Report on ICDP Deep Dust workshops: probing continental climate of the late Paleozoic icehouse–greenhouse transition and beyond
School of Geosciences, University of Oklahoma, Norman, Oklahoma, 73019, USA
Laurent Beccaletto
BRGM, 45060 Orléans, France
Kathleen C. Benison
Geology and Geography, West Virginia University, Morgantown, 26506,
USA
Sylvie Bourquin
Université de Rennes, CNRS, Géosciences Rennes – UMR 6118,
35000 Rennes, France
Georg Feulner
Earth System Analysis, Potsdam Institute for Climate Impact Research,
Potsdam, Germany
Natsuko Hamamura
Department of Biology, Kyushu University, Fukuoka, 819-0395, Japan
Michael Hamilton
Jack Satterly Geochronology Laboratory, University of Toronto,
Toronto, M5S3B1, Canada
Nicholas G. Heavens
Space Sciences Institute, Boulder, Colorado, 80301, USA
Linda Hinnov
Atmospheric, Oceanic, and Earth Sciences, George Mason University,
Fairfax, 22030, USA
Adam Huttenlocker
Keck School of Medicine, University of Southern California, Los Angeles, 90033,
USA
Cindy Looy
Department of Integrative Biology, University of California-Berkeley,
Berkeley, 94720, USA
Lily S. Pfeifer
School of Geosciences, University of Oklahoma, Norman, Oklahoma, 73019, USA
Stephane Pochat
Laboratoire de Planétologie et Géodynamique Université de
Nantes, Nantes Cedex, 44322, France
Mehrdad Sardar Abadi
School of Geosciences, University of Oklahoma, Norman, Oklahoma, 73019, USA
James Zambito
Geology Department, Beloit College, Beloit, 53511, USA
A full list of authors appears at the end of the paper.
Related authors
No articles found.
Markus Drüke, Wolfgang Lucht, Werner von Bloh, Stefan Petri, Boris Sakschewski, Arne Tobian, Sina Loriani, Sibyll Schaphoff, Georg Feulner, and Kirsten Thonicke
Earth Syst. Dynam., 15, 467–483, https://doi.org/10.5194/esd-15-467-2024, https://doi.org/10.5194/esd-15-467-2024, 2024
Short summary
Short summary
The planetary boundary framework characterizes major risks of destabilization of the Earth system. We use the comprehensive Earth system model POEM to study the impact of the interacting boundaries for climate change and land system change. Our study shows the importance of long-term effects on carbon dynamics and climate, as well as the need to investigate both boundaries simultaneously and to generally keep both boundaries within acceptable ranges to avoid a catastrophic scenario for humanity.
Julius Eberhard, Oliver E. Bevan, Georg Feulner, Stefan Petri, Jeroen van Hunen, and James U. L. Baldini
Clim. Past, 19, 2203–2235, https://doi.org/10.5194/cp-19-2203-2023, https://doi.org/10.5194/cp-19-2203-2023, 2023
Short summary
Short summary
During at least two phases in its past, Earth was more or less covered in ice. These “snowball Earth” events probably started suddenly upon undercutting a certain threshold in the carbon-dioxide concentration. This threshold can vary considerably under different conditions. In our study, we find the thresholds for different distributions of continents, geometries of Earth’s orbit, and volcanic eruptions. The results show that the threshold might have varied by up to 46 %.
Georg Feulner, Mona Bukenberger, and Stefan Petri
Earth Syst. Dynam., 14, 533–547, https://doi.org/10.5194/esd-14-533-2023, https://doi.org/10.5194/esd-14-533-2023, 2023
Short summary
Short summary
One limit of planetary habitability is defined by the threshold of global glaciation. If Earth cools, growing ice cover makes it brighter, leading to further cooling, since more sunlight is reflected, eventually leading to global ice cover (Snowball Earth). We study how much carbon dioxide is needed to prevent global glaciation in Earth's history given the slow increase in the Sun's brightness. We find an unexpected change in the characteristics of climate states close to the Snowball limit.
Markus Drüke, Werner von Bloh, Stefan Petri, Boris Sakschewski, Sibyll Schaphoff, Matthias Forkel, Willem Huiskamp, Georg Feulner, and Kirsten Thonicke
Geosci. Model Dev., 14, 4117–4141, https://doi.org/10.5194/gmd-14-4117-2021, https://doi.org/10.5194/gmd-14-4117-2021, 2021
Short summary
Short summary
In this study, we couple the well-established and comprehensively validated state-of-the-art dynamic LPJmL5 global vegetation model to the CM2Mc coupled climate model (CM2Mc-LPJmL v.1.0). Several improvements to LPJmL5 were implemented to allow a fully functional biophysical coupling. The new climate model is able to capture important biospheric processes, including fire, mortality, permafrost, hydrological cycling and the the impacts of managed land (crop growth and irrigation).
Jean Vérité, Édouard Ravier, Olivier Bourgeois, Stéphane Pochat, Thomas Lelandais, Régis Mourgues, Christopher D. Clark, Paul Bessin, David Peigné, and Nigel Atkinson
The Cryosphere, 15, 2889–2916, https://doi.org/10.5194/tc-15-2889-2021, https://doi.org/10.5194/tc-15-2889-2021, 2021
Short summary
Short summary
Subglacial bedforms are commonly used to reconstruct past glacial dynamics and investigate processes occuring at the ice–bed interface. Using analogue modelling and geomorphological mapping, we demonstrate that ridges with undulating crests, known as subglacial ribbed bedforms, are ubiquitous features along ice stream corridors. These bedforms provide a tantalizing glimpse into (1) the former positions of ice stream margins, (2) the ice lobe dynamics and (3) the meltwater drainage efficiency.
