60 years of scientific deep drilling in Colombia: the north Andean guide to the Quaternary
Henry Hooghiemstra
CORRESPONDING AUTHOR
Institute for Biodiversity and Ecosystem Dynamics, Department of
Ecosystem and Landscape Dynamics, University of Amsterdam, Science Park 904,
1098 XH Amsterdam, the Netherlands
Gustavo Sarmiento Pérez
Servicio Geológico de Colombia (Ingeominas), Bogotá, Colombia
currently at: Departamento de Geociencias, Universidad Nacional de Colombia, Bogotá, Colombia
Vladimir Torres Torres
Institute for Biodiversity and Ecosystem Dynamics, Department of
Ecosystem and Landscape Dynamics, University of Amsterdam, Science Park 904,
1098 XH Amsterdam, the Netherlands
Exploration and New Ventures, ExxonMobil, 22777 Springwoods Village Parkway, Spring, Texas 77389, USA
Juan-Carlos Berrío
Institute for Biodiversity and Ecosystem Dynamics, Department of
Ecosystem and Landscape Dynamics, University of Amsterdam, Science Park 904,
1098 XH Amsterdam, the Netherlands
Department of Geography, University of Leicester, Leicester, UK
Lucas Lourens
Department of Geosciences, Utrecht University, Utrecht, the Netherlands
Suzette G. A. Flantua
CORRESPONDING AUTHOR
Institute for Biodiversity and Ecosystem Dynamics, Department of
Ecosystem and Landscape Dynamics, University of Amsterdam, Science Park 904,
1098 XH Amsterdam, the Netherlands
Department of Biological Sciences, University of Bergen, 5020
Bergen, Norway
Bjerknes Centre for Climate Research, University of Bergen, 5020
Bergen, Norway
Related authors
Dunia H. Urrego, Henry Hooghiemstra, Oscar Rama-Corredor, Belen Martrat, Joan O. Grimalt, Lonnie Thompson, Mark B. Bush, Zaire González-Carranza, Jennifer Hanselman, Bryan Valencia, and César Velásquez-Ruiz
Clim. Past, 12, 697–711, https://doi.org/10.5194/cp-12-697-2016, https://doi.org/10.5194/cp-12-697-2016, 2016
Short summary
Short summary
We compare eight pollen records reflecting environmental change in the tropical Andes over the past 30 000 years. Our analysis focuses on the signature of millennial-scale climate variability in the tropical Andes: Heinrich stadials (HS) and Greenland interstadials (GI). We identify rapid responses of the tropical vegetation, with downslope upper forest line (UFL) migrations and cooling during HS and the Younger Dryas.
S. G. A. Flantua, H. Hooghiemstra, M. Vuille, H. Behling, J. F. Carson, W. D. Gosling, I. Hoyos, M. P. Ledru, E. Montoya, F. Mayle, A. Maldonado, V. Rull, M. S. Tonello, B. S. Whitney, and C. González-Arango
Clim. Past, 12, 483–523, https://doi.org/10.5194/cp-12-483-2016, https://doi.org/10.5194/cp-12-483-2016, 2016
Short summary
Short summary
This paper serves as a guide to high-quality pollen records in South America that capture environmental variability during the last 2 millennia. We identify the pollen records suitable for climate modelling and discuss their sensitivity to the spatial signature of climate modes. Furthermore, evidence for human land use in pollen records is useful for archaeological hypothesis testing and important in distinguishing natural from anthropogenically driven vegetation change.
S. G. A. Flantua, M. Blaauw, and H. Hooghiemstra
Clim. Past, 12, 387–414, https://doi.org/10.5194/cp-12-387-2016, https://doi.org/10.5194/cp-12-387-2016, 2016
Short summary
Short summary
We present a review of chronological dating from ca. 1100 fossil pollen records in Central and South America. Additionally, a temporal quality assessment is implemented on 292 records from northwest South America, which include recalibrating 234 age models. This method evaluates uncertainties for inferred sample ages and chronologies. Important time windows on centennial-millennial climate variability are discussed for sample resolution (estimated years/sample) and temporal uncertainty.
Suning Hou, Leonie Toebrock, Mart van der Linden, Fleur Rothstegge, Martin Ziegler, Lucas J. Lourens, and Peter K. Bijl
Clim. Past, 21, 79–93, https://doi.org/10.5194/cp-21-79-2025, https://doi.org/10.5194/cp-21-79-2025, 2025
Short summary
Short summary
Based on dinoflagellate cyst assemblages and sea surface temperature records west of offshore Tasmania, we find a northward migration and freshening of the subtropical front, not at the M2 glacial maximum but at its deglaciation phase. This oceanographic change aligns well with trends in pCO2. We propose that iceberg discharge from the M2 deglaciation freshened the subtropical front, which together with the other oceanographic changes affected atmosphere–ocean CO2 exchange in the Southern Ocean.
