department of Geology and Geophysics, Woods Hole Oceanographic
Institution, Woods Hole, MA 02543, USA
Frieder Klein
Department of Marine Chemistry and Geochemistry, Woods Hole
Oceanographic Institution, Woods Hole, MA 02543, USA
Michael O. Garcia
Department of Earth Sciences, University of Hawai`i at Mānoa,
Honolulu, HI 96822, USA
Related authors
Tomoaki Morishita, Naoto Hirano, Hirochika Sumino, Hiroshi Sato, Tomoyuki Shibata, Masako Yoshikawa, Shoji Arai, Rie Nauchi, and Akihiro Tamura
Solid Earth, 11, 23–36, https://doi.org/10.5194/se-11-23-2020, https://doi.org/10.5194/se-11-23-2020, 2020
Short summary
Short summary
We report a peridotite xenolith-bearing basalt dredged from the Seifu Seamount (SSM basalt) in the northeast Tsushima Basin, southwest Sea of Japan, which is one of the western Pacific back-arc basin swarms. An 40Ar / 39Ar plateau age of 8.33 ± 0.15 Ma (2 σ) was obtained for the SSM basalt, indicating that it erupted shortly after the termination of back-arc spreading. The SSM basalt was formed in a post-back-arc extension setting by the low-degree partial melting of an upwelling asthenosphere.
Sune G. Nielsen, Frieder Klein, Horst R. Marschall, Philip A. E. Pogge von Strandmann, and Maureen Auro
Solid Earth, 15, 1143–1154, https://doi.org/10.5194/se-15-1143-2024, https://doi.org/10.5194/se-15-1143-2024, 2024
Short summary
Short summary
Magnesium isotope ratios of arc lavas have been proposed as a proxy for serpentinite subduction, but uncertainties remain regarding their utility. Here we show that bulk serpentinite Mg isotope ratios are identical to the mantle, whereas the serpentinite mineral brucite is enriched in heavy Mg isotopes. Thus, Mg isotope ratios may only be used as serpentinite subduction proxies if brucite is preferentially mobilized from the slab at pressures and temperatures within the arc magma source region.
Mariko Nagashima, Teruyoshi Imaoka, Takashi Kano, Jun-ichi Kimura, Qing Chang, and Takashi Matsumoto
Eur. J. Mineral., 34, 425–438, https://doi.org/10.5194/ejm-34-425-2022, https://doi.org/10.5194/ejm-34-425-2022, 2022
Short summary
Short summary
Ferro-ferri-holmquistite (IMA2022-020), ideal formula ☐Li2(Fe32+Fe23+)Si8O22(OH)2, was found in albitized granite from the Iwagi islet, Ehime, Japan. It is a Fe2+Fe3+ analogue of holmquistite and belongs to the lithium subgroup amphiboles. Ferro-ferri-holmquistite occurs as blue acicular crystals typically replacing the biotite and is the product of metasomatic mineral replacement reactions by dissolution–reprecipitation processes associated with Na- and Li-rich hydrothermal fluids.
Susumu Umino, Gregory F. Moore, Brian Boston, Rosalind Coggon, Laura Crispini, Steven D'Hondt, Michael O. Garcia, Takeshi Hanyu, Frieder Klein, Nobukazu Seama, Damon A. H. Teagle, Masako Tominaga, Mikiya Yamashita, Michelle Harris, Benoit Ildefonse, Ikuo Katayama, Yuki Kusano, Yohey Suzuki, Elizabeth Trembath-Reichert, Yasuhiro Yamada, Natsue Abe, Nan Xiao, and Fumio Inagaki
Sci. Dril., 29, 69–82, https://doi.org/10.5194/sd-29-69-2021, https://doi.org/10.5194/sd-29-69-2021, 2021
Tomoaki Morishita, Naoto Hirano, Hirochika Sumino, Hiroshi Sato, Tomoyuki Shibata, Masako Yoshikawa, Shoji Arai, Rie Nauchi, and Akihiro Tamura
Solid Earth, 11, 23–36, https://doi.org/10.5194/se-11-23-2020, https://doi.org/10.5194/se-11-23-2020, 2020
Short summary
Short summary
We report a peridotite xenolith-bearing basalt dredged from the Seifu Seamount (SSM basalt) in the northeast Tsushima Basin, southwest Sea of Japan, which is one of the western Pacific back-arc basin swarms. An 40Ar / 39Ar plateau age of 8.33 ± 0.15 Ma (2 σ) was obtained for the SSM basalt, indicating that it erupted shortly after the termination of back-arc spreading. The SSM basalt was formed in a post-back-arc extension setting by the low-degree partial melting of an upwelling asthenosphere.