Moritz Kreuzer, Ronja Reese, Willem Nicholas Huiskamp, Stefan Petri, Torsten Albrecht, Georg Feulner, and Ricarda Winkelmann
Geosci. Model Dev., 14, 3697–3714, https://doi.org/10.5194/gmd-14-3697-2021, https://doi.org/10.5194/gmd-14-3697-2021, 2021
Short summary
Short summary
We present the technical implementation of a coarse-resolution coupling between an ice sheet model and an ocean model that allows one to simulate ice–ocean interactions at timescales from centuries to millennia. As ice shelf cavities cannot be resolved in the ocean model at coarse resolution, we bridge the gap using an sub-shelf cavity module. It is shown that the framework is computationally efficient, conserves mass and energy, and can produce a stable coupled state under present-day forcing.
Cited articles
Alroy, A., Aberhan, M., Bottjer, D. J., Foote, M., Fürsich, F. T.,
Harries, P. J., Hendy, A. J. W., Holland, S. M., Ivany, L. C., Kiessling, W.,
Kosnik, M. A., Marshall, C. R., McGowan, A. J., Miller, A. I., Olszewski, T. D.,
Patzkowsky, M. E., Peters, S. E., Villier, L., Wagner, P. J., Bonuso, N.,
Borkow, P. S., Brenneis, B., Clapham, M. E., Fall, L. M., Ferguson, C. A.,
Hanson, V. L., Krug, A. Z., Layou, K. M., Leckey, E. H., Nürnberg, S.,
Powers, C. M., Sessa, J. A., Simpson, C., Tomašových, A., and Visaggi,
C. C.: Phanerozoic trends in the global diversity of marine invertebrates,
Science, 321, 97–100, https://doi.org/10.1126/science.1156963, 2008.
Amstaetter, K., Borch, T., Larese-Casanova, P., and Kappler, A.: Redox
transformation of arsenic by Fe(II)-activated goethite (α-FeOOH),
Environ. Sci. Technol., 44, 102–108, 2010.
Andeskie, A. S. and Benison, K. C.: Using sedimentology to address the marine
or continental origin of the Permian Hutchinson Salt Member of Kansas,
Sedimentology, 67, 882–896, 2020.
Andeskie, A. S., Benison, K. C., Eichenlaub, L. A., and Raine, R.:
Acid-saline-lake systems of the Triassic Mercia Mudstone Group, County
Antrim, Northern Ireland, J. Sediment. Res., 88, 385–398, 2018.
Baptiste, J., Martelet, G., Faure, M., Beccaletto, L., Reninger, P.-A., Perrin,
J., and Chen, Y.: Mapping of a buried basement combining aeromagnetic, gravity
and petrophysical data: The substratum of southwest Paris Basin, France,
Tectonophysics, 683, 333–348, 2016.
Barrell, J.: Relations between climate and terrestrial deposits, continued,
J. Geol., 16, 255–295, 1908.
Beccaletto, L., Capar, L., Serrano, O., and Marc, S.: Structural evolution
and sedimentary record of the Stephano-Permian basins occurring beneath the
Mesozoic sedimentary cover in the southwestern Paris basin (France), Bull.
Soc. Géol. France, 186, 429–450, 2015.
Becq-Giraudon, J.-F., Montenat, C., and Van Den Driessche, J.: Hercynian
high-altitude phenomena in the French Massif Central, tectonic implications:
Palaeogeogr. Palaeocl., 122, 227–241, 1996.
Begét, J. E. and Hawkins, D. B.: Influence of orbital parameters on
Pleistocene loess deposition in central Alaska, Nature, 337, 151–153, 1989.
Benison, K. C. and Goldstein, R. H.: Permian paleoclimate data from fluid
inclusions in halite, Chem. Geol., 154, 113–132, 1999.
Benison, K. C.: Acid saline fluid inclusions: Examples from modern and
Permian extreme lake systems, Geofluids, 13, 579–593, https://doi.org/10.1111/gfl.12053,
2013.
Benison, K. C.: How to search for life in Martian chemical sediments and
their fluid and solid inclusions using petrographic and spectroscopic
methods, Front. Environ. Sci., 7, 108, https://doi.org/10.3389/fenvs.2019.00108, 2019.
Benison, K. C., Goldstein, R. H., Wopenka, B., Burruss, R. C., and Pasteris,
J. D.: Extremely acid Permian lakes and ground waters in North America,
Nature, 392, 911–914, 1998.
Benison, K. C., Zambito, J. J., and Knapp, J. P.: Contrasting
siliciclastic-evaporite strata in subsurface and outcrop: An example from
the Permian Nippewalla Group of Kansas, USA, J. Sediment. Res., 85, 626–645,
https://doi.org/10.2110/jsr.2015.43, 2015.
Berner, R. A.: GEOCARBSULF – A combined model for Phanerozoic atmospheric
O2 and CO2, Geochim. Cosmochim. Ac., 70, 5653–5664, 2006.
Berner, R. A.: The long-term carbon cycle, fossil fuels and atmospheric
composition, Nature, 426, 323–326, 2003.
Blamey, N. J. F., Brand, U., Parnell, J., Spear, N., Lecuyer, C., Benison,
K. C., Meng, F., and Ni, P.: Paradigm shift in determining Neoproterozoic
atmospheric oxygen, Geology, 44, 651–654, 2016.
Bourquin, S., Bercovici, A., López-Gómez, J., Diez, J. B., Broutin, J.,
Ronchi, A., Durand, M., Arche, A., Linol, B., and Amour, F.: The Permian-Triassic
transition and the beginning of the Mesozoic sedimentation at the Western
peri-Tethyan domain scale: palaeogeographic maps and geodynamic
implications, Palaeogeogr. Palaeocl., 299, 265–280,
2011.
Bourquin, S., Guillocheau, F., and Péron, S.: Braided river within an
arid alluvial plain (example from the early Triassic, western German Basin):
criteria of recognition and expression of stratigraphic cycles,
Sedimentology, 56, 2235–2264, 2009.
Bourquin, S., Peron, S., and Durand, M.: Lower Triassic sequence stratigraphy of
the western part of the Germanic Basin (west of Black Forest): fluvial
system evolution through time and space, Sediment. Geol., 186, 187–211,
2006.
