Report on ICDP Deep Dust workshops: probing continental climate of the late Paleozoic icehouse–greenhouse transition and beyond
School of Geosciences, University of Oklahoma, Norman, Oklahoma, 73019, USA
Laurent Beccaletto
BRGM, 45060 Orléans, France
Kathleen C. Benison
Geology and Geography, West Virginia University, Morgantown, 26506,
USA
Sylvie Bourquin
Université de Rennes, CNRS, Géosciences Rennes – UMR 6118,
35000 Rennes, France
Georg Feulner
Earth System Analysis, Potsdam Institute for Climate Impact Research,
Potsdam, Germany
Natsuko Hamamura
Department of Biology, Kyushu University, Fukuoka, 819-0395, Japan
Michael Hamilton
Jack Satterly Geochronology Laboratory, University of Toronto,
Toronto, M5S3B1, Canada
Nicholas G. Heavens
Space Sciences Institute, Boulder, Colorado, 80301, USA
Linda Hinnov
Atmospheric, Oceanic, and Earth Sciences, George Mason University,
Fairfax, 22030, USA
Adam Huttenlocker
Keck School of Medicine, University of Southern California, Los Angeles, 90033,
USA
Cindy Looy
Department of Integrative Biology, University of California-Berkeley,
Berkeley, 94720, USA
Lily S. Pfeifer
School of Geosciences, University of Oklahoma, Norman, Oklahoma, 73019, USA
Stephane Pochat
Laboratoire de Planétologie et Géodynamique Université de
Nantes, Nantes Cedex, 44322, France
Mehrdad Sardar Abadi
School of Geosciences, University of Oklahoma, Norman, Oklahoma, 73019, USA
James Zambito
Geology Department, Beloit College, Beloit, 53511, USA
A full list of authors appears at the end of the paper.
Related authors
Michael Behm, Feng Cheng, Anna Patterson, and Gerilyn S. Soreghan
Solid Earth, 10, 1337–1354, https://doi.org/10.5194/se-10-1337-2019, https://doi.org/10.5194/se-10-1337-2019, 2019
Short summary
Short summary
New acquisition styles for active seismic source exploration provide a wealth of additional quasi-passive data. We show how these data can be used to gain complementary information about the subsurface. Specifically, we process an active-source dataset from an alpine valley in western Colorado with both active and passive inversion schemes. The results provide new insights on subsurface hydrology based on the ratio of P-wave and S-wave velocity structures.
Markus Drüke, Wolfgang Lucht, Werner von Bloh, Stefan Petri, Boris Sakschewski, Arne Tobian, Sina Loriani, Sibyll Schaphoff, Georg Feulner, and Kirsten Thonicke
Earth Syst. Dynam., 15, 467–483, https://doi.org/10.5194/esd-15-467-2024, https://doi.org/10.5194/esd-15-467-2024, 2024
Short summary
Short summary
The planetary boundary framework characterizes major risks of destabilization of the Earth system. We use the comprehensive Earth system model POEM to study the impact of the interacting boundaries for climate change and land system change. Our study shows the importance of long-term effects on carbon dynamics and climate, as well as the need to investigate both boundaries simultaneously and to generally keep both boundaries within acceptable ranges to avoid a catastrophic scenario for humanity.
Julius Eberhard, Oliver E. Bevan, Georg Feulner, Stefan Petri, Jeroen van Hunen, and James U. L. Baldini
Clim. Past, 19, 2203–2235, https://doi.org/10.5194/cp-19-2203-2023, https://doi.org/10.5194/cp-19-2203-2023, 2023
Short summary
Short summary
During at least two phases in its past, Earth was more or less covered in ice. These “snowball Earth” events probably started suddenly upon undercutting a certain threshold in the carbon-dioxide concentration. This threshold can vary considerably under different conditions. In our study, we find the thresholds for different distributions of continents, geometries of Earth’s orbit, and volcanic eruptions. The results show that the threshold might have varied by up to 46 %.
Georg Feulner, Mona Bukenberger, and Stefan Petri
Earth Syst. Dynam., 14, 533–547, https://doi.org/10.5194/esd-14-533-2023, https://doi.org/10.5194/esd-14-533-2023, 2023
Short summary
Short summary
One limit of planetary habitability is defined by the threshold of global glaciation. If Earth cools, growing ice cover makes it brighter, leading to further cooling, since more sunlight is reflected, eventually leading to global ice cover (Snowball Earth). We study how much carbon dioxide is needed to prevent global glaciation in Earth's history given the slow increase in the Sun's brightness. We find an unexpected change in the characteristics of climate states close to the Snowball limit.
Markus Drüke, Werner von Bloh, Stefan Petri, Boris Sakschewski, Sibyll Schaphoff, Matthias Forkel, Willem Huiskamp, Georg Feulner, and Kirsten Thonicke
Geosci. Model Dev., 14, 4117–4141, https://doi.org/10.5194/gmd-14-4117-2021, https://doi.org/10.5194/gmd-14-4117-2021, 2021
Short summary
Short summary
In this study, we couple the well-established and comprehensively validated state-of-the-art dynamic LPJmL5 global vegetation model to the CM2Mc coupled climate model (CM2Mc-LPJmL v.1.0). Several improvements to LPJmL5 were implemented to allow a fully functional biophysical coupling. The new climate model is able to capture important biospheric processes, including fire, mortality, permafrost, hydrological cycling and the the impacts of managed land (crop growth and irrigation).
Jean Vérité, Édouard Ravier, Olivier Bourgeois, Stéphane Pochat, Thomas Lelandais, Régis Mourgues, Christopher D. Clark, Paul Bessin, David Peigné, and Nigel Atkinson
The Cryosphere, 15, 2889–2916, https://doi.org/10.5194/tc-15-2889-2021, https://doi.org/10.5194/tc-15-2889-2021, 2021
Short summary
Short summary
Subglacial bedforms are commonly used to reconstruct past glacial dynamics and investigate processes occuring at the ice–bed interface. Using analogue modelling and geomorphological mapping, we demonstrate that ridges with undulating crests, known as subglacial ribbed bedforms, are ubiquitous features along ice stream corridors. These bedforms provide a tantalizing glimpse into (1) the former positions of ice stream margins, (2) the ice lobe dynamics and (3) the meltwater drainage efficiency.
Moritz Kreuzer, Ronja Reese, Willem Nicholas Huiskamp, Stefan Petri, Torsten Albrecht, Georg Feulner, and Ricarda Winkelmann
Geosci. Model Dev., 14, 3697–3714, https://doi.org/10.5194/gmd-14-3697-2021, https://doi.org/10.5194/gmd-14-3697-2021, 2021
Short summary
Short summary
We present the technical implementation of a coarse-resolution coupling between an ice sheet model and an ocean model that allows one to simulate ice–ocean interactions at timescales from centuries to millennia. As ice shelf cavities cannot be resolved in the ocean model at coarse resolution, we bridge the gap using an sub-shelf cavity module. It is shown that the framework is computationally efficient, conserves mass and energy, and can produce a stable coupled state under present-day forcing.
Jon D. Richey, Isabel P. Montañez, Yves Goddéris, Cindy V. Looy, Neil P. Griffis, and William A. DiMichele
Clim. Past, 16, 1759–1775, https://doi.org/10.5194/cp-16-1759-2020, https://doi.org/10.5194/cp-16-1759-2020, 2020
Short summary
Short summary
Our 40 Myr CO2 reconstruction substantially refines existing late Paleozoic CO2 estimates, provides the best resolved pre-Cenozoic CO2 record, and indicates a close temporal relationship to changes in marine and terrestrial ecosystems. The GEOCLIM model used in our study allows for insight into the relative influences of uplift of the Central Pangean Mountains, intensifying aridity, and increasing mafic-to-granite ratio of outcropping rocks on changes in pCO2 through the late Paleozoic.
Michael Behm, Feng Cheng, Anna Patterson, and Gerilyn S. Soreghan
Solid Earth, 10, 1337–1354, https://doi.org/10.5194/se-10-1337-2019, https://doi.org/10.5194/se-10-1337-2019, 2019
Short summary
Short summary
New acquisition styles for active seismic source exploration provide a wealth of additional quasi-passive data. We show how these data can be used to gain complementary information about the subsurface. Specifically, we process an active-source dataset from an alpine valley in western Colorado with both active and passive inversion schemes. The results provide new insights on subsurface hydrology based on the ratio of P-wave and S-wave velocity structures.
Julia Brugger, Matthias Hofmann, Stefan Petri, and Georg Feulner
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-36, https://doi.org/10.5194/cp-2018-36, 2018
Manuscript not accepted for further review
Short summary
Short summary
To get a deeper understanding of the various evolutionary changes, which took place during the Devonian (419 to 359 Ma), we here use a coupled climate model to investigate the sensitivity of the Devonian climate to changes in orbital forcing, continental configuration and vegetation cover. Our results are summarised by best-guess simulations for the Early, Middle and Late Devonian showing a decreasing temperature trend in accordance with the reconstructed decreasing atmospheric CO2.