Elmar Albers, Wolfgang Bach, Frieder Klein, Catriona D. Menzies, Friedrich Lucassen, and Damon A. H. Teagle
Solid Earth, 10, 907–930, https://doi.org/10.5194/se-10-907-2019, https://doi.org/10.5194/se-10-907-2019, 2019
Short summary
Short summary
To understand the fate of carbon in subducted oceanic sediments and crust, we studied carbonate phases in rocks from the Mariana subduction zone. These show that carbon is liberated from the downgoing plate at depths less than 20 km. Some of the carbon is subsequently trapped in minerals and likely subducts to greater depths, whereas fluids carry the other part back into the ocean. Our findings imply that shallow subduction zone processes may play an important role in the deep carbon cycle.
Americus Perez, Susumu Umino, Graciano P. Yumul Jr., and Osamu Ishizuka
Solid Earth, 9, 713–733, https://doi.org/10.5194/se-9-713-2018, https://doi.org/10.5194/se-9-713-2018, 2018
Short summary
Short summary
The occurrence of boninite in the northern Zambales ophiolite is reported. Boninite is a relatively rare high-magnesium andesite that is intimately associated with early arc volcanism and the initiation of subduction zones. Taken as a whole, the geological and geochemical characteristics of Zambales and Izu-Ogasawara–Mariana forearc volcanic sequences enables a refined geodynamic reconstruction of subduction initiation.
Related subject area
Location/Setting: Deep sea | Subject: Geology | Geoprocesses: Tectonic processes
New Chikyu Shallow Core Program (SCORE): exploring mass transport deposits and the subseafloor biosphere off Cape Erimo, northern Japan
IODP Expedition 338: NanTroSEIZE Stage 3: NanTroSEIZE plate boundary deep riser 2
IODP Expedition 339 in the Gulf of Cadiz and off West Iberia: decoding the environmental significance of the Mediterranean outflow water and its global influence
Yusuke Kubo, Fumio Inagaki, Satoshi Tonai, Go-Ichiro Uramoto, Osamu Takano, Yasuhiro Yamada, and the Expedition 910 Shipboard Scientific Party
Sci. Dril., 27, 25–33, https://doi.org/10.5194/sd-27-25-2020, https://doi.org/10.5194/sd-27-25-2020, 2020
Short summary
Short summary
The Chikyu Shallow Core Program (SCORE) has been started to provide more opportunities for scientific ocean drilling of shallow boreholes (up to 100 m) during a short-term expedition. The proposal flow is a simplified version of that of the International Ocean Discovery Program (IODP). Although there are several limitations for a SCORE project, the opportunity to retrieve 100 m of continuous core samples will be of interest for the scientific ocean drilling community in multiple disciplines.