Bruguier, O., Becq-Giraudon, J. F., Champenois, M., Deloule, E., Ludden, J.,
and Mangin, D.: Application of in situ zircon geochronology and accessory
phase chemistry to constraining basin development during post-collisional
extension: a case study from the French Massif Central, Chem. Geol., 201,
319–336, https://doi.org/10.1016/j.chemgeo.2003.08.005, 2003.
Burg, J.-P., Van Den Driessche, J., and Brun, J.-P.: Syn- to post thickening
extension in the Variscan belt of western Europe: modes and structural
consequences, Géologie de la France, 3, 33–51, 1994.
Cao, W., Williams, S., Flament, N., Zahirovic, S., Scotese, C., and
Müller, R.: Palaeolatitudinal distribution of lithologic indicators of
climate in a palaeogeographic framework, Geol. Mag., 156, 331–354,
https://doi.org/10.1017/S0016756818000110, 2019.
Chen, X., Nakata, N., Pennington, C., Haffener, J., Chang, J. C., and He, X.:
The Pawnee earthquake as a result of the interplay among injection, faults
and foreshocks, Sci. Rep., 7, 1–18, https://doi.org/10.1038/s41598-017-04992-z, 2017.
Chamberlin, T. C. and Salisbury, R. D.: Geology – Vol II Earth History, Henry Holt and Company, New York, 1905.
Champagnac, J.-D., Schluneggar, F., Norton, K., von Blanckenburg, F., Abbuhl, L. M., and Schwab, M.: Erosion-driven uplift of the modern Central Alps,
Tectonophysics, 474, 236–249, https://doi.org/10.1016/j.tecto.2009.02.024, 2009.
Chen, J., Montañez, I. P., Qi, Y., Shen, S., and Wang, X.: Strontium and
carbon isotopic evidence for decoupling of pCO2 from continental weathering
at the apex of the late Paleozoic glaciation, Geology, 46, 395–398,
2018.
Cleal, C. J. and Thomas, B. A.: Palaeozoic tropical rainforests and their
effect on global climates: is the past the key to the present?, Geobiology,
3, 13–31, 2005.
Denison, R. E., Kirkland, D. W., and Evans, R.: Using strontium isotopes to
determine the age and origin of gypsum and anhydrite beds, J. Geol., 106,
1–17, 1998.
DiMichele, W. A., Tabor, N. J., Chaney, D. S., and Nelson, W. J.: From wetlands
to wet spots: environmental tracking and the fate of Carboniferous elements
in Early Permian tropical floras, in: Wetlands through time, edited by: Greb, S. F. and DiMichele, W. A., Geol. Soc. Am. Spec. Pap., 399, 223–248, 2006.
Ding, Z. L., Derbyshire, E., Yang, S. L., Yu, Z. W., Xiong, S. F., and Liu,
T. S.: Stacked 2.6-Ma grain size record from the Chinese loess based on five
sections and correlation with the deep-sea ∂18O record,
Paleoceanography, 17, 5-1–5-21, https://doi.org/10.1029/2001PA000725, 2002.
Domeier, M. and Torsvik, T. H.: Plate tectonics in the late Paleozoic:
Geosci. Front., 5, 303–350, https://doi.org/10.1016/j.gsf.2014.01.002,
2014.
Doornenbal, J. C. and Stevenson, A. G. (Eds.): Petroleum Geological Atlas of
the Southern Permian Basin Area. Houten, The Netherlands, EAGE, p. 342,
2010.
Dubiel, R. F. and Smoot, J. P.: Criteria for interpreting paleoclimate from red
beds – a tool for Pangean reconstructions, in: Pangea: Global Environments and Resources, edited by: Embry, A. F., Beauchamp, B.,
and Glass, B. J., Canad. Soc.
Petrol. Geol. Mem., 17, 295–310, 1994.
Ducassou, C., Mercuzot, M., Bourquin, S., Rossignol, C., Beccaletto, L.,
Pierson-Wickmann, A. C., Pellenard, P., Poujol, M., and Hue, C.: Sedimentology
and U-Pb dating of Carboniferous to Permian continental series of the
northern Massif Central (France): local palaeogeographic evolution and
larger scale correlations, Palaeogeogr. Palaeocl., 533,
109228, https://doi.org/10.1016/j.palaeo.2019.06.001, 2019.
Dusséaux, C.: Topographic reconstructions of the Variscan belt of
Western Europe through the study of fossil hydrothermal systems, PhD Thesis,
University of Plymouth, 2019.
EL Hadi, H., Simancas, J. F., Tahiri, A., González-Lodeiro, F., Azor, A.,
and Martínez-Poyatos, D.: Comparative review of the Variscan granitoids
of Morocco and Iberia: proposal of a broad zonation, Geodin. Acta, 19,
103–116, 2006.
Ellsworth, W. L.: Injection-induced earthquakes, Science, 341,
https://doi.org/10.1126/science.1225942, 2013.
Elrick, M. and Scott, L. A.: Carbon and oxygen isotope evidence for
high-frequency (104–105 yr) and My-scale glacio-eustasy in Middle
Pennsylvanian cyclic carbonates (Gray Mesa Formation), central New Mexico,
Palaeogeogr. Palaeocl., 285, 307–320, 2010.
Elrick, M., Reardon, D., Labor, W., Martin, J., Desrochers, A., and Pope,
M.: Orbital-scale climate change and glacioeustasy during the Early Late
Ordovician (Pre-Hirnantian) determined from ∂18O values in marine
apatite, Geology, 41, 775–778, https://doi.org/10.1130/G34363.1,
2013.
Ernst, R. E. and Buchan, K. L.: Large mafic magmatic events through time and
links to mantle-plume heads, in: Mantle
Plumes: Their Identification Through Time, edited by: Ernst, R. E. and Buchan, K. L., Boulder, Colorado, Geol. Soc.
Amer. Spec. Pap., 352, 483–575, 2001.