David A. Hodell, Simon J. Crowhurst, Lucas Lourens, Vasiliki Margari, John Nicolson, James E. Rolfe, Luke C. Skinner, Nicola C. Thomas, Polychronis C. Tzedakis, Maryline J. Mleneck-Vautravers, and Eric W. Wolff
Clim. Past, 19, 607–636, https://doi.org/10.5194/cp-19-607-2023, https://doi.org/10.5194/cp-19-607-2023, 2023
Short summary
Short summary
We produced a 1.5-million-year-long history of climate change at International Ocean Discovery Program Site U1385 of the Iberian margin, a well-known location for rapidly accumulating sediments on the seafloor. Our record demonstrates that longer-term orbital changes in Earth's climate were persistently overprinted by abrupt millennial-to-centennial climate variability. The occurrence of abrupt climate change is modulated by the slower variations in Earth's orbit and climate background state.
Rick Hennekam, Katharine M. Grant, Eelco J. Rohling, Rik Tjallingii, David Heslop, Andrew P. Roberts, Lucas J. Lourens, and Gert-Jan Reichart
Clim. Past, 18, 2509–2521, https://doi.org/10.5194/cp-18-2509-2022, https://doi.org/10.5194/cp-18-2509-2022, 2022
Short summary
Short summary
The ratio of titanium to aluminum (Ti/Al) is an established way to reconstruct North African climate in eastern Mediterranean Sea sediments. We demonstrate here how to obtain reliable Ti/Al data using an efficient scanning method that allows rapid acquisition of long climate records at low expense. Using this method, we reconstruct a 3-million-year North African climate record. African environmental variability was paced predominantly by low-latitude insolation from 3–1.2 million years ago.
Anna Joy Drury, Diederik Liebrand, Thomas Westerhold, Helen M. Beddow, David A. Hodell, Nina Rohlfs, Roy H. Wilkens, Mitchell Lyle, David B. Bell, Dick Kroon, Heiko Pälike, and Lucas J. Lourens
Clim. Past, 17, 2091–2117, https://doi.org/10.5194/cp-17-2091-2021, https://doi.org/10.5194/cp-17-2091-2021, 2021
Short summary
Short summary
We use the first high-resolution southeast Atlantic carbonate record to see how climate dynamics evolved since 30 million years ago (Ma). During ~ 30–13 Ma, eccentricity (orbital circularity) paced carbonate deposition. After the mid-Miocene Climate Transition (~ 14 Ma), precession (Earth's tilt direction) increasingly drove carbonate variability. In the latest Miocene (~ 8 Ma), obliquity (Earth's tilt) pacing appeared, signalling increasing high-latitude influence.
Bas de Boer, Marit Peters, and Lucas J. Lourens
Clim. Past, 17, 331–344, https://doi.org/10.5194/cp-17-331-2021, https://doi.org/10.5194/cp-17-331-2021, 2021
Emily Dearing Crampton-Flood, Lars J. Noorbergen, Damian Smits, R. Christine Boschman, Timme H. Donders, Dirk K. Munsterman, Johan ten Veen, Francien Peterse, Lucas Lourens, and Jaap S. Sinninghe Damsté
Clim. Past, 16, 523–541, https://doi.org/10.5194/cp-16-523-2020, https://doi.org/10.5194/cp-16-523-2020, 2020
Short summary
Short summary
The mid-Pliocene warm period (mPWP; 3.3–3.0 million years ago) is thought to be the last geological interval with similar atmospheric carbon dioxide concentrations as the present day. Further, the mPWP was 2–3 °C warmer than present, making it a good analogue for estimating the effects of future climate change. Here, we construct a new precise age model for the North Sea during the mPWP, and provide a detailed reconstruction of terrestrial and marine climate using a multi-proxy approach.