A. Goswami, P. L. Olson, L. A. Hinnov, and A. Gnanadesikan
Geosci. Model Dev., 8, 2735–2748, https://doi.org/10.5194/gmd-8-2735-2015, https://doi.org/10.5194/gmd-8-2735-2015, 2015
Short summary
Short summary
A methodology is presented for reconstructing past global ocean bathymetry using a plate cooling model for the oceanic lithosphere, the age distribution of the oceanic crust, global oceanic sediment thicknesses, plus shelf-slope-rise structures calibrated at modern active and passive continental margins. The final product is a globally complete ocean bathymetry at arbitrary resolution with an isostatically adjusted, multicomponent sediment layer.
M. Willeit, A. Ganopolski, and G. Feulner
Biogeosciences, 11, 17–32, https://doi.org/10.5194/bg-11-17-2014, https://doi.org/10.5194/bg-11-17-2014, 2014
A. M. Foley, D. Dalmonech, A. D. Friend, F. Aires, A. T. Archibald, P. Bartlein, L. Bopp, J. Chappellaz, P. Cox, N. R. Edwards, G. Feulner, P. Friedlingstein, S. P. Harrison, P. O. Hopcroft, C. D. Jones, J. Kolassa, J. G. Levine, I. C. Prentice, J. Pyle, N. Vázquez Riveiros, E. W. Wolff, and S. Zaehle
Biogeosciences, 10, 8305–8328, https://doi.org/10.5194/bg-10-8305-2013, https://doi.org/10.5194/bg-10-8305-2013, 2013
H. Kienert, G. Feulner, and V. Petoukhov
Clim. Past, 9, 1841–1862, https://doi.org/10.5194/cp-9-1841-2013, https://doi.org/10.5194/cp-9-1841-2013, 2013
M. Willeit, A. Ganopolski, and G. Feulner
Clim. Past, 9, 1749–1759, https://doi.org/10.5194/cp-9-1749-2013, https://doi.org/10.5194/cp-9-1749-2013, 2013
C. F. Schleussner and G. Feulner
Clim. Past, 9, 1321–1330, https://doi.org/10.5194/cp-9-1321-2013, https://doi.org/10.5194/cp-9-1321-2013, 2013
M. Eby, A. J. Weaver, K. Alexander, K. Zickfeld, A. Abe-Ouchi, A. A. Cimatoribus, E. Crespin, S. S. Drijfhout, N. R. Edwards, A. V. Eliseev, G. Feulner, T. Fichefet, C. E. Forest, H. Goosse, P. B. Holden, F. Joos, M. Kawamiya, D. Kicklighter, H. Kienert, K. Matsumoto, I. I. Mokhov, E. Monier, S. M. Olsen, J. O. P. Pedersen, M. Perrette, G. Philippon-Berthier, A. Ridgwell, A. Schlosser, T. Schneider von Deimling, G. Shaffer, R. S. Smith, R. Spahni, A. P. Sokolov, M. Steinacher, K. Tachiiri, K. Tokos, M. Yoshimori, N. Zeng, and F. Zhao
Clim. Past, 9, 1111–1140, https://doi.org/10.5194/cp-9-1111-2013, https://doi.org/10.5194/cp-9-1111-2013, 2013
Related subject area
Location/Setting: Continental | Subject: Geology | Geoprocesses: Global climate change
Paleozoic Equatorial Records of Melting Ice Ages (PERMIA): calibrating the pace of paleotropical environmental and ecological change during Earth's previous icehouse
BASE (Barberton Archean Surface Environments) – drilling Paleoarchean coastal strata of the Barberton Greenstone Belt
ICDP workshop on the Deep Drilling in the Turkana Basin project: exploring the link between environmental factors and hominin evolution over the past 4 Myr
Paleogene Earth perturbations in the US Atlantic Coastal Plain (PEP-US): coring transects of hyperthermals to understand past carbon injections and ecosystem responses
Drilling into a deep buried valley (ICDP DOVE): a 252 m long sediment succession from a glacial overdeepening in northwestern Switzerland
Workshop report: PlioWest – drilling Pliocene lakes in western North America
Deep-time Arctic climate archives: high-resolution coring of Svalbard's sedimentary record – SVALCLIME, a workshop report
Drilling Overdeepened Alpine Valleys (ICDP-DOVE): quantifying the age, extent, and environmental impact of Alpine glaciations
From glacial erosion to basin overfill: a 240 m-thick overdeepening–fill sequence in Bern, Switzerland
Sensitivity of the West Antarctic Ice Sheet to +2 °C (SWAIS 2C)
Scientific drilling workshop on the Weihe Basin Drilling Project (WBDP): Cenozoic tectonic–monsoon interactions
The Bouse Formation, a controversial Neogene archive of the evolving Colorado River: a scientific drilling workshop report (28 February–3 March 2019 – BlueWater Resort & Casino, Parker, AZ, USA)
Colorado Plateau Coring Project, Phase I (CPCP-I): a continuously cored, globally exportable chronology of Triassic continental environmental change from western North America
Report on ICDP workshop CONOSC (COring the NOrth Sea Cenozoic)
A key continental archive for the last 2 Ma of climatic history of the central Mediterranean region: A pilot drilling in the Fucino Basin, central Italy
Trans-Amazon Drilling Project (TADP): origins and evolution of the forests, climate, and hydrology of the South American tropics
Accelerating Neoproterozoic research through scientific drilling
A way forward to discover Antarctica's past
Jonathan M. G. Stine, Joshua M. Feinberg, Adam K. Huttenlocker, Randall B. Irmis, Declan Ramirez, Rashida Doctor, John McDaris, Charles M. Henderson, Michael T. Read, Kristina Brady Shannon, Anders Noren, Ryan O'Grady, Ayva Sloo, Patrick Steury, Diego P. Fernandez, Amy C. Henrici, and Neil J. Tabor
Sci. Dril., 33, 109–128, https://doi.org/10.5194/sd-33-109-2024, https://doi.org/10.5194/sd-33-109-2024, 2024
Short summary
Short summary
We present initial results from the upper 450 m of ER-1, a legacy core collected from modern-day Bears Ears National Monument, Utah, USA. This section contains a relatively complete record of Upper Carboniferous to Early Permian sediments, providing a unique window on Earth's last icehouse–hothouse transition. Ongoing research will tie our results to important fossil sites, allowing us to better understand how this climate shift contributed to the evolution of terrestrial life.
Christoph Heubeck, Nic Beukes, Michiel de Kock, Martin Homann, Emmanuelle J. Javaux, Takeshi Kakegawa, Stefan Lalonde, Paul Mason, Phumelele Mashele, Dora Paprika, Chris Rippon, Mike Tice, Rodney Tucker, Ryan Tucker, Victor Ndazamo, Astrid Christianson, and Cindy Kunkel
Sci. Dril., 33, 129–172, https://doi.org/10.5194/sd-33-129-2024, https://doi.org/10.5194/sd-33-129-2024, 2024
Short summary
Short summary
What was Earth like when young? Under what conditions did bacteria spread? We studied some of the best-preserved, oldest rocks in South Africa. Layers there are about vertical; we drilled sideways. Sedimentary strata from eight boreholes showed that they had been deposited in rivers, sandy shorelines, tidal flats, estuaries, and the ocean. Some have well-preserved remnants of microbes. We will learn how life was established on a planet which would appear very inhospitable to us nowadays.
Catherine C. Beck, Melissa Berke, Craig S. Feibel, Verena Foerster, Lydia Olaka, Helen M. Roberts, Christopher A. Scholz, Kat Cantner, Anders Noren, Geoffery Mibei Kiptoo, James Muirhead, and the Deep Drilling in the Turkana Basin (DDTB) project team
Sci. Dril., 33, 93–108, https://doi.org/10.5194/sd-33-93-2024, https://doi.org/10.5194/sd-33-93-2024, 2024
Short summary
Short summary
The Deep Drilling in the Turkana Basin project seeks to determine the relative impacts of tectonics and climate on eastern African ecosystems. To organize goals for coring, we hosted a workshop in Nairobi, Kenya, which focused on how a 4 Myr sedimentary core from Turkana will uniquely address research objectives related to basin evolution, past climates and environments, and modern resources. We concluded that a Pliocene to modern record is best accomplished through a two-phase drilling project.