Erwin, D. H.: The Permo–Triassic extinction, Nature, 367, 231–236, 1994.
Erwin, D. H.: Extinction! How Life Nearly Ended 250 Million Years ago:
Princeton University Press, 2006.
Evans, D. A. D.: A fundamental Precambrian-Phanerozoic shift in Earth's
glacial style?, Tectonophysics, 375, 353–385, 2003.
Evans, M. E., Pavlov, V., Veselovsky, R., and Fetisova, A.: Late Permian
paleomagnetic results from the Lodève, Le Luc, and Bas-Argens Basins
(southern France): Magnetostratigraphy and geomagnetic field morphology,
Phys. Earth Planet. Inter., 237, 18–24, https://doi.org/10.1016/j.pepi.2014.09.002,
2014.
Falcon-Lang, H. J. and DiMichele, W. A.: What happened to the coal forests
during Pennsylvanian glacial phases?, Palaios, 25, 611–617, 2010.
Fang, Q., Wu, H. C., Hinnov, L. A., Jing, X. C., Wang, X. L., Yang, T. S., Li,
H. Y., and Zhang, S. H.: Astronomical cycles of Middle Permian Maokou Formation in
South China and their implications for sequence stratigraphy and
paleoclimate, Palaeogeogr. Palaeocl., 474, 130–139,
https://doi.org/10.1016/j.palaeo.2016.07.037, 2017.
Fang, Q., Wu, H., Hinnov, L. A., Jing, X., Wang, X., and Jiang, Q.:
Geological evidence for the chaotic behavior of the planets and its
constraints on the third order eustatic sequences at the end of the Late
Paleozoic Ice Age, Palaeogeogr. Palaeocl., 440, 848–859,
https://doi.org/10.1016/j.palaeo.2015.10.014, 2015.
Farmer, J. D., Bell III., J. F., Benison, K. C., Boynton, W. V., Cady, S. L.,
Ferris, F. G., MacPherson, D., Race, M. S., Thiemens, M. H., and Wadhwa, M.:
Assessment of planetary protection requirements for Mars sample return
missions, Space Studies Board, National Research Council, National Academy
Press, Washington, D.C., 80 pp., 2009.
Faure, M.: Late orogenic Carboniferous extensions in the Variscan French
Massif Central, Tectonics, 14, 132–153, 1995.
Feulner, G.: Formation of most of our coal brought Earth close to global
glaciation, P. Natl. Acad. Sci. USA, 114, 11333–11337, https://doi.org/10.1073/pnas.1712062114, 2017.
Fielding, C. R., Frank, T. D., and Isbell, J. L.: The late Paleozoic ice age – a
review of current understanding and synthesis of global climate patterns, 441,
343–354, 2008.
Foght, J. M., Gieg, L. M., and Siddique, T.: The microbiology of oil sands
tailings: past, present, future, FEMS Microbiol. Ecol., 93, fix034,
https://doi.org/10.1093/femsec/fix034, 2017.
Foster, G. L., Royer, D. L., and Lunt, D. J.: Future climate forcing potentially
without precedent in the last 420 million years, Nat. Commun., 8,
14845, https://doi.org/10.1038/ncomms14845, 2017.
Foster, T. M., Soreghan, G. S., Soreghan, M. J., Benison, K. C., and Elmore,
R. D.: Climatic and paleogeographic significance of eolian sediment in the
Middle Permian Dog Creek Shale (Midcontinent U.S.). Palaeogeogr.
Palaeocl., 402, 12–29,
https://doi.org/10.1016/j.palaeo.2014.02.031, 2014.
Foulger, G. R., Wilson, M. P., Gluyas, J. G., Julian, B. R., and Davies, R. J.:
Global review of human-induced earthquakes, Earth Sci. Rev., 178, 438–514.
https://doi.org/10.1016/j.earscirev.2017.07.008, 2018.
Gastaldo, R., DiMichele, W., and Pfefferkorn, H.: Out of the icehouse into
the greenhouse-A late Paleozoic analog for modern global vegetational
change, GSA Today, 6, 1–7, 1996.
Geissman, J. W., Renne, P., Mitchell III., W. S., and Tabor, N. J.: Integrated
magnetostratigraphy and geochronology of the “Ochoan” Quartermaster
Formation of north Texas, Abstracts with Programs, Geol. Soc. Amer., 44,
29, 2012.
Giles, J. M., Soreghan, M. J., Benison, K. C., Soreghan, G. S., and Hasiotis,
S. T.: Lakes, loess, and paleosols In the Permian Wellington Formation of
Oklahoma, U.S.A.: Implications for paleoclimate and paleogeography of the
Midcontinent, J. Sediment. Res., 83, 825–846,
https://doi.org/10.2110/jsr.2013.59, 2013.
Glasspool, I. J. and Scott, A. C.: Phanerozoic concentrations of atmospheric
oxygen reconstructed from sedimentary charcoal, Nat. Geosci., 3,
627–630, 2010.
Goddéris, Y.: Onset and ending of the late Palaeozoic ice age triggered
by tectonically paced rock weathering, Nat. Geosci., 10, 382–388, 2017.
Hamamura, N., Olson, S. H., Ward, D. W., and Inskeep, W. P.: Diversity and
functional analysis of bacterial communities associated with natural
hydrocarbon seeps in acidic soils at Rainbow Springs, Yellowstone National
Park, Appl. Environ. Microbiol., 71, 5943–5950, 2005.
Haq, B. U. and Schutter, S. R.: A chronology of Paleozoic sea-level changes,
Science, 322, 64–68, 2008.
Hay, W. W., Migdisov, A., Balukhovsky, A. N., Wold, C. N., Flogel, S., and
Soding, E.: Evaporites and the salinity of the ocean during the Phanerozoic:
Implications for climate, ocean circulation and Life, Palaeogeogr.
Palaeocl., 240, 3–46, https://doi.org/10.1016/j.palaeo.2006.03.044, 2006.