Christopher J. Hollis, Tom Dunkley Jones, Eleni Anagnostou, Peter K. Bijl, Marlow Julius Cramwinckel, Ying Cui, Gerald R. Dickens, Kirsty M. Edgar, Yvette Eley, David Evans, Gavin L. Foster, Joost Frieling, Gordon N. Inglis, Elizabeth M. Kennedy, Reinhard Kozdon, Vittoria Lauretano, Caroline H. Lear, Kate Littler, Lucas Lourens, A. Nele Meckler, B. David A. Naafs, Heiko Pälike, Richard D. Pancost, Paul N. Pearson, Ursula Röhl, Dana L. Royer, Ulrich Salzmann, Brian A. Schubert, Hannu Seebeck, Appy Sluijs, Robert P. Speijer, Peter Stassen, Jessica Tierney, Aradhna Tripati, Bridget Wade, Thomas Westerhold, Caitlyn Witkowski, James C. Zachos, Yi Ge Zhang, Matthew Huber, and Daniel J. Lunt
Geosci. Model Dev., 12, 3149–3206, https://doi.org/10.5194/gmd-12-3149-2019, https://doi.org/10.5194/gmd-12-3149-2019, 2019
Short summary
Short summary
The Deep-Time Model Intercomparison Project (DeepMIP) is a model–data intercomparison of the early Eocene (around 55 million years ago), the last time that Earth's atmospheric CO2 concentrations exceeded 1000 ppm. Previously, we outlined the experimental design for climate model simulations. Here, we outline the methods used for compilation and analysis of climate proxy data. The resulting climate
atlaswill provide insights into the mechanisms that control past warm climate states.
Timme H. Donders, Niels A. G. M. van Helmond, Roel Verreussel, Dirk Munsterman, Johan ten Veen, Robert P. Speijer, Johan W. H. Weijers, Francesca Sangiorgi, Francien Peterse, Gert-Jan Reichart, Jaap S. Sinninghe Damsté, Lucas Lourens, Gesa Kuhlmann, and Henk Brinkhuis
Clim. Past, 14, 397–411, https://doi.org/10.5194/cp-14-397-2018, https://doi.org/10.5194/cp-14-397-2018, 2018
Short summary
Short summary
The buildup and melting of ice during the early glaciations in the Northern Hemisphere, around 2.5 million years ago, were far shorter in duration than during the last million years. Based on molecular compounds and microfossils from sediments dating back to the early glaciations we show that the temperature on land and in the sea changed simultaneously and was a major factor in the ice buildup in the Northern Hemisphere. These data provide key insights into the dynamics of early glaciations.
Helen M. Beddow, Diederik Liebrand, Douglas S. Wilson, Frits J. Hilgen, Appy Sluijs, Bridget S. Wade, and Lucas J. Lourens
Clim. Past, 14, 255–270, https://doi.org/10.5194/cp-14-255-2018, https://doi.org/10.5194/cp-14-255-2018, 2018
Short summary
Short summary
We present two astronomy-based timescales for climate records from the Pacific Ocean. These records range from 24 to 22 million years ago, a time period when Earth was warmer than today and the only land ice was located on Antarctica. We use tectonic plate-pair spreading rates to test the two timescales, which shows that the carbonate record yields the best timescale. In turn, this implies that Earth’s climate system and carbon cycle responded slowly to changes in incoming solar radiation.
Lennert B. Stap, Roderik S. W. van de Wal, Bas de Boer, Richard Bintanja, and Lucas J. Lourens
Clim. Past, 13, 1243–1257, https://doi.org/10.5194/cp-13-1243-2017, https://doi.org/10.5194/cp-13-1243-2017, 2017
Short summary
Short summary
We show the results of transient simulations with a coupled climate–ice sheet model over the past 38 million years. The CO2 forcing of the model is inversely obtained from a benthic δ18O stack. These simulations enable us to study the influence of ice sheet variability on climate change on long timescales. We find that ice sheet–climate interaction strongly enhances Earth system sensitivity and polar amplification.
Stefanie Kaboth, Patrick Grunert, and Lucas Lourens
Clim. Past, 13, 1023–1035, https://doi.org/10.5194/cp-13-1023-2017, https://doi.org/10.5194/cp-13-1023-2017, 2017
Short summary
Short summary
This study is devoted to reconstructing Mediterranean Outflow Water (MOW) variability and the interplay between the Mediterranean and North Atlantic climate systems during the Early Pleistocene. We find indication that the increasing production of MOW aligns with the intensification of the North Atlantic overturning circulation, highlighting the potential of MOW to modulate the North Atlantic salt budget. Our results are based on new stable isotope and grain-size data from IODP 339 Site U1389.