G. F. Moore, K. Kanagawa, M. Strasser, B. Dugan, L. Maeda, S. Toczko, and the IODP Expedition 338 Scientific Party
Sci. Dril., 17, 1–12, https://doi.org/10.5194/sd-17-1-2014, https://doi.org/10.5194/sd-17-1-2014, 2014
F. J. Hernández-Molina, D. Stow, C. Alvarez-Zarikian, and Expedition IODP 339 Scientists
Sci. Dril., 16, 1–11, https://doi.org/10.5194/sd-16-1-2013, https://doi.org/10.5194/sd-16-1-2013, 2013
Cited articles
Alt, J. C., Laverne, C., Vanko, D. A., Tartarotti, P., Teagle, D. A. H., Bach,
W., Zuleger, E., Erzinger, J., Honnorez, J., Pezard, P. A., Becker, K.,
Salisbury, M. H., and Wilkens, R. H.: Hydrothermal alteration of a section of
upper oceanic crust in the Eastern Equatorial Pacific: A synthesis of
results from site 504 (DSDP Legs 69, 70, and 83, and ODP Legs 111, 137, 140,
and 148), in: Proc. ODP, Sci. Results, edited by: Alt, J. C., Kinoshita, H., Stokking, L. B., and Michael, P. J., 148, 417–434, Ocean Drilling Program, College Station, TX, USA, 1996.
Alt, J. C., Laverne, C., Coggon, R. M., Teagle, D. A. H., Banerjee, N. R., Morgan, S., Smith-Duque, C. E., Harris, M., and Galli, L.: Subsurface structure of a submarine hydrothermal system in ocean crust formed at the East Pacific Rise, ODP/IODP Site 1256, Geochem. Geophy. Geosy., 11, https://doi.org/10.1029/2010GC003144, 2010.
Ayadi, M., Pezard, P. A., Laverne, C., and Bronner, G.: Multi-scalar
structure at DSDP/ODP Site 504, Costa Rica Rift, I: stratigraphy of eruptive
products and accretion processes, Geol. Soc. London, Spec. Publ., 136,
297–310, https://doi.org/10.1144/GSL.SP.1998.136.01.25, 1998.
Ballmer, M. D., Ito, G., Van Hunen, J., and Tackley, P. J.: Spatial and
temporal variability in Hawaiian hotspot volcanism induced by small-scale
convection, Nat. Geosci., 4, 457–460, https://doi.org/10.1038/ngeo1187, 2011.
Bianco, T. A., Ito, G., Becker, J. M., and Garcia, M. O.: Secondary Hawaiian
volcanism formed by flexural arch decompression, Geochem. Geophy.
Geosy., 6, https://doi.org/10.1029/2005GC000945, 2005.
Blacic, T. M., Ito, G., Canales, J. P., Detrick, R. S., and Sinton, J.:
Constructing the crust along the Galapagos Spreading Center 91.3∘–95.5∘ W: Correlation of seismic layer 2A with axial magma lens
and topographic characteristics, J. Geophys. Res.-Sol. Ea., 109,
https://doi.org/10.1029/2004JB003066, 2004.
Bonatti, E. and Harrison, C. G. A.: Eruption styles of basalt in oceanic
spreading ridges and seamounts: Effect of magma temperature and viscosity,
J. Geophys. Res., 93, 2967, https://doi.org/10.1029/JB093iB04p02967, 1988.
Christie, D. M., Carmichael, I. S. E., and Langmuir, C. H.: Oxidation states
of mid-ocean ridge basalt glasses, Earth Planet. Sc. Lett., 79,
397–411, https://doi.org/10.1016/0012-821X(86)90195-0, 1986.
Clague, D. A., Holcomb, R. T., Sinton, J. M., Detrick, R. S., and Torresan,
M. E.: Pliocene and Pleistocene alkalic flood basalts on the seafloor north
of the Hawaiian islands, Earth Planet. Sc. Lett., 98, 175–191,
https://doi.org/10.1016/0012-821X(90)90058-6, 1990.
Clague, D. A., Uto, K., Satake, K., and Davis, A. S.: Eruption style and flow
emplacement in the Submarine North Arch Volcanic Field, Hawaii, in: Hawaiian Volcanoes: Deep Underwater Perspectives, edited by: Takahashi, E., Lipman, P. W., Garcia, M. O., Naka, J., and Aramaki, S., Geophys. Monograph, 128, 65–84, https://doi.org/10.1029/GM128p0065, 2002.