Marci M. Robinson, Kenneth G. Miller, Tali L. Babila, Timothy J. Bralower, James V. Browning, Marlow J. Cramwinckel, Monika Doubrawa, Gavin L. Foster, Megan K. Fung, Sean Kinney, Maria Makarova, Peter P. McLaughlin, Paul N. Pearson, Ursula Röhl, Morgan F. Schaller, Jean M. Self-Trail, Appy Sluijs, Thomas Westerhold, James D. Wright, and James C. Zachos
Sci. Dril., 33, 47–65, https://doi.org/10.5194/sd-33-47-2024, https://doi.org/10.5194/sd-33-47-2024, 2024
Short summary
Short summary
The Paleocene–Eocene Thermal Maximum (PETM) is the closest geological analog to modern anthropogenic CO2 emissions, but its causes and the responses remain enigmatic. Coastal plain sediments can resolve this uncertainty, but their discontinuous nature requires numerous sites to constrain events. Workshop participants identified 10 drill sites that target the PETM and other interesting intervals. Our post-drilling research will provide valuable insights into Earth system responses.
Sebastian Schaller, Marius W. Buechi, Bennet Schuster, and Flavio S. Anselmetti
Sci. Dril., 32, 27–42, https://doi.org/10.5194/sd-32-27-2023, https://doi.org/10.5194/sd-32-27-2023, 2023
Short summary
Short summary
In the frame of the DOVE (Drilling Overdeepened Alpine Valleys) project and with the support of the International Continental Scientific Drilling Program (ICDP), we drilled and recovered a 252 m long sediment core from the Basadingen Through. The Basadingen Trough, once eroded by the Rhine glacier during several ice ages, reaches over 300 m under the modern landscape. The sedimentary filling represents a precious scientific archive for understanding and reconstructing past glaciations.
Alison J. Smith, Emi Ito, Natalie Burls, Leon Clarke, Timme Donders, Robert Hatfield, Stephen Kuehn, Andreas Koutsodendris, Tim Lowenstein, David McGee, Peter Molnar, Alexander Prokopenko, Katie Snell, Blas Valero Garcés, Josef Werne, Christian Zeeden, and the PlioWest Working Consortium
Sci. Dril., 32, 61–72, https://doi.org/10.5194/sd-32-61-2023, https://doi.org/10.5194/sd-32-61-2023, 2023
Short summary
Short summary
Western North American contains accessible and under-recognized paleolake records that hold the keys to understanding the drivers of wetter conditions in Pliocene Epoch subtropical drylands worldwide. In a 2021 ICDP workshop, we chose five paleolake basins to study that span 7° of latitude in a unique array able to capture a detailed record of hydroclimate during the Early Pliocene warm period and subsequent Pleistocene cooling. We propose new drill cores for three of these basins.
Kim Senger, Denise Kulhanek, Morgan T. Jones, Aleksandra Smyrak-Sikora, Sverre Planke, Valentin Zuchuat, William J. Foster, Sten-Andreas Grundvåg, Henning Lorenz, Micha Ruhl, Kasia K. Sliwinska, Madeleine L. Vickers, and Weimu Xu
Sci. Dril., 32, 113–135, https://doi.org/10.5194/sd-32-113-2023, https://doi.org/10.5194/sd-32-113-2023, 2023
Short summary
Short summary
Geologists can decipher the past climates and thus better understand how future climate change may affect the Earth's complex systems. In this paper, we report on a workshop held in Longyearbyen, Svalbard, to better understand how rocks in Svalbard (an Arctic archipelago) can be used to quantify major climatic shifts recorded in the past.
Flavio S. Anselmetti, Milos Bavec, Christian Crouzet, Markus Fiebig, Gerald Gabriel, Frank Preusser, Cesare Ravazzi, and DOVE scientific team
Sci. Dril., 31, 51–70, https://doi.org/10.5194/sd-31-51-2022, https://doi.org/10.5194/sd-31-51-2022, 2022
Short summary
Short summary
Previous glaciations eroded below the ice deep valleys in the Alpine foreland, which, with their sedimentary fillings, witness the timing and extent of these glacial advance–retreat cycles. Drilling such sedimentary sequences will thus provide well-needed evidence in order to reconstruct the (a)synchronicity of past ice advances in a trans-Alpine perspective. Eventually these data will document how the Alpine foreland was shaped and how the paleoclimate patterns varied along and across the Alps.
Michael A. Schwenk, Patrick Schläfli, Dimitri Bandou, Natacha Gribenski, Guilhem A. Douillet, and Fritz Schlunegger
Sci. Dril., 30, 17–42, https://doi.org/10.5194/sd-30-17-2022, https://doi.org/10.5194/sd-30-17-2022, 2022
Short summary
Short summary
A scientific drilling was conducted into a bedrock trough (overdeepening) in Bern-Bümpliz (Switzerland) in an effort to advance the knowledge of the Quaternary prior to 150 000 years ago. We encountered a 208.5 m-thick succession of loose sediments (gravel, sand and mud) in the retrieved core and identified two major sedimentary sequences (A: lower, B: upper). The sedimentary suite records two glacial advances and the subsequent filling of a lake sometime between 300 000 and 200 000 years ago.
Molly O. Patterson, Richard H. Levy, Denise K. Kulhanek, Tina van de Flierdt, Huw Horgan, Gavin B. Dunbar, Timothy R. Naish, Jeanine Ash, Alex Pyne, Darcy Mandeno, Paul Winberry, David M. Harwood, Fabio Florindo, Francisco J. Jimenez-Espejo, Andreas Läufer, Kyu-Cheul Yoo, Osamu Seki, Paolo Stocchi, Johann P. Klages, Jae Il Lee, Florence Colleoni, Yusuke Suganuma, Edward Gasson, Christian Ohneiser, José-Abel Flores, David Try, Rachel Kirkman, Daleen Koch, and the SWAIS 2C Science Team
Sci. Dril., 30, 101–112, https://doi.org/10.5194/sd-30-101-2022, https://doi.org/10.5194/sd-30-101-2022, 2022
Short summary
Short summary
How much of the West Antarctic Ice Sheet will melt and how quickly it will happen when average global temperatures exceed 2 °C is currently unknown. Given the far-reaching and international consequences of Antarctica’s future contribution to global sea level rise, the SWAIS 2C Project was developed in order to better forecast the size and timing of future changes.
Zhisheng An, Peizhen Zhang, Hendrik Vogel, Yougui Song, John Dodson, Thomas Wiersberg, Xijie Feng, Huayu Lu, Li Ai, and Youbin Sun
Sci. Dril., 28, 63–73, https://doi.org/10.5194/sd-28-63-2020, https://doi.org/10.5194/sd-28-63-2020, 2020
Short summary
Short summary
Earth has experienced remarkable climate–environmental changes in the last 65 million years. The Weihe Basin with its 6000–8000 m infill of a continuous sedimentary sequence gives a unique continental archive for the study of the Cenozoic environment and exploration of deep biospheres. This workshop report concludes key objectives of the two-phase Weihe Basin Drilling Project and the global significance of reconstructing Cenozoic climate evolution and tectonic–monsoon interaction in East Asia.
Andrew Cohen, Colleen Cassidy, Ryan Crow, Jordon Bright, Laura Crossey, Rebecca Dorsey, Brian Gootee, Kyle House, Keith Howard, Karl Karlstrom, and Philip Pearthree
Sci. Dril., 26, 59–67, https://doi.org/10.5194/sd-26-59-2019, https://doi.org/10.5194/sd-26-59-2019, 2019
Short summary
Short summary
This paper summarizes a workshop held in Parker, AZ, USA, to discuss planned scientific drilling in the Miocene(?) or early Pliocene Bouse Formation, a controversial deposit (of lacustrine, marine, or some hybrid origin) found in the lower Colorado River valley. The drilling project is intended to address this controversy as well as shed light on Pliocene climates of southwestern North America during an important period of past climate change.
Paul E. Olsen, John W. Geissman, Dennis V. Kent, George E. Gehrels, Roland Mundil, Randall B. Irmis, Christopher Lepre, Cornelia Rasmussen, Dominique Giesler, William G. Parker, Natalia Zakharova, Wolfram M. Kürschner, Charlotte Miller, Viktoria Baranyi, Morgan F. Schaller, Jessica H. Whiteside, Douglas Schnurrenberger, Anders Noren, Kristina Brady Shannon, Ryan O'Grady, Matthew W. Colbert, Jessie Maisano, David Edey, Sean T. Kinney, Roberto Molina-Garza, Gerhard H. Bachman, Jingeng Sha, and the CPCD team
Sci. Dril., 24, 15–40, https://doi.org/10.5194/sd-24-15-2018, https://doi.org/10.5194/sd-24-15-2018, 2018
Short summary
Short summary
The Colorado Plateau Coring Project-1 recovered ~ 850 m of core in three holes at two sites in the Triassic fluvial strata of Petrified Forest National Park, AZ, USA. The cores have abundant zircon, U-Pb dateable layers (210–241 Ma) that along with magnetic polarity stratigraphy, validate the eastern US-based Newark-Hartford astrochronology and timescale, while also providing temporal and environmental context for the vast geological archives of the Triassic of western North America.