Hemmo A. Abels, Vittoria Lauretano, Anna E. van Yperen, Tarek Hopman, James C. Zachos, Lucas J. Lourens, Philip D. Gingerich, and Gabriel J. Bowen
Clim. Past, 12, 1151–1163, https://doi.org/10.5194/cp-12-1151-2016, https://doi.org/10.5194/cp-12-1151-2016, 2016
Short summary
Short summary
Ancient greenhouse warming episodes are studied in river floodplain sediments in the western interior of the USA. Paleohydrological changes of four smaller warming episodes are revealed to be the opposite of those of the largest, most-studied event. Carbon cycle tracers are used to ascertain whether the largest event was a similar event but proportional to the smaller ones or whether this event was distinct in size as well as in carbon sourcing, a question the current work cannot answer.
Dunia H. Urrego, Henry Hooghiemstra, Oscar Rama-Corredor, Belen Martrat, Joan O. Grimalt, Lonnie Thompson, Mark B. Bush, Zaire González-Carranza, Jennifer Hanselman, Bryan Valencia, and César Velásquez-Ruiz
Clim. Past, 12, 697–711, https://doi.org/10.5194/cp-12-697-2016, https://doi.org/10.5194/cp-12-697-2016, 2016
Short summary
Short summary
We compare eight pollen records reflecting environmental change in the tropical Andes over the past 30 000 years. Our analysis focuses on the signature of millennial-scale climate variability in the tropical Andes: Heinrich stadials (HS) and Greenland interstadials (GI). We identify rapid responses of the tropical vegetation, with downslope upper forest line (UFL) migrations and cooling during HS and the Younger Dryas.
S. G. A. Flantua, H. Hooghiemstra, M. Vuille, H. Behling, J. F. Carson, W. D. Gosling, I. Hoyos, M. P. Ledru, E. Montoya, F. Mayle, A. Maldonado, V. Rull, M. S. Tonello, B. S. Whitney, and C. González-Arango
Clim. Past, 12, 483–523, https://doi.org/10.5194/cp-12-483-2016, https://doi.org/10.5194/cp-12-483-2016, 2016
Short summary
Short summary
This paper serves as a guide to high-quality pollen records in South America that capture environmental variability during the last 2 millennia. We identify the pollen records suitable for climate modelling and discuss their sensitivity to the spatial signature of climate modes. Furthermore, evidence for human land use in pollen records is useful for archaeological hypothesis testing and important in distinguishing natural from anthropogenically driven vegetation change.
S. G. A. Flantua, M. Blaauw, and H. Hooghiemstra
Clim. Past, 12, 387–414, https://doi.org/10.5194/cp-12-387-2016, https://doi.org/10.5194/cp-12-387-2016, 2016
Short summary
Short summary
We present a review of chronological dating from ca. 1100 fossil pollen records in Central and South America. Additionally, a temporal quality assessment is implemented on 292 records from northwest South America, which include recalibrating 234 age models. This method evaluates uncertainties for inferred sample ages and chronologies. Important time windows on centennial-millennial climate variability are discussed for sample resolution (estimated years/sample) and temporal uncertainty.
J. H. C. Bosmans, F. J. Hilgen, E. Tuenter, and L. J. Lourens
Clim. Past, 11, 1335–1346, https://doi.org/10.5194/cp-11-1335-2015, https://doi.org/10.5194/cp-11-1335-2015, 2015
Short summary
Short summary
Our study shows that the influence of obliquity (the tilt of Earth's rotational axis) can be explained through changes in the insolation gradient across the tropics. This explanation is fundamentally different from high-latitude mechanisms that were previously often inferred to explain obliquity signals in low-latitude paleoclimate records, for instance glacial fluctuations. Our study is based on state-of-the-art climate model experiments.
V. Lauretano, K. Littler, M. Polling, J. C. Zachos, and L. J. Lourens
Clim. Past, 11, 1313–1324, https://doi.org/10.5194/cp-11-1313-2015, https://doi.org/10.5194/cp-11-1313-2015, 2015
Short summary
Short summary
Several episodes of global warming took place during greenhouse conditions in the early Eocene and are recorded in deep-sea sediments. The stable carbon and oxygen isotope records are used to investigate the magnitude of six of these events describing their effects on the global carbon cycle and the associated temperature response. Findings indicate that these events share a common nature and hint to the presence of multiple sources of carbon release.