Detrick, R., Collins, J., Stephen, R., and Swift, S.: In situ evidence for
the nature of the seismic layer 2/3 boundary in oceanic crust, Nature, 370,
288–290, https://doi.org/10.1038/370288a0, 1994.
Dick, H. J. B., Erzinger, J., and Stokking, L. B.: Proceedings of the Ocean
Drilling Program, 140 Initial Reports, edited by: Dick, H. J. B., Erzinger, J.,
and Stokking, L. B., Ocean Drilling Program, Texas, 1992.
Dixon, J. E. and Clague, D. A.: Volatiles in Basaltic Glasses from Loihi
Seamount, Hawaii: Evidence for a Relatively Dry Plume Component, J. Petrol.,
42, 627–654, https://doi.org/10.1093/petrology/42.3.627, 2001.
Garcia, M. O., Sherman, S. B., Moore, G. F., Goll, R., Popova-Goll, I.,
Natland, J. H., and Acton, G.: Frequent landslides from Koolau Volcano:
Results from ODP Hole 1223A, J. Volcanol. Geoth. Res., 151,
251–268, https://doi.org/10.1016/j.jvolgeores.2005.07.035, 2006.
Garcia, M. O., Swinnard, L., Weis, D., Greene, A. R., Tagami, T., Sano, H.,
and Gandy, C. E.: Petrology, Geochemistry and Geochronology of Kaua`i Lavas
over 4 ⋅ 5 Myr: Implications for the Origin of Rejuvenated
Volcanism and the Evolution of the Hawaiian Plume, J. Petrol., 51,
1507–1540, https://doi.org/10.1093/petrology/egq027, 2010.
Ghiorso, M. S. and Sack, R. O.: Chemical mass transfer in magmatic processes
IV. A revised and internally consistent thermodynamic model for the
interpolation and extrapolation of liquid-solid equilibria in magmatic
systems at elevated temperatures and pressures, Contrib. Mineral.
Petr., 119, 197–212, https://doi.org/10.1007/BF00307281, 1995.
Harris, M., Coggon, R. M., Wood, M., Smith-Duque, C. E., Henstock, T. J., and Teagle, D. A. H.: Hydrothermal cooling of the ocean crust: Insights from ODP Hole 1256D, Earth Planet. Sci. Lett., 462, 110–121, https://doi.org/10.1016/j.epsl.2017.01.010, 2017.
Holcomb, R. T. and Robinson, J. E.: Maps of Hawaiian Islands exclusive
economic zone interpreted from GLORIA sidescan-sonar imagery, Sci. Investig.
Map 2824, https://doi.org/10.3133/sim2824, 2004.
Hooft, E.: Constraining crustal emplacement processes from the variation in
seismic layer 2A thickness at the East Pacific Rise, Earth Planet. Sc.
Lett., 142, 289–309, https://doi.org/10.1016/0012-821X(96)00101-X, 1996.
Hooft, E. E. E., Detrick, R. S., and Kent, G. M.: Seismic structure and
indicators of magma budget along the Southern East Pacific Rise, J. Geophys.
Res.-Sol. Ea., 102, 27319–27340, https://doi.org/10.1029/97JB02349, 1997.
Kimura, J.-I., Sisson, T. W., Nakano, N., Coombs, M. L., and Lipman, P. W.:
Isotope geochemistry of early Kilauea magmas from the submarine Hilina
bench: The nature of the Hilina mantle component, J. Volcanol. Geoth.
Res., 151, 51–72, https://doi.org/10.1016/j.jvolgeores.2005.07.024, 2006.
Klein, F., Marschall, H. R., Bowring, S. A., Humphris, S. E., and Horning, G.: Mid-ocean Ridge Serpentinite in the Puerto Rico Trench: from Seafloor Spreading to Subduction, J. Petrol., 58, 1729–1754, https://doi.org/10.1093/petrology/egx071, 2017.
Li, X., Kind, R., Yuan, X., Wölbern, I., and Hanka, W.: Rejuvenation of
the lithosphere by the Hawaiian plume, Nature, 427, 827–829,
https://doi.org/10.1038/nature02349, 2004.