Wim Westerhoff, Timme Donders, and Stefan Luthi
Sci. Dril., 21, 47–51, https://doi.org/10.5194/sd-21-47-2016, https://doi.org/10.5194/sd-21-47-2016, 2016
Short summary
Short summary
The CONOSC (COring the NOrth Sea Cenozoic) project brings scientists together that aim at scientific drilling of the north-western European marginal seas where in the last 65 million years the influence of sea and land was recorded continuously in the sediments. The subsiding area is ideally suited for detailed study of the relations between changing climate, biodiversity, and changing land masses. The report discusses the ICDP workshop outcome and overall project aims.
B. Giaccio, E. Regattieri, G. Zanchetta, B. Wagner, P. Galli, G. Mannella, E. Niespolo, E. Peronace, P. R. Renne, S. Nomade, G. P. Cavinato, P. Messina, A. Sposato, C. Boschi, F. Florindo, F. Marra, and L. Sadori
Sci. Dril., 20, 13–19, https://doi.org/10.5194/sd-20-13-2015, https://doi.org/10.5194/sd-20-13-2015, 2015
Short summary
Short summary
As a pilot study for a possible depth-drilling project, an 82m long sedimentary succession was retrieved from the Fucino Basin, central Apennines, which hosts ca. 900m of lacustrine sediments. The acquired paleoclimatic record, from the retrieved core, spans the last 180ka and reveals noticeable variations related to the last two glacial-interglacial cycles. In light of these results, the Fucino sediments are likely to provide one of the longest continuous record for the last 2Ma.
P. A. Baker, S. C. Fritz, C. G. Silva, C. A. Rigsby, M. L. Absy, R. P. Almeida, M. Caputo, C. M. Chiessi, F. W. Cruz, C. W. Dick, S. J. Feakins, J. Figueiredo, K. H. Freeman, C. Hoorn, C. Jaramillo, A. K. Kern, E. M. Latrubesse, M. P. Ledru, A. Marzoli, A. Myrbo, A. Noren, W. E. Piller, M. I. F. Ramos, C. C. Ribas, R. Trnadade, A. J. West, I. Wahnfried, and D. A. Willard
Sci. Dril., 20, 41–49, https://doi.org/10.5194/sd-20-41-2015, https://doi.org/10.5194/sd-20-41-2015, 2015
Short summary
Short summary
We report on a planned Trans-Amazon Drilling Project (TADP) that will continuously sample Late Cretaceous to modern sediment in a transect along the equatorial Amazon of Brazil, from the Andean foreland to the Atlantic Ocean. The TADP will document the evolution of the Neotropical forest and will link biotic diversification to changes in the physical environment, including climate, tectonism, and landscape. We will also sample the ca. 200Ma basaltic sills that underlie much of the Amazon.
D. J. Condon, P. Boggiani, D. Fike, G. P. Halverson, S. Kasemann, A. H. Knoll, F. A. Macdonald, A. R. Prave, and M. Zhu
Sci. Dril., 19, 17–25, https://doi.org/10.5194/sd-19-17-2015, https://doi.org/10.5194/sd-19-17-2015, 2015
Short summary
Short summary
This workshop report outlines the background, topics discussed and major conclusions/future directions arising form an ICDP- and ECORD-sponsored workshop convened to discuss the utility of scientific drilling for accelerating Neoproterozoic research.
J. S. Wellner
Sci. Dril., 18, 11–11, https://doi.org/10.5194/sd-18-11-2014, https://doi.org/10.5194/sd-18-11-2014, 2014
Cited articles
Alroy, A., Aberhan, M., Bottjer, D. J., Foote, M., Fürsich, F. T.,
Harries, P. J., Hendy, A. J. W., Holland, S. M., Ivany, L. C., Kiessling, W.,
Kosnik, M. A., Marshall, C. R., McGowan, A. J., Miller, A. I., Olszewski, T. D.,
Patzkowsky, M. E., Peters, S. E., Villier, L., Wagner, P. J., Bonuso, N.,
Borkow, P. S., Brenneis, B., Clapham, M. E., Fall, L. M., Ferguson, C. A.,
Hanson, V. L., Krug, A. Z., Layou, K. M., Leckey, E. H., Nürnberg, S.,
Powers, C. M., Sessa, J. A., Simpson, C., Tomašových, A., and Visaggi,
C. C.: Phanerozoic trends in the global diversity of marine invertebrates,
Science, 321, 97–100, https://doi.org/10.1126/science.1156963, 2008.
Amstaetter, K., Borch, T., Larese-Casanova, P., and Kappler, A.: Redox
transformation of arsenic by Fe(II)-activated goethite (α-FeOOH),
Environ. Sci. Technol., 44, 102–108, 2010.
Andeskie, A. S. and Benison, K. C.: Using sedimentology to address the marine
or continental origin of the Permian Hutchinson Salt Member of Kansas,
Sedimentology, 67, 882–896, 2020.
Andeskie, A. S., Benison, K. C., Eichenlaub, L. A., and Raine, R.:
Acid-saline-lake systems of the Triassic Mercia Mudstone Group, County
Antrim, Northern Ireland, J. Sediment. Res., 88, 385–398, 2018.
Baptiste, J., Martelet, G., Faure, M., Beccaletto, L., Reninger, P.-A., Perrin,
J., and Chen, Y.: Mapping of a buried basement combining aeromagnetic, gravity
and petrophysical data: The substratum of southwest Paris Basin, France,
Tectonophysics, 683, 333–348, 2016.
Barrell, J.: Relations between climate and terrestrial deposits, continued,
J. Geol., 16, 255–295, 1908.
Beccaletto, L., Capar, L., Serrano, O., and Marc, S.: Structural evolution
and sedimentary record of the Stephano-Permian basins occurring beneath the
Mesozoic sedimentary cover in the southwestern Paris basin (France), Bull.
Soc. Géol. France, 186, 429–450, 2015.
Becq-Giraudon, J.-F., Montenat, C., and Van Den Driessche, J.: Hercynian
high-altitude phenomena in the French Massif Central, tectonic implications:
Palaeogeogr. Palaeocl., 122, 227–241, 1996.
Begét, J. E. and Hawkins, D. B.: Influence of orbital parameters on
Pleistocene loess deposition in central Alaska, Nature, 337, 151–153, 1989.
Benison, K. C. and Goldstein, R. H.: Permian paleoclimate data from fluid
inclusions in halite, Chem. Geol., 154, 113–132, 1999.
Benison, K. C.: Acid saline fluid inclusions: Examples from modern and
Permian extreme lake systems, Geofluids, 13, 579–593, https://doi.org/10.1111/gfl.12053,
2013.
Benison, K. C.: How to search for life in Martian chemical sediments and
their fluid and solid inclusions using petrographic and spectroscopic
methods, Front. Environ. Sci., 7, 108, https://doi.org/10.3389/fenvs.2019.00108, 2019.
Benison, K. C., Goldstein, R. H., Wopenka, B., Burruss, R. C., and Pasteris,
J. D.: Extremely acid Permian lakes and ground waters in North America,
Nature, 392, 911–914, 1998.
Benison, K. C., Zambito, J. J., and Knapp, J. P.: Contrasting
siliciclastic-evaporite strata in subsurface and outcrop: An example from
the Permian Nippewalla Group of Kansas, USA, J. Sediment. Res., 85, 626–645,
https://doi.org/10.2110/jsr.2015.43, 2015.
Berner, R. A.: GEOCARBSULF – A combined model for Phanerozoic atmospheric
O2 and CO2, Geochim. Cosmochim. Ac., 70, 5653–5664, 2006.
Berner, R. A.: The long-term carbon cycle, fossil fuels and atmospheric
composition, Nature, 426, 323–326, 2003.
Blamey, N. J. F., Brand, U., Parnell, J., Spear, N., Lecuyer, C., Benison,
K. C., Meng, F., and Ni, P.: Paradigm shift in determining Neoproterozoic
atmospheric oxygen, Geology, 44, 651–654, 2016.
Bourquin, S., Bercovici, A., López-Gómez, J., Diez, J. B., Broutin, J.,
Ronchi, A., Durand, M., Arche, A., Linol, B., and Amour, F.: The Permian-Triassic
transition and the beginning of the Mesozoic sedimentation at the Western
peri-Tethyan domain scale: palaeogeographic maps and geodynamic
implications, Palaeogeogr. Palaeocl., 299, 265–280,
2011.
Bourquin, S., Guillocheau, F., and Péron, S.: Braided river within an
arid alluvial plain (example from the early Triassic, western German Basin):
criteria of recognition and expression of stratigraphic cycles,
Sedimentology, 56, 2235–2264, 2009.
Bourquin, S., Peron, S., and Durand, M.: Lower Triassic sequence stratigraphy of
the western part of the Germanic Basin (west of Black Forest): fluvial
system evolution through time and space, Sediment. Geol., 186, 187–211,
2006.