B. S. Slotnick, V. Lauretano, J. Backman, G. R. Dickens, A. Sluijs, and L. Lourens
Clim. Past, 11, 473–493, https://doi.org/10.5194/cp-11-473-2015, https://doi.org/10.5194/cp-11-473-2015, 2015
L. B. Stap, R. S. W. van de Wal, B. de Boer, R. Bintanja, and L. J. Lourens
Clim. Past, 10, 2135–2152, https://doi.org/10.5194/cp-10-2135-2014, https://doi.org/10.5194/cp-10-2135-2014, 2014
D. A. Hodell, L. Lourens, D. A. V. Stow, J. Hernández-Molina, C. A. Alvarez Zarikian, and the Shackleton Site Project Members
Sci. Dril., 16, 13–19, https://doi.org/10.5194/sd-16-13-2013, https://doi.org/10.5194/sd-16-13-2013, 2013
R. S. W. van de Wal, B. de Boer, L. J. Lourens, P. Köhler, and R. Bintanja
Clim. Past, 7, 1459–1469, https://doi.org/10.5194/cp-7-1459-2011, https://doi.org/10.5194/cp-7-1459-2011, 2011
D. Liebrand, L. J. Lourens, D. A. Hodell, B. de Boer, R. S. W. van de Wal, and H. Pälike
Clim. Past, 7, 869–880, https://doi.org/10.5194/cp-7-869-2011, https://doi.org/10.5194/cp-7-869-2011, 2011
Cited articles
Adam, D. P., Sims, J. D., and Throckmorton, C. K.: 130 000-yr continuous pollen record from Clear Lake, Lake County, California, Geology, 9, 373–377, https://doi.org/10.1130/0091-7613(1981)9<373:YCPRFC>2.0.CO;2, 1981.
Adam, D. P., Sarna-Wojcicki, A. M., Rieck, H. J., Bradbury, J. P., Dean, W. E., and Forester, R. M.: Tulelake, California: the last 3 million years, Paleogeogr. Paleoclimatol. Paleoecol., 72, 89–103, https://doi.org/10.1016/0031-0182(89)90134-X, 1989.
Andersen, K. K., Azuma, N., Barnola, J. M., Bigler, M., Biscaye, P., Caillon,
N., Chappellaz, J., Clausen, H. B., Dahl-Jensen, D., Fischer, H.,
Flückiger, J., Fritzsche, D., Fujii, Y., Goto-Azuma, K., Grønvold,
K., Gundestrup, N. S., Hansson, M., Huber, C., Hvidberg, C. S., Johnsen, S. J., Jonsell, U., Jouzel, J., Kipfstuhl, S., Landais, A., Leuenberger, M.,
Lorrain, R., Masson-Delmotte, V., Miller, H., Motoyama, H., Narita, H.,
Popp, T., Rasmussen, S. O., Raynaud, D., Rothlisberger, R., Ruth, U., Samyn,
D., Schwander, J., Shoji, H., Siggard-Andersen, M. L., Steffensen, J. P.,
Stocker, T., Sveinbjörnsdóttir, A. E., Svensson, A., Takata, M.,
Tison, J. L., Thorsteinsson, T., Watanabe, O., Wilhelms, F., White, J. W., and North Greenland Ice Core Project Members: High-resolution record of Northern hemisphere climate extending in to the last interglacial period, Nature, 431, 147–151, https://doi.org/10.1038/nature02805, 2004.
Andriessen, P. A. M., Helmens, K. F., Hooghiemstra, H., Riezebos, P. A., and Van der Hammen, T.: Absolute chronology of the Pliocene-Quaternary sediment sequence of the Bogotá area, Colombia, Quaternary Sci. Rev., 12, 483–501, https://doi.org/10.1016/0277-3791(93)90066-U, 1993.
Berrío, J. C. and Hooghiemstra, H.: Information on Fúquene Pollen Data, University of Leicester, https://www2.le.ac.uk/departments/geography/people/jcb34, last access: 2 February 2022.
Bogotá-A., R. G., Groot, M. H. M., Hooghiemstra, H., Lourens, L. J., Van der Linden, M., and Berrío, J. C.: Rapid climate change from north Andean Lake Fúquene pollen records driven by obliquity: implications for a basin-wide biostratigraphic zonation, Quaternary Sci. Rev., 30, 3321–3337, https://doi.org/10.1016/j.quascirev.2011.08.003, 2011.
Bogotá-A, R. G., Hooghiemstra, H., and Berrio, J.-C.: North Andean
environmental and climatic change at orbital to submillennial time-scales:
vegetation, waterlevels and sedimentary regimes from lake Fúquene from
284 to 130 ka, Rev. Palaeobot. Palynol., 226, 91–107, https://doi.org/10.1016/j.revpalbo.2015.09.007, 2015.
Boschman, L. M.: Andean mountain building since the Late Cretaceous: a
paleoelevation reconstruction, Earth-Sci. Rev., 220, 103640, https://doi.org/10.1016/j.earscirev.2021.103640, 2021.