Heavens, N. G., Shields, C. A., and Mahowald, N. M.: Sensitivity of a deep time
climate simulation to aerosol prescription, J. Adv. Model. Earth
Syst., 4, M11002, https://doi.org/10.1029/2012MS000166, 2012.
Heckel, P. H.: Evidence for global (glacial-eustatic) control over upper
Carboniferous (Pennsylvanian) cyclothems in midcontinent North America,
Geol. Soc. London Spec. Publ., 55, 35–47, 1990.
Hentz, T. F.: Sequence stratigraphy of the Upper Pennsylvanian Cleveland
Formation: A major tight-gas sandstone, western Anadarko Basin, Texas
Panhandle, Am. Assoc. Pet. Geol. Bull., 78, 569–595, 1994.
Huang, H., Gao, Y., Jones, M. M., Tao, H., Alan, R., Ibarra, D. E.,
Huaichun, W., and Wang, C.: Astronomical forcing of Middle Permian terrestrial
climate recorded in a large paleolake in northwestern China, Palaeogeogr.
Palaeocl., 550, https://doi.org/10.1016/j.palaeo.2020.109735, 2020.
Johnson, K. S.: Anadarko Basin Symposium, Oklahoma Geological Survey, 90,
1–291, 1988.
Juncal, M., Bourquin, S., Beccaletto, L., and Diez, J.: New sedimentological
and palynological data from the Permian and Triassic series of the
Sancerre-Couy core, Paris Basin, France, Geobios, 51, 517–535, https://doi.org/10.1016/j.geobios.2018.06.007, 2018.
Keranen, K. M. and Weingarten, M.: Induced seismicity, Ann. Rev. Earth
Planet. Sci., 46, 149–174, https://doi.org/10.1146/annurev-earth-082517-010054, 2018.
Kiessling, W.: Long-term relationships between ecological stability and
biodiversity in Phanerozoic reefs, Nature, 433, 410–413,
https://doi.org/10.1038/nature03152, 2005.
Kutzbach., J. E. and Gallimore, R. G.: Pangean climates: megamonsoons of the
megacontinent, J. Geophys. Res., 94, 3341–3357, 1989.
Langenbruch, C., Weingarten, M., and Zoback, M. D.: Physics-based
forecasting of man-made earthquake hazards in Oklahoma and Kansas, Nat. Commun., 9, 1–10, https://doi.org/10.1038/s41467-018-06167-4, 2018.
Lee, L. A., Reddington, C. L., and Carslaw, K. S.: On the relationship between
aerosol model uncertainty and radiative forcing uncertainty, P. Natl. Acad. Sci. USA, 113, 5820–5827, https://doi.org/10.1073/pnas.1507050113, 2016.
Lin, L., Khider, D., Lisiecki, L. E., and Lawrence, C. E.: Probabilistic
sequence alignment of stratigraphic records, Paleoceanography, 29, 976–989,
https://doi.org/10.1002/2014PA002713, 2014.
Lisiecki, L. E. and Lisiecki, P. A.: Application of dynamic programming to
the correlation of paleoclimate records, Paleoceanography, 17, 1049,
https://doi.org/10.1029/2001PA000733, 2002.
LIP Commission, http://www.largeigneousprovinces.org/, last access: August 2020.
Liu, X., Xu, T., and Liu, T.: The Chinese loess in Xifeng, II. A study of
anisotropy of magnetic susceptibility of loess from Xifeng, Geophys. J.
Int., 92, 349–353, https://doi.org/10.1111/j.1365-246X.1988.tb01147.x, 1999.
Luo, Q., Krumholz, L. R., Najar, F. Z., Peacock, A. D., Roe, B. A., White, D. C.,
and Elshahed, M. S.: Diversity of the microeukaryotic community in
sulfide-rich Zodletone Spring (Oklahoma), Appl. Environ. Microbiol., 71,
6175–6184, https://doi.org/10.1128/AEM.71.10.6175-6184.2005, 2005.
Maher, B. A.: Palaeoclimatic records of the loess/paleosol sequences of the
Chinese Loess Plateau, Quaternary Sci. Rev., 154, 23–84, 2016.
McArthur, J. M., Howarth, R. J., and Bailey, T. R.: Strontium isotope
stratigraphy: LOWESS version 3: best fit to the marine Sr-isotope curve for
0–509 Ma and accompanying look-up table for deriving numerical age, J.
Geol., 109, 155–170, 2001.
Menard, G. and Molnar, P.: Collapse of a Hercynian Tibetan Plateau into a
late Palaeozoic European Basin and Range province, Nature, 334, 235–237,
1988.
Mercuzot, M.: Reconstitutions paléoenvironnementales et
paléoclimatiques en contexte tardi-orogénique des bassins
Carbonifères-Permiens du nord du Massif Central, France, PhD thesis, University of
Rennes, expected October 2020.
Mercuzot, M., Bourquin, S., Beccaletto, L., Ducassou, C., Rubi, R., and Pellenard, P.:
Palaeoenvironmental reconstitutions at the Carboniferous-Permian
transition south of the Paris Basin, France: implications on the
stratigraphic evolution and basin geometry, Int. J. Earth Sci., accepted, 2020.
Meyers, S. R.: Cyclostratigraphy and the problem of astrochronologic testing,
Earth Sci. Rev., 190, 190–223, https://doi.org/10.1016/j.earscirev.2018.11.015, 2019.
Meyers, S. R.: The evaluation of eccentricity-related amplitude modulation
and bundling in paleoclimate data: an inverse approach for astrochronologic
testing and time scale optimization, Paleoceanography, 30, 1625–1640,
https://doi.org/10.1002/2015PA002850, 2015.
Meyers, S. R. and Sageman, B. B.: Quantification of deep-time orbital forcing
by average spectral misfit, Am. J. Sci., 307, 773–792,
https://doi.org/10.2475/05.2007.01, 2007.