Bruguier, O., Becq-Giraudon, J. F., Champenois, M., Deloule, E., Ludden, J.,
and Mangin, D.: Application of in situ zircon geochronology and accessory
phase chemistry to constraining basin development during post-collisional
extension: a case study from the French Massif Central, Chem. Geol., 201,
319–336, https://doi.org/10.1016/j.chemgeo.2003.08.005, 2003.
Burg, J.-P., Van Den Driessche, J., and Brun, J.-P.: Syn- to post thickening
extension in the Variscan belt of western Europe: modes and structural
consequences, Géologie de la France, 3, 33–51, 1994.
Cao, W., Williams, S., Flament, N., Zahirovic, S., Scotese, C., and
Müller, R.: Palaeolatitudinal distribution of lithologic indicators of
climate in a palaeogeographic framework, Geol. Mag., 156, 331–354,
https://doi.org/10.1017/S0016756818000110, 2019.
Chen, X., Nakata, N., Pennington, C., Haffener, J., Chang, J. C., and He, X.:
The Pawnee earthquake as a result of the interplay among injection, faults
and foreshocks, Sci. Rep., 7, 1–18, https://doi.org/10.1038/s41598-017-04992-z, 2017.
Chamberlin, T. C. and Salisbury, R. D.: Geology – Vol II Earth History, Henry Holt and Company, New York, 1905.
Champagnac, J.-D., Schluneggar, F., Norton, K., von Blanckenburg, F., Abbuhl, L. M., and Schwab, M.: Erosion-driven uplift of the modern Central Alps,
Tectonophysics, 474, 236–249, https://doi.org/10.1016/j.tecto.2009.02.024, 2009.
Chen, J., Montañez, I. P., Qi, Y., Shen, S., and Wang, X.: Strontium and
carbon isotopic evidence for decoupling of pCO2 from continental weathering
at the apex of the late Paleozoic glaciation, Geology, 46, 395–398,
2018.
Cleal, C. J. and Thomas, B. A.: Palaeozoic tropical rainforests and their
effect on global climates: is the past the key to the present?, Geobiology,
3, 13–31, 2005.
Denison, R. E., Kirkland, D. W., and Evans, R.: Using strontium isotopes to
determine the age and origin of gypsum and anhydrite beds, J. Geol., 106,
1–17, 1998.
DiMichele, W. A., Tabor, N. J., Chaney, D. S., and Nelson, W. J.: From wetlands
to wet spots: environmental tracking and the fate of Carboniferous elements
in Early Permian tropical floras, in: Wetlands through time, edited by: Greb, S. F. and DiMichele, W. A., Geol. Soc. Am. Spec. Pap., 399, 223–248, 2006.
Ding, Z. L., Derbyshire, E., Yang, S. L., Yu, Z. W., Xiong, S. F., and Liu,
T. S.: Stacked 2.6-Ma grain size record from the Chinese loess based on five
sections and correlation with the deep-sea ∂18O record,
Paleoceanography, 17, 5-1–5-21, https://doi.org/10.1029/2001PA000725, 2002.
Domeier, M. and Torsvik, T. H.: Plate tectonics in the late Paleozoic:
Geosci. Front., 5, 303–350, https://doi.org/10.1016/j.gsf.2014.01.002,
2014.
Doornenbal, J. C. and Stevenson, A. G. (Eds.): Petroleum Geological Atlas of
the Southern Permian Basin Area. Houten, The Netherlands, EAGE, p. 342,
2010.
Dubiel, R. F. and Smoot, J. P.: Criteria for interpreting paleoclimate from red
beds – a tool for Pangean reconstructions, in: Pangea: Global Environments and Resources, edited by: Embry, A. F., Beauchamp, B.,
and Glass, B. J., Canad. Soc.
Petrol. Geol. Mem., 17, 295–310, 1994.
Ducassou, C., Mercuzot, M., Bourquin, S., Rossignol, C., Beccaletto, L.,
Pierson-Wickmann, A. C., Pellenard, P., Poujol, M., and Hue, C.: Sedimentology
and U-Pb dating of Carboniferous to Permian continental series of the
northern Massif Central (France): local palaeogeographic evolution and
larger scale correlations, Palaeogeogr. Palaeocl., 533,
109228, https://doi.org/10.1016/j.palaeo.2019.06.001, 2019.
Dusséaux, C.: Topographic reconstructions of the Variscan belt of
Western Europe through the study of fossil hydrothermal systems, PhD Thesis,
University of Plymouth, 2019.
EL Hadi, H., Simancas, J. F., Tahiri, A., González-Lodeiro, F., Azor, A.,
and Martínez-Poyatos, D.: Comparative review of the Variscan granitoids
of Morocco and Iberia: proposal of a broad zonation, Geodin. Acta, 19,
103–116, 2006.
Ellsworth, W. L.: Injection-induced earthquakes, Science, 341,
https://doi.org/10.1126/science.1225942, 2013.
Elrick, M. and Scott, L. A.: Carbon and oxygen isotope evidence for
high-frequency (104–105 yr) and My-scale glacio-eustasy in Middle
Pennsylvanian cyclic carbonates (Gray Mesa Formation), central New Mexico,
Palaeogeogr. Palaeocl., 285, 307–320, 2010.
Elrick, M., Reardon, D., Labor, W., Martin, J., Desrochers, A., and Pope,
M.: Orbital-scale climate change and glacioeustasy during the Early Late
Ordovician (Pre-Hirnantian) determined from ∂18O values in marine
apatite, Geology, 41, 775–778, https://doi.org/10.1130/G34363.1,
2013.
Ernst, R. E. and Buchan, K. L.: Large mafic magmatic events through time and
links to mantle-plume heads, in: Mantle
Plumes: Their Identification Through Time, edited by: Ernst, R. E. and Buchan, K. L., Boulder, Colorado, Geol. Soc.
Amer. Spec. Pap., 352, 483–575, 2001.
Erwin, D. H.: The Permo–Triassic extinction, Nature, 367, 231–236, 1994.
Erwin, D. H.: Extinction! How Life Nearly Ended 250 Million Years ago:
Princeton University Press, 2006.
Evans, D. A. D.: A fundamental Precambrian-Phanerozoic shift in Earth's
glacial style?, Tectonophysics, 375, 353–385, 2003.
Evans, M. E., Pavlov, V., Veselovsky, R., and Fetisova, A.: Late Permian
paleomagnetic results from the Lodève, Le Luc, and Bas-Argens Basins
(southern France): Magnetostratigraphy and geomagnetic field morphology,
Phys. Earth Planet. Inter., 237, 18–24, https://doi.org/10.1016/j.pepi.2014.09.002,
2014.
Falcon-Lang, H. J. and DiMichele, W. A.: What happened to the coal forests
during Pennsylvanian glacial phases?, Palaios, 25, 611–617, 2010.
Fang, Q., Wu, H. C., Hinnov, L. A., Jing, X. C., Wang, X. L., Yang, T. S., Li,
H. Y., and Zhang, S. H.: Astronomical cycles of Middle Permian Maokou Formation in
South China and their implications for sequence stratigraphy and
paleoclimate, Palaeogeogr. Palaeocl., 474, 130–139,
https://doi.org/10.1016/j.palaeo.2016.07.037, 2017.
Fang, Q., Wu, H., Hinnov, L. A., Jing, X., Wang, X., and Jiang, Q.:
Geological evidence for the chaotic behavior of the planets and its
constraints on the third order eustatic sequences at the end of the Late
Paleozoic Ice Age, Palaeogeogr. Palaeocl., 440, 848–859,
https://doi.org/10.1016/j.palaeo.2015.10.014, 2015.
Farmer, J. D., Bell III., J. F., Benison, K. C., Boynton, W. V., Cady, S. L.,
Ferris, F. G., MacPherson, D., Race, M. S., Thiemens, M. H., and Wadhwa, M.:
Assessment of planetary protection requirements for Mars sample return
missions, Space Studies Board, National Research Council, National Academy
Press, Washington, D.C., 80 pp., 2009.
Faure, M.: Late orogenic Carboniferous extensions in the Variscan French
Massif Central, Tectonics, 14, 132–153, 1995.
Feulner, G.: Formation of most of our coal brought Earth close to global
glaciation, P. Natl. Acad. Sci. USA, 114, 11333–11337, https://doi.org/10.1073/pnas.1712062114, 2017.
Fielding, C. R., Frank, T. D., and Isbell, J. L.: The late Paleozoic ice age – a
review of current understanding and synthesis of global climate patterns, 441,
343–354, 2008.
Foght, J. M., Gieg, L. M., and Siddique, T.: The microbiology of oil sands
tailings: past, present, future, FEMS Microbiol. Ecol., 93, fix034,
https://doi.org/10.1093/femsec/fix034, 2017.