Chacón-Moreno, E., Rodriguez-Morales, M., Paredes, D., Suárez del
Moral, P., and Albarrán, A.: Impacts of global change on the spatial
dynamics of treeline in Venezuelan Andes, Front. Ecol. Evol., 9, 615223,
https://doi.org/10.3389/fevo.2021.615223, 2021.
Dansgaard, W., Johnson, S. J., Møller, J., and Langway Jr., C. C.: One
thousand centuries of climate record from Camp Century on the Greenland ice
sheet, Science, 166, 377–380, https://doi.org/10.1126/science.166.3903.377, 1969.
Dansgaard, W., Clausen, H. B., Gundestrup, N., Hammer, C. U., Johnsen, S. F., Kristinsdottir, P. M., and Reeh, N.: A new Greenland deep ice core, Science,
218, 1273–1277, https://doi.org/10.1126/science.218.4579.1273, 1982.
De Beaulieu, J. L. and Reille, M.: A long Upper Pleistocene pollen record from Les Echets, near Lyon, France, Boreas, 13, 111–132, https://doi.org/10.1111/j.1502-3885.1984.tb00066.x, 1984.
Emiliani, C.: Temperature and age analysis of deep-sea cores, Science, 1235,
383–385, https://doi.org/10.1126/science.125.3244.383, 1957.
Emiliani, C.: Isotopic paleotemperatures, Science, 154, 851–857, https://doi.org/10.1126/science.154.3751.851, 1966.
Emiliani, C.: Pleistocene paleotemperatures, Science, 168, 822–825, https://doi.org/10.1126/science.168.3933.822, 1970.
Flantua, S. G. A.: Inventory of modern and paleo-records of pollen in Latin America, Latin America Pollen Database, https://www.latinamericapollendb.com/, last access: 2 February 2022.
Flantua, S. G. A. and Hooghiemstra, H.: Historical connectivity and mountain
biodiversity, in: Mountains, climate and biodiversity, edited by: Hoorn, C., Perrigo, A., and Antonelli, A., Wiley, UK, 171–185, ISBN 9781119159896, 2018.
Flantua, S. G. A., Hooghiemstra, H., Van Boxel, J. H., Cabrera, M.,
González-Carranza, Z., and González-Arango, C.: Connectivity
dynamics since the Last Glacial Maximum in the northern Andes; a
pollen-driven framework to assess potential migration, in: Paleobotany and Biogeography: A Festschrift for Alan Graham in His 80th Year, edited by: Stevens, W. D., Montiel, O. M., and Raven, P. H., Missouri Botanical Garden, St. Louis, 98–123, ISBN 978-0-915279-97-5, 2014.
Flantua, S. G. A., Hooghiemstra, H., Grimm, E. C., Behling, H., Bush, M. B.,
González-Arango, C., Gosling, W., Ledru, M.-P., Lozano-García, S.,
Maldonado, A., Prieto, A., Rull, V., and Van Boxel, J. H.: Updated site
compilation of the Latin American Pollen Database; challenging new research,
Rev. Palaeobot. Palynol., 223, 104–115, https://doi.org/10.1016/j.revpalbo.2015.09.008, 2015.
Flantua, S. G. A., O'Dea, A., Onstein, R., Giraldo, C., and Hooghiemstra, H.:
The flickering connectivity system of the north Andean páramos, J.
Biogeogr., 46, 1808–1825, https://doi.org/10.1111/jbi.13607, 2019.
Flenley, J. F.: Andean guide to Pliocene-Quaternary climate, Nature, 311,
702–703, https://doi.org/10.1038/311702b0, 1984.
Flenley, J. R.: A long land-based core, J. Biogeogr., 12, 192–194,
https://doi.org/10.2307/2844844, 1985.
Florschütz, F., Menéndez Amor, J., and Wijmstra, T.A.: Palynology of
a thick Quaternary succession in southern Spain, Palaeogeogr.
Palaeoclimatol. Palaeoecol., 10, 233–264, https://doi.org/10.1016/0031-0182(71)90049-6, 1971.
France, I., Duller, A. W. G., Duller, G. A. T., and Lamb, H. F.: A new approach to automated pollen analysis, Quaternary Sci. Rev., 19, 537–546, https://doi.org/10.1016/S0277-3791(99)00021-9, 2000.