Michel, L. A., Tabor, N. J., Montanez, I. P., Schmitz, M., and Davydov, V. I.:
Chronostratigraphy and paleoclimatology of the Lodéve Basin, France:
Evidence for a pan-tropical aridification event across the Carboniferous –
Permian boundary, Palaeogeogr. Palaeocl., 430, 118–131,
https://doi.org/10.1016/j.palaeo.2015.03.020, 2015.
Molnar, P. and England, P.: Late Cenozoic uplift of mountain ranges and
global climate change: chicken or egg?, Nature, 346, 29–34, 1990.
Montañez, I. P., Tabor, N. J., Niemeier, D., DiMichele, W. A., Frank, T. D.,
Fielding, C. R., Isbell, J. L., Birgenheier, L. P., and Rygel, M.:
CO2-forced climate and vegetation instability during Late Paleozoic
deglaciation, Science, 315, 87–91, 2007.
Montañez, I. P., McElwain, J. C., Poulsen, C. J., White, J. D., DiMichele,
W. A., Wilson, J. P., Griggs, G., and Hren, M. T.: Climate, pCO2 and
terrestrial carbon cycle linkages during late Palaeozoic
glacial-interglacial cycles, Nat. Geosci., 9, 824–828, 2016.
Muttoni, G. and Kent, D. V.: Adrea as promontory of Africa and its
conceptual role in the Tethys twist and Pangea B to Pangea A transformation
in the Permian, Rivista Italiana di Paleontogia e Stratigrafia, 125,
249–269, 2019.
Nawrocki, J., Polechonska, O., Bogucki, A., and Łanczont, M.: Palaeowind
directions recorded in the youngest loess in Poland and western Ukraine as
derived from anisotropy of magnetic susceptibility measurements, Boreas, 35, 266–271, https://doi.org/10.1111/j.1502-3885.2006.tb01156.x, 2006.
Nelsen, M. P., DiMichele, W. A., Peters, S. E., and Boyce, C. K.: Delayed fungal
evolution did not cause the Paleozoic peak in coal production, P. Natl. Acad. Sci. USA, 113,
2442–2447, 2016.
Pardo, J. D., Small, B. J., Milner, A. R., and Huttenlocker, A. K.:
Carboniferous-Permian climate change constrained by early land vertebrate
radiations, Nature Ecol. Evol., 3, 200–206, https://doi.org/10.1038/s41559-018-0776-z, 2019.
Parrish, J. T.: Paleoclimate of the supercontinent Pangea, J. Geology, 101,
215–233, 1993.
Parrish, J. T.: Interpreting Pre-Quaternary Climate from the Geologic Record, Columbia University Press, New York, 1998.
Payne, M. E. and Clapham, J. L.: End-Permian mass extinction in the oceans:
an ancient analog for the twenty-first century?, Ann. Rev. Earth Planet.
Sci., 40, 89–111, https://doi.org/10.1146/annurev-earth-042711-105329, 2012.
Pellenard, P., Gand, G., Schmitz, M, Galtier, J., Broutin, J., and Stéyer, J. S.:
High-precision U-Pb zircon ages for explosive volcanism calibrating the NW
European continental Autunian stratotype, Gondwana Res., 51, 118–136,
2017.
Pfeifer, L. S., Soreghan, G. S., Pochat, S., Van Den Driessche, J., and
Thomson, S. N.: Permian exhumation of the Montagne Noire core complex
recorded in the Graissessac-Lodève Basin, France, Basin Research, 30, 1–14,
https://doi.org/10.1111/bre.12197, 2016.
Pfeifer, L. S., Soreghan, G. S., Pochat, S., and Van Den Driessche, J.:
Paleoclimatic significance of Permian loess in eastern equatorial Pangea:
The Lodève Basin (France), Geol. Soc. Am. Bull.,
https://doi.org/10.1130/B35590.1, 2020a.
Pfeifer, L. S., Hinnov, L. A., Zeeden, C., Rolf, C., Laag, C., and Soreghan,
G. S.: Rock magnetic cyclostratigraphy of Permian loess in eastern equatorial
Pangea (Salagou Formation, south-central France), Front. Earth Sci., 8, 241,
https://doi.org/10.3389/feart.2020.00241, 2020b.
Pochat, S. and Van Den Driessche, J.: Filling sequence in Late Paleozoic
continental basins: A chimera of climate change? A new light shed given by
the Graissessac–Lodève basin (SE France), Palaeogeogr.
Palaeocl., 302, 170–186, 2011.
Praeg, D.: Diachronous Variscan late-orogenic collapse as a response to
multiple detachments; a view from the internides in France to the foreland
in the Irish Sea, Geol. Soc. Spec. Pub., 223, 89–138, 2004.
Reiners, P. W. and Brandon, M. T.: Using thermochronology to understand
orogenic erosion, Ann. Rev. Earth Planet. Sci., 34, 419–466, 2006.
Rondot, A.: An Integrated Geophysical Analysis of Crustal Structure in the
Wichita Uplift Region of Southern Oklahoma. M.S. Thesis, Norman, University
of Oklahoma, 107 pp., 2009.
Saltzman, M. R. and Thomas, E.: Carbon isotope stratigraphy, in: The Geologic
Time Scale 2012, edited by: Gradstein, F. M., Ogg, J. G., Schmitz, M., and Ogg, G., Elsevier, 207–232, 2012.
Sardar Abadi, M., Owens, J. D., Liu, X., Them II, T. R., Cui, X., Heavens,
N. G., and Soreghan, G. S.: Atmospheric dust stimulated marine primary
productivity during Earth's penultimate icehouse, Geology, 480, 247–251, https://doi.org/10.1130/G46977.1, 2020.
Satterfield, C. L., Lowenstein, T. K., Vreeland, R. H., Rosenzweig, W. D., and
Powers, D. W.: New evidence for 250 Ma age of halotolerant bacterium from a
Permian salt crystal, Geology, 33, 265–268, 2005.
Scholze, F. and Schneider, J. W.: Improved methodology of “conchostracan”
(Crustacea: Branchiopoda) classification for biostratigraphy, Newsletters on
Strat., 48, 287–298, 2015.