Mason, O. U., Nakagawa, T., Rosner, M., Van Nostrand, J. D., Zhou, J., Maruyama, A., Fisk, M. R., and Giovannoni, S. J.: First Investigation of the Microbiology of the Deepest Layer of Ocean Crust, PLoS ONE 5, e15399, https://doi.org/10.1371/journal.pone.0015399, 2010.
McKenzie, D., Jackson, J., and Priestley, K.: Thermal structure of oceanic
and continental lithosphere, Earth Planet. Sc. Lett., 233, 337–349,
https://doi.org/10.1016/j.epsl.2005.02.005, 2005.
Meyer, J. D. and White, S. M.: Lava morphology mapping by expert system
classification of high-resolution side-scan sonar imagery from the East
Pacific Rise, 9∘–10∘ N, Mar. Geophys. Res., 28,
81–93, https://doi.org/10.1007/s11001-007-9015-8, 2007.
Michibayashi, K., Tominaga, M., Ildefonse, B., and Teagle, D.: What Lies
Beneath: The Formation and Evolution of Oceanic Lithosphere, Oceanography,
32, 138–149, https://doi.org/10.5670/oceanog.2019.136, 2019.
Moore, J. G., Clague, D. A., Holcomb, R. T., Lipman, P. W., Normark, W. R.,
and Torresan, M. E.: Prodigious submarine landslides on the Hawaiian Ridge,
J. Geophys. Res., 94, 17465, https://doi.org/10.1029/JB094iB12p17465, 1989.
Moore, J. G., Normark, W. R., and Holcomb, R. T.: Giant Hawaiian Landslides,
Annu. Rev. Earth Pl. Sc., 22, 119–144,
https://doi.org/10.1146/annurev.ea.22.050194.001003, 1994.
Müller, R. D., Sdrolias, M., Gaina, C., and Roest, W. R.: Age, spreading
rates, and spreading asymmetry of the world's ocean crust, Geochem.
Geophy. Geosy., 9, https://doi.org/10.1029/2007GC001743, 2008.
Normark, W. R., Holcomb, R. T., Searle, R. C., Somers, M. L., and Gutmacher,
C. E.: Cruise report; Hawaiian GLORIA legs 3 and 4, F3-88-HW and F4-88-HW,
Dept. of the Interior, U.S. Geological Survey, 1989.
Ohira, A., Kodaira, S., Moore, G. F., Yamashita, M., Fujiwara, T., Kaiho,
Y., Miura, S., and Fujie, G.: Active-source seismic survey on the
northeastern Hawaiian Arch: insights into crustal structure and mantle
reflectors, Earth Planets Space, 70, 121, https://doi.org/10.1186/s40623-018-0891-8,
2018.
Poland, M. P., Miklius, A., and Montgomery-Brown, E. K.: Magma Supply,
Storage, and Transport at Shield-Stage Hawaiian Volcanoes, chap. 5, in: Characteristics of Hawaiian Volcanoes, edited by: Poland, M. P.,
Takahashi, T. J., and Landowski, C. J., U.S. Geological Survey Professional Paper, U.S.
Geological Survey, Reston, VA, 179–234, 2014.
Rubin, A. M.: A comparison of rift-zone tectonics in Iceland and Hawaii,
B. Volcanol., 52, 302–319, https://doi.org/10.1007/BF00304101, 1990.
Rubin, A. M.: Propagation of Magma-Filled Cracks, Annu. Rev. Earth Pl.
Sc., 23, 287–336, https://doi.org/10.1146/annurev.ea.23.050195.001443, 1995.
Satake, K., Smith, J. R., and Shinozaki, K.: Three-dimensional reconstruction
and tsunami model of the Nuuanu and Wailau giant landslides, Hawaii,
Geophys. Monogr. Ser., 128, 333–346, https://doi.org/10.1029/GM128p0333, 2002.