Gibbard, P. L., Head, M. J., and Walker, M. J. C.: Formal ratification of the
Quaternary System/Period and the Pleistocene Series/Epoch with a base at
2.58 Ma, J. Quat. Sci., 25, 96–102, https://doi.org/10.1002/jqs.1338, 2010.
Giraldo, C., Flantua, S. G. A., and Hooghiemstra, H.: Sky Islands: A time travel of the Andes Mountains, figshare [video], https://figshare.com/articles/Appendix_6_Visualization_of_the_flickering_connectivity_system_in_the_Northern_Andes/7408643, last access: 2 February 2022.
González-Carranza, Z., Hooghiemstra, H., and Vélez, M. I.: Major
altitudinal shifts in Andean vegetation on the Amazonian flank show
temporary loss of biota in the Holocene, Holocene, 22, 1227–1241, https://doi.org/10.1177/0959683612451183, 2012.
Groot, M. H. M., Bogotá, R. G., Lourens, L. J., Hooghiemstra, H., Vriend, M., Berrio, J. C., Tuenter, E., Van der Plicht, J., Van Geel, B., Ziegler, M., Weber, S. L., Betancourt, A., Contreras, L., Gaviria, S., Giraldo, C., González, N., Jansen, J. H. F., Konert, M., Ortega, D., Rangel, O., Sarmiento, G., Vandenberghe, J., Van der Hammen, T., Van der Linden, M., and Westerhoff, W.: Ultra-high resolution pollen record from the northern Andes reveals rapid shifts in montane climates within the last two glacial cycles, Clim. Past, 7, 299–316, https://doi.org/10.5194/cp-7-299-2011, 2011.
Groot, M. H. M., Hooghiemstra, H., Berrio, J.-C., and Giraldo, C.: North
Andean environmental and climatic change at orbital to submillennial
time-scales: vegetation, water-levels, and sedimentary regimes from Lake
Fúquene during 130–27 ka, Rev. Palaeobot. Palynol., 197, 186–204,
https://doi.org/10.1016/j.revpalbo.2013.04.005, 2013.
Groot, M. H. M., Van der Plicht, J., Hooghiemstra, H., Lourens, L. J., and Rowe, H. D.: Age modelling for Pleistocene lake sediments: a comparison of methods from the Andean Fúquene Basin (Colombia) case study, Quat. Geochron., 22, 144–154, https://doi.org/10.1016/j.quageo.2014.01.002, 2014.
Hooghiemstra, H.: Vegetational and climatic history of the high plain of Bogotá, Colombia, Doctoral dissertation, University of Amsterdam, Dissertationes Botanicae, 79, 1–368, Cramer, Vaduz, ISBN 3-7682-1404-4, 1984.
Hooghiemstra, H. and Flantua, S. G. A.: Colombia in Quaternary: an overview
of environmental and climatic change, in: The
Geology of Colombia Book, edited by: Gómez-Tapias, J., Servicio Geológico Colombiano, vol. 4, 43–104, https://doi.org/10.32685/pub.esp.38.2019, 2019.
Hooghiemstra, H. and Hoek, W. Z.: Waldo Heliodoor Zagwijn (1928–2018): the instigator and architect of European chronostratigraphy, Neth. J. Geosci., 98, e7, https://doi.org/10.1017/njg.2019.9, 2019.
Hooghiemstra, H. and Van der Hammen, T.: Quaternary ice-age dynamics in the
Colombian Andes: developing an understanding of our legacy, Phil. Trans.
Roy. Soc. London B, 359, 173–181, https://doi.org/10.1098/rstb.2003.1420,
2004.
Hooghiemstra, H., Mélice, J. L., Berger, A., and Shackleton, N. J.: Frequency spectra and paleoclimatic variability of the high-resolution 30–1450 ka Funza I pollen record (Eastern Cordillera, Colombia), Quaternary Sci. Rev., 12, 141–156, https://doi.org/10.1016/0277-3791(93)90013-C, 1993.
Hooghiemstra, H., Wijninga, V. M., and Cleef, A. M.: The paleobotanical record of Colombia: implications for biogeography and biodiversity, Ann. Missouri Bot. Gard., 93, 297–324, https://doi.org/10.3417/0026-6493(2006)93[297:TPROCI]2.0.CO;2, 2006.
Hoorn, C., Wesselingh, F. P., Ter Steege, H., Bermudez, M. A., Mora, A., Sevink, J., Sanmartín, I., Sanchez-Meseguer, A., Anderson, C. L., Figueiredo, J. P., Jaramillo, C., Riff, D., Negri, F. R., Hooghiemstra, H., Lundberg, J., Stadler, T., Särkinen, T., and Antonelli, A.: Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity, Science, 330, 927–931, https://doi.org/10.1126/science.1194585, 2010.