Schwartz, S. E. and Andreae, M. O.: Uncertainty in climate change caused by
aerosols, Science, 272, 1121–1122, 1996.
Sheldon, N. D.: Do red beds indicate paleoclimatic conditions?: A Permian
case study, Palaeogeogr. Palaeocl., 228, 305–319,
2005.
Soreghan, G. S., Soreghan, M. J., Poulsen, C. E., Young, R. A., Eble, C., Sweet,
D. E., and Davogustto, O.: Anomalous cold in the Pangaean tropics, Geology,
36, 659–662, 2008a.
Soreghan, G. S., Soreghan, M. J., and Hamilton, M. A.: Origin and significance
of loess in late Paleozoic western Pangaea: A record of tropical cold?,
Palaeogeogr. Palaeocl., 268, 234–259, https://doi.org/10.1016/j.palaeo.2008.03.050, 2008b.
Soreghan, G. S., Keller, G. R., Gilbert, M. C., Chase, C. G., and Sweet, D.:
Load-induced subsidence of the Ancestral Rocky Mountains recorded by
preservation of Permian landscapes, Geosphere, 8, 654–668, https://doi.org/10.1130/GES00681.S1, 2012.
Soreghan, G. S., Sweet, D. E., and Heavens, N. G.: Upland glaciation in
tropical Pangaea: Geologic evidence and implications for Late Paleozoic
climate modeling, J. Geology, 122, 137–163, 2014.
Soreghan, G. S., Heavens, N. G., Hinnov, L. A., Aciego, S. M., and Simpson, C.:
Reconstructing the dust cycle in deep time: The case of the Late Paleozoic
icehouse, in: Earth-Life Transitions –
Paleobiology in the Context of Earth System Evolution: The Paleontological
Society Papers, edited by: Polly, P. D. and Fox, D. L., 21, 83–120, 2015a.
Soreghan, G. S., Benison, K. C., Foster, T. M., Zambito, J., and Soreghan,
M. J.: The paleoclimatic and geochronologic utility of coring red beds and
evaporites: a case study from the RKB core (Permian, Kansas, USA), Int. J.
Earth Sci., 104, 1–17, https://doi.org/10.1007/s00531-014-1070-1,
2015b.
Soreghan, G. S, Soreghan, M. J., and Heavens, N. G.: Explosive volcanism as a
key driver of the Late Paleozoic Ice Age, Geology, 47, 600–604,
https://doi.org/10.1130/G46349.1, 2019.
Soreghan, M. J., Soreghan, G. S., and Hamilton, M. A.: Paleowinds inferred from
detrital-zircon geochronology of upper Paleozoic loessite, western
equatorial Pangea, Geology, 30, 695–698, 2002.
Soreghan, M. J., Heavens, N. G., Soreghan, G. S., Link, P. K., and Hamilton,
M. A.: Abrupt and high-magnitude changes in atmospheric circulation recorded
in the Permian Maroon Formation, tropical Pangaea, Geol. Soc. Am. Bull., 126, 569–584,
https://doi.org/10.1130/B30840.1, 2014.
Soreghan, M. J., Swift, M. M., and Soreghan, G. S.: Provenance of Permian eolian
and related strata in the North American Midcontinent: Tectonic and climatic
controls on sediment dispersal in western tropical Pangea, in: Tectonics, Sedimentary Basins, and Provenance: A Celebration of the Career of William R. Dickinson, edited by: Ingersoll, R. V., Lawton, T. F., and Graham, S. A., Geol. Soc. Am.
Spec. Pap., 540, 661–687, https://doi.org/10.1130/SPE540, 2018.
Steiner, M. B.: The magnetic polarity time scale across the Permian–Triassic
boundary, in: Non-Marine
Permian Biostratigraphy and Biochronology, edited by: Lucas, S. G., Cassinis, G., and Schneider, J. W., Geol. Soc. London, Spec. Pub., 265, 15–38, 2006.
Sternai, P., Herman, F., Champagnac, J. D., Fox, M., Salcher, B., and
Willett, S. D.: Pre-glacial topography of the European Alps, Geology, 40, 1067–1070, https://doi.org/10.1130/G33540.1, 2012.
Sues, H.-D. and Reisz, R. R.: Origins and early evolution of herbivory in
tetrapods, Trends Ecol. Evol., 13, 141–145, 1998.
Sun, Y., Lu, H., and An, Z.: Grain size of loess, palaeosol and Red Clay
deposits on the Chinese Loess Plateau: Significance for understanding
pedogenic alteration and palaeomonsoon evolution, Palaeogeogr.
Palaeocl., 241, 129–138, 2006.
Sur, S., Owens, J. D., Soreghan, G. S., Lyons, T. W., Raiswell, R., Heavens,
N. G., and Mahowald, N. M.: Extreme eolian delivery of reactive iron to late
Paleozoic icehouse seas, Geology, 43, 1099–1102, https://doi.org/10.1130/G37226.1, 2015.
Svensen, H., Planke, S., Polozov, A. G., Schmidbauer, N., Corfu, F.,
Podladchikov, Y. Y., and Jamtveit, B.: Siberian gas venting and the
end-Permian environmental crisis, Earth Planet. Sci. Lett., 277, 490–500,
2009.
Sweet, A. C., Soreghan, G. S., Sweet, D. E., Soreghan, M. J., and Madden, A. S.:
Permian dust in Oklahoma: Source and origin for middle Permian
(Flowerpot-Blaine) redbeds in western tropical Pangaea, Sediment. Geol.,
284–285, 181–196, doi.org/10.1016/j.sedgeo.2012.12.006, 2013.
Tabor, N. J. and Montanez, I. P.: Shifts in late Paleozoic atmospheric
circulation over western equatorial Pangea: insights from pedogenic mineral
∂18O compositions, Geology, 30, 1127–1130, 2002.