Foster, G. L., Royer, D. L., and Lunt, D. J.: Future climate forcing potentially
without precedent in the last 420 million years, Nat. Commun., 8,
14845, https://doi.org/10.1038/ncomms14845, 2017.
Foster, T. M., Soreghan, G. S., Soreghan, M. J., Benison, K. C., and Elmore,
R. D.: Climatic and paleogeographic significance of eolian sediment in the
Middle Permian Dog Creek Shale (Midcontinent U.S.). Palaeogeogr.
Palaeocl., 402, 12–29,
https://doi.org/10.1016/j.palaeo.2014.02.031, 2014.
Foulger, G. R., Wilson, M. P., Gluyas, J. G., Julian, B. R., and Davies, R. J.:
Global review of human-induced earthquakes, Earth Sci. Rev., 178, 438–514.
https://doi.org/10.1016/j.earscirev.2017.07.008, 2018.
Gastaldo, R., DiMichele, W., and Pfefferkorn, H.: Out of the icehouse into
the greenhouse-A late Paleozoic analog for modern global vegetational
change, GSA Today, 6, 1–7, 1996.
Geissman, J. W., Renne, P., Mitchell III., W. S., and Tabor, N. J.: Integrated
magnetostratigraphy and geochronology of the “Ochoan” Quartermaster
Formation of north Texas, Abstracts with Programs, Geol. Soc. Amer., 44,
29, 2012.
Giles, J. M., Soreghan, M. J., Benison, K. C., Soreghan, G. S., and Hasiotis,
S. T.: Lakes, loess, and paleosols In the Permian Wellington Formation of
Oklahoma, U.S.A.: Implications for paleoclimate and paleogeography of the
Midcontinent, J. Sediment. Res., 83, 825–846,
https://doi.org/10.2110/jsr.2013.59, 2013.
Glasspool, I. J. and Scott, A. C.: Phanerozoic concentrations of atmospheric
oxygen reconstructed from sedimentary charcoal, Nat. Geosci., 3,
627–630, 2010.
Goddéris, Y.: Onset and ending of the late Palaeozoic ice age triggered
by tectonically paced rock weathering, Nat. Geosci., 10, 382–388, 2017.
Hamamura, N., Olson, S. H., Ward, D. W., and Inskeep, W. P.: Diversity and
functional analysis of bacterial communities associated with natural
hydrocarbon seeps in acidic soils at Rainbow Springs, Yellowstone National
Park, Appl. Environ. Microbiol., 71, 5943–5950, 2005.
Haq, B. U. and Schutter, S. R.: A chronology of Paleozoic sea-level changes,
Science, 322, 64–68, 2008.
Hay, W. W., Migdisov, A., Balukhovsky, A. N., Wold, C. N., Flogel, S., and
Soding, E.: Evaporites and the salinity of the ocean during the Phanerozoic:
Implications for climate, ocean circulation and Life, Palaeogeogr.
Palaeocl., 240, 3–46, https://doi.org/10.1016/j.palaeo.2006.03.044, 2006.
Heavens, N. G., Shields, C. A., and Mahowald, N. M.: Sensitivity of a deep time
climate simulation to aerosol prescription, J. Adv. Model. Earth
Syst., 4, M11002, https://doi.org/10.1029/2012MS000166, 2012.
Heckel, P. H.: Evidence for global (glacial-eustatic) control over upper
Carboniferous (Pennsylvanian) cyclothems in midcontinent North America,
Geol. Soc. London Spec. Publ., 55, 35–47, 1990.
Hentz, T. F.: Sequence stratigraphy of the Upper Pennsylvanian Cleveland
Formation: A major tight-gas sandstone, western Anadarko Basin, Texas
Panhandle, Am. Assoc. Pet. Geol. Bull., 78, 569–595, 1994.
Huang, H., Gao, Y., Jones, M. M., Tao, H., Alan, R., Ibarra, D. E.,
Huaichun, W., and Wang, C.: Astronomical forcing of Middle Permian terrestrial
climate recorded in a large paleolake in northwestern China, Palaeogeogr.
Palaeocl., 550, https://doi.org/10.1016/j.palaeo.2020.109735, 2020.
Johnson, K. S.: Anadarko Basin Symposium, Oklahoma Geological Survey, 90,
1–291, 1988.
Juncal, M., Bourquin, S., Beccaletto, L., and Diez, J.: New sedimentological
and palynological data from the Permian and Triassic series of the
Sancerre-Couy core, Paris Basin, France, Geobios, 51, 517–535, https://doi.org/10.1016/j.geobios.2018.06.007, 2018.
Keranen, K. M. and Weingarten, M.: Induced seismicity, Ann. Rev. Earth
Planet. Sci., 46, 149–174, https://doi.org/10.1146/annurev-earth-082517-010054, 2018.
Kiessling, W.: Long-term relationships between ecological stability and
biodiversity in Phanerozoic reefs, Nature, 433, 410–413,
https://doi.org/10.1038/nature03152, 2005.
Kutzbach., J. E. and Gallimore, R. G.: Pangean climates: megamonsoons of the
megacontinent, J. Geophys. Res., 94, 3341–3357, 1989.
Langenbruch, C., Weingarten, M., and Zoback, M. D.: Physics-based
forecasting of man-made earthquake hazards in Oklahoma and Kansas, Nat. Commun., 9, 1–10, https://doi.org/10.1038/s41467-018-06167-4, 2018.
Lee, L. A., Reddington, C. L., and Carslaw, K. S.: On the relationship between
aerosol model uncertainty and radiative forcing uncertainty, P. Natl. Acad. Sci. USA, 113, 5820–5827, https://doi.org/10.1073/pnas.1507050113, 2016.
Lin, L., Khider, D., Lisiecki, L. E., and Lawrence, C. E.: Probabilistic
sequence alignment of stratigraphic records, Paleoceanography, 29, 976–989,
https://doi.org/10.1002/2014PA002713, 2014.
Lisiecki, L. E. and Lisiecki, P. A.: Application of dynamic programming to
the correlation of paleoclimate records, Paleoceanography, 17, 1049,
https://doi.org/10.1029/2001PA000733, 2002.
LIP Commission, http://www.largeigneousprovinces.org/, last access: August 2020.
Liu, X., Xu, T., and Liu, T.: The Chinese loess in Xifeng, II. A study of
anisotropy of magnetic susceptibility of loess from Xifeng, Geophys. J.
Int., 92, 349–353, https://doi.org/10.1111/j.1365-246X.1988.tb01147.x, 1999.
Luo, Q., Krumholz, L. R., Najar, F. Z., Peacock, A. D., Roe, B. A., White, D. C.,
and Elshahed, M. S.: Diversity of the microeukaryotic community in
sulfide-rich Zodletone Spring (Oklahoma), Appl. Environ. Microbiol., 71,
6175–6184, https://doi.org/10.1128/AEM.71.10.6175-6184.2005, 2005.
Maher, B. A.: Palaeoclimatic records of the loess/paleosol sequences of the
Chinese Loess Plateau, Quaternary Sci. Rev., 154, 23–84, 2016.
McArthur, J. M., Howarth, R. J., and Bailey, T. R.: Strontium isotope
stratigraphy: LOWESS version 3: best fit to the marine Sr-isotope curve for
0–509 Ma and accompanying look-up table for deriving numerical age, J.
Geol., 109, 155–170, 2001.
Menard, G. and Molnar, P.: Collapse of a Hercynian Tibetan Plateau into a
late Palaeozoic European Basin and Range province, Nature, 334, 235–237,
1988.
Mercuzot, M.: Reconstitutions paléoenvironnementales et
paléoclimatiques en contexte tardi-orogénique des bassins
Carbonifères-Permiens du nord du Massif Central, France, PhD thesis, University of
Rennes, expected October 2020.
Mercuzot, M., Bourquin, S., Beccaletto, L., Ducassou, C., Rubi, R., and Pellenard, P.:
Palaeoenvironmental reconstitutions at the Carboniferous-Permian
transition south of the Paris Basin, France: implications on the
stratigraphic evolution and basin geometry, Int. J. Earth Sci., accepted, 2020.
Meyers, S. R.: Cyclostratigraphy and the problem of astrochronologic testing,
Earth Sci. Rev., 190, 190–223, https://doi.org/10.1016/j.earscirev.2018.11.015, 2019.
Meyers, S. R.: The evaluation of eccentricity-related amplitude modulation
and bundling in paleoclimate data: an inverse approach for astrochronologic
testing and time scale optimization, Paleoceanography, 30, 1625–1640,
https://doi.org/10.1002/2015PA002850, 2015.
Meyers, S. R. and Sageman, B. B.: Quantification of deep-time orbital forcing
by average spectral misfit, Am. J. Sci., 307, 773–792,
https://doi.org/10.2475/05.2007.01, 2007.