Schultz, A. and Elderfield, H.: Controls on the physics and chemistry of seafloor hydrothermal circulation, edited by J. R. Cann, H. Elderfield, and A. Laughton, Philos. T. R. Soc. A, 355, 387–425, https://doi.org/10.1098/rsta.1997.0014, 1997.
Smith, P. M. and Asimow, P. D.: Adiabat_1ph: A new public
front-end to the MELTS, pMELTS, and pHMELTS models, Geochem. Geophy.
Geosy., 6, 1–8, https://doi.org/10.1029/2004GC000816, 2005.
Stein, A. and Stein, S.: Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow, Earth Planet. Sci. Lett., 99, 3081–3095, 1994.
Teagle, D. A. H., Alt, J. C., Umino, S., Miyashita, S., Banerjee, N. R., Wilson,
D. S., and the Expedition 309/312 Scientists: Expedition 309/312 summary, in: Proceedings of
the IODP, 309/312, Integrated Ocean Drilling Program, Texas, USA, 2006.
Tominaga, M. and Umino, S.: Lava deposition history in ODP Hole 1256D:
Insights from log-based volcanostratigraphy, Geochem. Geophy.
Geosy., 11, https://doi.org/10.1029/2009GC002933, 2010.
Tominaga, M., Teagle, D. A. H., Alt, J. C., and Umino, S.: Determination of
the volcanostratigraphy of oceanic crust formed at superfast spreading
ridge: Electrofacies analyses of ODP/IODP Hole 1256D, Geochem. Geophy.
Geosy., 10, https://doi.org/10.1029/2008GC002143, 2009.
Umino, S.: Reviews of Deep Drilling into Oceanic Crust, J. Geogr., 112,
650–667, 2003.
Umino, S., Obata, S., and Lipman, P. W.: Subaqueous lava flow lobes, observed
on ROV KAIKO dives off Hawaii, Geology, 28, 503–506,
https://doi.org/10.1130/0091-7613(2000)28<503:SLFLOO>2.0.CO;2, 2000.
Umino, S., Obata, S., Lipman, P., Smith, J. R., Shibata, T., Naka, J., and
Trusdell, F.: Emplacement and inflation structures of submarine and
subaerial from Hawaii, in: Hawaiian Volcanoes: Deep Underwater Perspectives, edited by: Takahashi, E., Lipman, P. W., Garcia, M. O., Naka, J., and Aramaki, S., Geophys. Monograph, 128, 85–101, https://doi.org/10.1029/GM128p0065, 2002.
Umino, S., Crispini, L., Tartarotti, P., Teagle, D. A. H., Alt, J. C.,
Miyashita, S., and Banerjee, N. R.: Origin of the sheeted dike complex at
superfast spread East Pacific Rise revealed by deep ocean crust drilling at
Ocean Drilling Program Hole 1256D, Geochem. Geophy. Geosy., 9, https://doi.org/10.1029/2007GC001760, 2008.
Umino, S., Nealson, K., Wood, B., Umino, S., Nealson, K., and Wood, B.:
Drilling to Earth's mantle, Phys. Today, 66, https://doi.org/10.1063/PT.3.2082, 2013.
Wilson, D. S., Wilson, D. S., Teagle, D. A. H., Alt, J. C., Banerjee, N. R.,
Umino, S., Miyashita, S., Acton, G. D., Anma, R., Barr, S. R., Belghoul, A.,
Carlut, J., Christie, D. M., and Coggon, R. M.: Drilling to Gabbro in Intact
Ocean Crust, Science, 312, 1016–1020 https://doi.org/10.1126/science.1126090, 2006.
Short summary
The architecture, formation, and modification of oceanic plates are fundamental to our of understanding key geologic processes of the Earth. Geophysical surveys were conducted around a site near the Hawaiian Islands (northeastern Hawaiian North Arch region). This workshop report describes scientific targets for 2 km deep ocean drilling in the Hawaiian North Arch region in order to provide information about the lower crust from unrecovered age and spreading rate gaps in previous ocean drillings.
The architecture, formation, and modification of oceanic plates are fundamental to our of...