Tabor, N. J. and Poulsen, C. J.: Palaeoclimate across the Late
Pennsylvanian–Early Permian tropical palaeolatitudes: A review of climate
indicators, their distribution, and relation to palaeophysiographic climate
factors: Palaeogeogr. Palaeocl., 268, 293–310, 2008.
Tabor, N. J., Myers, T. S., Mack, G. H., Looy, C. V., and Renne, P. R.:
Quatermaster Formation of north Texas, USA; Part I, Litho- and
chemostratigraphy, Abstracts With Programs, Geol. Soc. Am., 43, 383,
2011.
Tabor, N. J. and Myers, T. S.: Paleosols as indicators of paleoenvironment
and paleoclimate, Annual Rev. Earth Planet. Sci., 43, 333–361, 2015.
Theiling, B. P., Elrick, M., and Asmerom, Y.: Increased continental weathering
flux during orbital-scale sea-level highstands: Evidence from Nd and O
isotope trends in middle Pennsylvanian cyclic carbonates, Palaeogeogr.
Palaeocl., 342–343, 17–26, https://doi.org/10.1016/j.palaeo.2012.04.017, 2012.
Tian, H., Fan, M., Chamberlain, K. R., Waite, L., and Stern, R. J.: Zircon
LA-ICPMS and CA-TIMS U-PB dates of late Paleozoic volcanic tuffs in the
Midland Basin, West Texas, Abstracts with Programs, Geol. Soc. Am., 52, 1,
https://doi.org/10.1130/abs/2020SC-343618, 2020.
Tomezzoli, R. N., Tickj, H., Rapalini, A. E., Gallo, L. C., Cristallini, E. O.,
Arzadún, G., and Chemale Jr., F.: Gondwana's Apparent Polar Wander Path
during the Permian – new insights from South America, Sci. Reports, 8, 8436, https://doi.org/10.1038/s41598-018-25873-z,
2018.
Twitchett, R. J., Looy, C. V., Morante, R., Visscher, H., and Wignall, P. B.:
Rapid and synchronous collapse of marine and terrestrial ecosystems during
the end-Permian biotic crisis, Geology, 29, 351–354, 2001.
Valentino, D. W. and Gates, A. E.: Asynchronous extensional collapse of a
transpressional orogen: the Alleghanian central Appalachian Piedmont, USA,
J. Geodyn., 31, 145–167, 2001.
Walker, T. R.: Formation of red beds in modern and ancient deserts, Geol.
Soc. Am. Bull., 78, 353–68, 1967.
Walker, T. R.: Formation of red beds in moist tropical climates: A
hypothesis, Geol. Soc. Am. Bull., 85, 633–638, 1974.
Warren, J. K.: Evaporites, A Geological Compendium, Second Edition, Springer
International Publishing AG, Switzerland, p. 1813, 2016.
Wignall, P. B. and Twitchett, R. J.: Oceanic anoxia and the end Permian mass
extinction, Science, 272, 1155–1158, https://doi.org/10.1126/science.272.5265.1155 1996.
Williams, D. F., Peck, J., Karabanov, E. B., Prokopenko, A. A., Kravchinsky,
B., King, J., and Kuzmin, M. I.: Lake Baikal record of continental climate
response to orbital insolation during the past 5 million years, Science,
278, 1114–1117, https://doi.org/10.1126/science.278.5340.1114, 1997.
Wilson, L. R.: A Permian fungus spore type from the Flowerpot Formation of
Oklahoma, Oklahoma Geology Notes, 22, 91–96, 1962.
Witt, W. J.: Cross section of Oklahoma from SW to NE corners of state:
Oklahoma City Geological Society, Oklahoma, 1971.
Wu, H., Fang, Q., Wang, X., Hinnov, L. A., Qi, Y., Shen, S., Yang, T., Li,
H., Chen, J., and Zhang, S. A.: ∼ 34 M.y. astronomical time scale
for the uppermost Mississippian through Pennsylvanian of the Carboniferous
System of the Paleo-Tethyan Realm, Geology, 47, 83–86, https://doi.org/10.1130/G45461.1, 2019.
Wu, H., Zhang, S., Hinnov, L. A., Feng, Q., Jiang, G., Li, H., and Yang, T.:
Time-calibration of Milankovitch cycles in the Late Permian, Nat. Commun., 4, 2452,
https://doi.org/10.1038/ncomms3452, 2013.
Yang, S. and Ding, Z.: A 249 kyr stack of eight loess grain size records from
northern China documenting millennial-scale climate variability, Geochem.
Geophy., Geosy., 15, 798–814,
https://doi.org/10.1002/2013GC005113, 2013.
Zambito, J. J. and Benison, K. C.: Extremely high temperatures and
paleoclimate trends recorded in Permian ephemeral lake halite, Geology, 41,
587–590, https://doi.org/10.1130/G34078.1, 2013.
Zhang, R., Kravchinsky, V. A., Zhu, R., and Yue, L.: Paleomonsoon route
reconstruction along a W-E transect in the Chinese Loess Plateau using the
anisotropy of magnetic susceptibility: Summer monsoon model, Earth Planet.
Sci. Lett., 299, 436–446, https://doi.org/10.1016/j.epsl.2010.09.026, 2010.
Zhu, R., Liu, Q., and Jackson, M. J.: Paleoenvironmental significance of the
magnetic fabrics in Chinese loess-paleosol since the last interglacial
(< 130 ka), Earth Planet. Sci. Lett., 221, 55–69, https://doi.org/10.1016/S0012-821X(04)00103-7, 2004.
Short summary
The events of the Permian — the orogenies, biospheric turnovers, icehouse and greenhouse antitheses, and Mars-analog lithofacies — boggle the imagination and present us with great opportunities to explore Earth system behavior. Here we outline results of workshops to propose continuous coring of continental Permian sections in western (Anadarko Basin) and eastern (Paris Basin) equatorial Pangaea to retrieve continental records spanning 50 Myr of Earth's history.
The events of the Permian — the orogenies, biospheric turnovers, icehouse and greenhouse...