Michel, L. A., Tabor, N. J., Montanez, I. P., Schmitz, M., and Davydov, V. I.:
Chronostratigraphy and paleoclimatology of the Lodéve Basin, France:
Evidence for a pan-tropical aridification event across the Carboniferous –
Permian boundary, Palaeogeogr. Palaeocl., 430, 118–131,
https://doi.org/10.1016/j.palaeo.2015.03.020, 2015.
Molnar, P. and England, P.: Late Cenozoic uplift of mountain ranges and
global climate change: chicken or egg?, Nature, 346, 29–34, 1990.
Montañez, I. P., Tabor, N. J., Niemeier, D., DiMichele, W. A., Frank, T. D.,
Fielding, C. R., Isbell, J. L., Birgenheier, L. P., and Rygel, M.:
CO2-forced climate and vegetation instability during Late Paleozoic
deglaciation, Science, 315, 87–91, 2007.
Montañez, I. P., McElwain, J. C., Poulsen, C. J., White, J. D., DiMichele,
W. A., Wilson, J. P., Griggs, G., and Hren, M. T.: Climate, pCO2 and
terrestrial carbon cycle linkages during late Palaeozoic
glacial-interglacial cycles, Nat. Geosci., 9, 824–828, 2016.
Muttoni, G. and Kent, D. V.: Adrea as promontory of Africa and its
conceptual role in the Tethys twist and Pangea B to Pangea A transformation
in the Permian, Rivista Italiana di Paleontogia e Stratigrafia, 125,
249–269, 2019.
Nawrocki, J., Polechonska, O., Bogucki, A., and Łanczont, M.: Palaeowind
directions recorded in the youngest loess in Poland and western Ukraine as
derived from anisotropy of magnetic susceptibility measurements, Boreas, 35, 266–271, https://doi.org/10.1111/j.1502-3885.2006.tb01156.x, 2006.
Nelsen, M. P., DiMichele, W. A., Peters, S. E., and Boyce, C. K.: Delayed fungal
evolution did not cause the Paleozoic peak in coal production, P. Natl. Acad. Sci. USA, 113,
2442–2447, 2016.
Pardo, J. D., Small, B. J., Milner, A. R., and Huttenlocker, A. K.:
Carboniferous-Permian climate change constrained by early land vertebrate
radiations, Nature Ecol. Evol., 3, 200–206, https://doi.org/10.1038/s41559-018-0776-z, 2019.
Parrish, J. T.: Paleoclimate of the supercontinent Pangea, J. Geology, 101,
215–233, 1993.
Parrish, J. T.: Interpreting Pre-Quaternary Climate from the Geologic Record, Columbia University Press, New York, 1998.
Payne, M. E. and Clapham, J. L.: End-Permian mass extinction in the oceans:
an ancient analog for the twenty-first century?, Ann. Rev. Earth Planet.
Sci., 40, 89–111, https://doi.org/10.1146/annurev-earth-042711-105329, 2012.
Pellenard, P., Gand, G., Schmitz, M, Galtier, J., Broutin, J., and Stéyer, J. S.:
High-precision U-Pb zircon ages for explosive volcanism calibrating the NW
European continental Autunian stratotype, Gondwana Res., 51, 118–136,
2017.
Pfeifer, L. S., Soreghan, G. S., Pochat, S., Van Den Driessche, J., and
Thomson, S. N.: Permian exhumation of the Montagne Noire core complex
recorded in the Graissessac-Lodève Basin, France, Basin Research, 30, 1–14,
https://doi.org/10.1111/bre.12197, 2016.
Pfeifer, L. S., Soreghan, G. S., Pochat, S., and Van Den Driessche, J.:
Paleoclimatic significance of Permian loess in eastern equatorial Pangea:
The Lodève Basin (France), Geol. Soc. Am. Bull.,
https://doi.org/10.1130/B35590.1, 2020a.
Pfeifer, L. S., Hinnov, L. A., Zeeden, C., Rolf, C., Laag, C., and Soreghan,
G. S.: Rock magnetic cyclostratigraphy of Permian loess in eastern equatorial
Pangea (Salagou Formation, south-central France), Front. Earth Sci., 8, 241,
https://doi.org/10.3389/feart.2020.00241, 2020b.
Pochat, S. and Van Den Driessche, J.: Filling sequence in Late Paleozoic
continental basins: A chimera of climate change? A new light shed given by
the Graissessac–Lodève basin (SE France), Palaeogeogr.
Palaeocl., 302, 170–186, 2011.
Praeg, D.: Diachronous Variscan late-orogenic collapse as a response to
multiple detachments; a view from the internides in France to the foreland
in the Irish Sea, Geol. Soc. Spec. Pub., 223, 89–138, 2004.
Reiners, P. W. and Brandon, M. T.: Using thermochronology to understand
orogenic erosion, Ann. Rev. Earth Planet. Sci., 34, 419–466, 2006.
Rondot, A.: An Integrated Geophysical Analysis of Crustal Structure in the
Wichita Uplift Region of Southern Oklahoma. M.S. Thesis, Norman, University
of Oklahoma, 107 pp., 2009.
Saltzman, M. R. and Thomas, E.: Carbon isotope stratigraphy, in: The Geologic
Time Scale 2012, edited by: Gradstein, F. M., Ogg, J. G., Schmitz, M., and Ogg, G., Elsevier, 207–232, 2012.
Sardar Abadi, M., Owens, J. D., Liu, X., Them II, T. R., Cui, X., Heavens,
N. G., and Soreghan, G. S.: Atmospheric dust stimulated marine primary
productivity during Earth's penultimate icehouse, Geology, 480, 247–251, https://doi.org/10.1130/G46977.1, 2020.
Satterfield, C. L., Lowenstein, T. K., Vreeland, R. H., Rosenzweig, W. D., and
Powers, D. W.: New evidence for 250 Ma age of halotolerant bacterium from a
Permian salt crystal, Geology, 33, 265–268, 2005.
Scholze, F. and Schneider, J. W.: Improved methodology of “conchostracan”
(Crustacea: Branchiopoda) classification for biostratigraphy, Newsletters on
Strat., 48, 287–298, 2015.
Schwartz, S. E. and Andreae, M. O.: Uncertainty in climate change caused by
aerosols, Science, 272, 1121–1122, 1996.
Sheldon, N. D.: Do red beds indicate paleoclimatic conditions?: A Permian
case study, Palaeogeogr. Palaeocl., 228, 305–319,
2005.
Soreghan, G. S., Soreghan, M. J., Poulsen, C. E., Young, R. A., Eble, C., Sweet,
D. E., and Davogustto, O.: Anomalous cold in the Pangaean tropics, Geology,
36, 659–662, 2008a.
Soreghan, G. S., Soreghan, M. J., and Hamilton, M. A.: Origin and significance
of loess in late Paleozoic western Pangaea: A record of tropical cold?,
Palaeogeogr. Palaeocl., 268, 234–259, https://doi.org/10.1016/j.palaeo.2008.03.050, 2008b.
Soreghan, G. S., Keller, G. R., Gilbert, M. C., Chase, C. G., and Sweet, D.:
Load-induced subsidence of the Ancestral Rocky Mountains recorded by
preservation of Permian landscapes, Geosphere, 8, 654–668, https://doi.org/10.1130/GES00681.S1, 2012.
Soreghan, G. S., Sweet, D. E., and Heavens, N. G.: Upland glaciation in
tropical Pangaea: Geologic evidence and implications for Late Paleozoic
climate modeling, J. Geology, 122, 137–163, 2014.
Soreghan, G. S., Heavens, N. G., Hinnov, L. A., Aciego, S. M., and Simpson, C.:
Reconstructing the dust cycle in deep time: The case of the Late Paleozoic
icehouse, in: Earth-Life Transitions –
Paleobiology in the Context of Earth System Evolution: The Paleontological
Society Papers, edited by: Polly, P. D. and Fox, D. L., 21, 83–120, 2015a.
Soreghan, G. S., Benison, K. C., Foster, T. M., Zambito, J., and Soreghan,
M. J.: The paleoclimatic and geochronologic utility of coring red beds and
evaporites: a case study from the RKB core (Permian, Kansas, USA), Int. J.
Earth Sci., 104, 1–17, https://doi.org/10.1007/s00531-014-1070-1,
2015b.
Soreghan, G. S, Soreghan, M. J., and Heavens, N. G.: Explosive volcanism as a
key driver of the Late Paleozoic Ice Age, Geology, 47, 600–604,
https://doi.org/10.1130/G46349.1, 2019.
Soreghan, M. J., Soreghan, G. S., and Hamilton, M. A.: Paleowinds inferred from
detrital-zircon geochronology of upper Paleozoic loessite, western
equatorial Pangea, Geology, 30, 695–698, 2002.
Soreghan, M. J., Heavens, N. G., Soreghan, G. S., Link, P. K., and Hamilton,
M. A.: Abrupt and high-magnitude changes in atmospheric circulation recorded
in the Permian Maroon Formation, tropical Pangaea, Geol. Soc. Am. Bull., 126, 569–584,
https://doi.org/10.1130/B30840.1, 2014.
Soreghan, M. J., Swift, M. M., and Soreghan, G. S.: Provenance of Permian eolian
and related strata in the North American Midcontinent: Tectonic and climatic
controls on sediment dispersal in western tropical Pangea, in: Tectonics, Sedimentary Basins, and Provenance: A Celebration of the Career of William R. Dickinson, edited by: Ingersoll, R. V., Lawton, T. F., and Graham, S. A., Geol. Soc. Am.
Spec. Pap., 540, 661–687, https://doi.org/10.1130/SPE540, 2018.
Steiner, M. B.: The magnetic polarity time scale across the Permian–Triassic
boundary, in: Non-Marine
Permian Biostratigraphy and Biochronology, edited by: Lucas, S. G., Cassinis, G., and Schneider, J. W., Geol. Soc. London, Spec. Pub., 265, 15–38, 2006.
Sternai, P., Herman, F., Champagnac, J. D., Fox, M., Salcher, B., and
Willett, S. D.: Pre-glacial topography of the European Alps, Geology, 40, 1067–1070, https://doi.org/10.1130/G33540.1, 2012.
Sues, H.-D. and Reisz, R. R.: Origins and early evolution of herbivory in
tetrapods, Trends Ecol. Evol., 13, 141–145, 1998.
Sun, Y., Lu, H., and An, Z.: Grain size of loess, palaeosol and Red Clay
deposits on the Chinese Loess Plateau: Significance for understanding
pedogenic alteration and palaeomonsoon evolution, Palaeogeogr.
Palaeocl., 241, 129–138, 2006.
Sur, S., Owens, J. D., Soreghan, G. S., Lyons, T. W., Raiswell, R., Heavens,
N. G., and Mahowald, N. M.: Extreme eolian delivery of reactive iron to late
Paleozoic icehouse seas, Geology, 43, 1099–1102, https://doi.org/10.1130/G37226.1, 2015.
Svensen, H., Planke, S., Polozov, A. G., Schmidbauer, N., Corfu, F.,
Podladchikov, Y. Y., and Jamtveit, B.: Siberian gas venting and the
end-Permian environmental crisis, Earth Planet. Sci. Lett., 277, 490–500,
2009.
Sweet, A. C., Soreghan, G. S., Sweet, D. E., Soreghan, M. J., and Madden, A. S.:
Permian dust in Oklahoma: Source and origin for middle Permian
(Flowerpot-Blaine) redbeds in western tropical Pangaea, Sediment. Geol.,
284–285, 181–196, doi.org/10.1016/j.sedgeo.2012.12.006, 2013.
Tabor, N. J. and Montanez, I. P.: Shifts in late Paleozoic atmospheric
circulation over western equatorial Pangea: insights from pedogenic mineral
∂18O compositions, Geology, 30, 1127–1130, 2002.
Tabor, N. J. and Poulsen, C. J.: Palaeoclimate across the Late
Pennsylvanian–Early Permian tropical palaeolatitudes: A review of climate
indicators, their distribution, and relation to palaeophysiographic climate
factors: Palaeogeogr. Palaeocl., 268, 293–310, 2008.
Tabor, N. J., Myers, T. S., Mack, G. H., Looy, C. V., and Renne, P. R.:
Quatermaster Formation of north Texas, USA; Part I, Litho- and
chemostratigraphy, Abstracts With Programs, Geol. Soc. Am., 43, 383,
2011.
Tabor, N. J. and Myers, T. S.: Paleosols as indicators of paleoenvironment
and paleoclimate, Annual Rev. Earth Planet. Sci., 43, 333–361, 2015.
Theiling, B. P., Elrick, M., and Asmerom, Y.: Increased continental weathering
flux during orbital-scale sea-level highstands: Evidence from Nd and O
isotope trends in middle Pennsylvanian cyclic carbonates, Palaeogeogr.
Palaeocl., 342–343, 17–26, https://doi.org/10.1016/j.palaeo.2012.04.017, 2012.
Tian, H., Fan, M., Chamberlain, K. R., Waite, L., and Stern, R. J.: Zircon
LA-ICPMS and CA-TIMS U-PB dates of late Paleozoic volcanic tuffs in the
Midland Basin, West Texas, Abstracts with Programs, Geol. Soc. Am., 52, 1,
https://doi.org/10.1130/abs/2020SC-343618, 2020.
Tomezzoli, R. N., Tickj, H., Rapalini, A. E., Gallo, L. C., Cristallini, E. O.,
Arzadún, G., and Chemale Jr., F.: Gondwana's Apparent Polar Wander Path
during the Permian – new insights from South America, Sci. Reports, 8, 8436, https://doi.org/10.1038/s41598-018-25873-z,
2018.
Twitchett, R. J., Looy, C. V., Morante, R., Visscher, H., and Wignall, P. B.:
Rapid and synchronous collapse of marine and terrestrial ecosystems during
the end-Permian biotic crisis, Geology, 29, 351–354, 2001.
Valentino, D. W. and Gates, A. E.: Asynchronous extensional collapse of a
transpressional orogen: the Alleghanian central Appalachian Piedmont, USA,
J. Geodyn., 31, 145–167, 2001.
Walker, T. R.: Formation of red beds in modern and ancient deserts, Geol.
Soc. Am. Bull., 78, 353–68, 1967.
Walker, T. R.: Formation of red beds in moist tropical climates: A
hypothesis, Geol. Soc. Am. Bull., 85, 633–638, 1974.
Warren, J. K.: Evaporites, A Geological Compendium, Second Edition, Springer
International Publishing AG, Switzerland, p. 1813, 2016.
Wignall, P. B. and Twitchett, R. J.: Oceanic anoxia and the end Permian mass
extinction, Science, 272, 1155–1158, https://doi.org/10.1126/science.272.5265.1155 1996.
Williams, D. F., Peck, J., Karabanov, E. B., Prokopenko, A. A., Kravchinsky,
B., King, J., and Kuzmin, M. I.: Lake Baikal record of continental climate
response to orbital insolation during the past 5 million years, Science,
278, 1114–1117, https://doi.org/10.1126/science.278.5340.1114, 1997.
Wilson, L. R.: A Permian fungus spore type from the Flowerpot Formation of
Oklahoma, Oklahoma Geology Notes, 22, 91–96, 1962.
Witt, W. J.: Cross section of Oklahoma from SW to NE corners of state:
Oklahoma City Geological Society, Oklahoma, 1971.
Wu, H., Fang, Q., Wang, X., Hinnov, L. A., Qi, Y., Shen, S., Yang, T., Li,
H., Chen, J., and Zhang, S. A.: ∼ 34 M.y. astronomical time scale
for the uppermost Mississippian through Pennsylvanian of the Carboniferous
System of the Paleo-Tethyan Realm, Geology, 47, 83–86, https://doi.org/10.1130/G45461.1, 2019.
Wu, H., Zhang, S., Hinnov, L. A., Feng, Q., Jiang, G., Li, H., and Yang, T.:
Time-calibration of Milankovitch cycles in the Late Permian, Nat. Commun., 4, 2452,
https://doi.org/10.1038/ncomms3452, 2013.
Yang, S. and Ding, Z.: A 249 kyr stack of eight loess grain size records from
northern China documenting millennial-scale climate variability, Geochem.
Geophy., Geosy., 15, 798–814,
https://doi.org/10.1002/2013GC005113, 2013.
Zambito, J. J. and Benison, K. C.: Extremely high temperatures and
paleoclimate trends recorded in Permian ephemeral lake halite, Geology, 41,
587–590, https://doi.org/10.1130/G34078.1, 2013.
Zhang, R., Kravchinsky, V. A., Zhu, R., and Yue, L.: Paleomonsoon route
reconstruction along a W-E transect in the Chinese Loess Plateau using the
anisotropy of magnetic susceptibility: Summer monsoon model, Earth Planet.
Sci. Lett., 299, 436–446, https://doi.org/10.1016/j.epsl.2010.09.026, 2010.
Zhu, R., Liu, Q., and Jackson, M. J.: Paleoenvironmental significance of the
magnetic fabrics in Chinese loess-paleosol since the last interglacial
(< 130 ka), Earth Planet. Sci. Lett., 221, 55–69, https://doi.org/10.1016/S0012-821X(04)00103-7, 2004.
Short summary
The events of the Permian — the orogenies, biospheric turnovers, icehouse and greenhouse antitheses, and Mars-analog lithofacies — boggle the imagination and present us with great opportunities to explore Earth system behavior. Here we outline results of workshops to propose continuous coring of continental Permian sections in western (Anadarko Basin) and eastern (Paris Basin) equatorial Pangaea to retrieve continental records spanning 50 Myr of Earth's history.
The events of the Permian — the orogenies, biospheric turnovers, icehouse and greenhouse...