Kukla, G.: Long continental records of climate; an introduction,
Paleogeogr. Palaeoclimatol. Palaeoecol., 72, 1–9, https://doi.org/10.1016/0031-0182(89)90128-4, 1989.
Libby, W. F., Andersen, E. C., and Arnold, J. R.: Age determination by
radiocarbon content: world wide assay of natural radiocarbon, Science, 109,
227–228, https://doi.org/10.1126/science.109.2827.227, 1949.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally
distributed benthic ∂18O records, Paleoceanogr., 20, PA1003,
https://doi.org/10.1029/2004PA001071, 2005.
Mommersteeg, H.: Vegetation development and cyclic and abrupt climatic change during the late Quaternary, Doctoral dissertation, University of Amsterdam, 191 pp., ISBN 90-9011649-4, 1998.
PAGES: Continental drilling for paleoclimatic records. Recommendations from
an international workshop, edited by: Colman, S. M., Workshop Continenal Drilling for Paleoclimatic Recods, 30 June–2 July 1995, GeoForschungsZentrum, Postdam, Germany, Series 1996-4, 104 pp., 1996.
Pons, A. and Reille, M.: The Holocene and upper Pleistocene pollen record
from Padul (Granada, Spain): a new study, Palaeogeogr. Palaeoclimatol.
Palaeoecol., 66, 243–249, https://doi.org/10.1016/0031-0182(88)90202-7, 1988.
Restrepo-Moreno, S. A., Foster, D. A., Bernet, M., Min, K., and Noriega, S.:
Morphotectonic and orogenic development of the Northern Andes of Colombia: a
low-temperature thermochronology perspective, in: Geology and tectonics of northwestern South America, edited by: Cediel, R. and Shaw, R. P., Springer,
Frontiers in Earth Sciences, 749–832, https://doi.org/10.1007/978-3-319-76132-9_11, 2019.
Sarmiento, G., Gaviria, S., Hooghiemstra, H., Berrio, J.-C., and Van der Hammen, T.: Landscape evolution and origin of Lake Fúquene (Colombia):
tectonics, erosion and sedimentation processes during the Pleistocene,
Geomorph., 100, 563–575, https://doi.org/10.1016/j.geomorph.2008.02.006, 2008.
Shackleton, N. J.: Oxygen isotopes, ice volume and sea level, Quat. Sci.Rev.,
6, 183–190, https://doi.org/10.1016/0033-5894(84)90085-1, 1987.
Tiedeman, R., Sarnthein, M., and Shackleton, N. J.: Astronomic timescale for
the Pliocene Atlantic ∂18O and dust flux records of Ocean Drilling Program site 659, Paleoceanogr., 9, 619–638, https://doi.org/10.1029/94PA00208, 1994.
Torres, T., Valle, M., Ortiz, J. E., Soler, V., Araujo, R., Rivas, M. R.,
Delgado, A., Julià, R., and Sánchez-Palencia, Y.: 800 ka of
Palaeoenvironmental changes in the southwestern Mediterranean realm, J.
Iberian Geol., 46, 117–144, 2020.
Torres, V., Vandenberghe, J., and Hooghiemstra, H.: An environmental reconstruction of the sediment infill of the Bogotá basin (Colombia) during the last 3 million years from abiotic and biotic proxies, Palaeogeogr. Palaeoclimatol. Palaeoecol., 226, 127–148, https://doi.org/10.1016/j.palaeo.2005.05.005, 2005.
Torres, V., Hooghiemstra, H., Lourens, L. J., and Tzedakis, P. C.:
Astronomical tuning of long pollen records reveals the dynamic history of
montane biomes and lake levels in the tropical high Andes during the
Quaternary, Quaternary Sci. Rev., 63, 59–72, https://doi.org/10.1016/j.quascirev.2012.11.004, 2013.
Torres Torres, V.: Pliocene-Pleistocene evolution of flora, vegetation and climate: a palynological and sedimentological study of a 586-m core from the Bogotá basin, Colombia, Doctoral dissertation, University of Amsterdam, 181 pp., ISBN 90-76894-64-7, 2006.
Tzedakis, P. C., De Beaulieu, J.-L., Crowhurst, S., Follieri, M.,
Hooghiemstra, H., Magri, D., Reille, M., Shackleton, N. J., and Wijmstra,
T. A.: Comparison of terrestrial and marine records of changing climate of
the last 500 000 years, Earth Planet. Sc. Lett., 150, 171–176, https://doi.org/10.1016/S0012-821X(97)00078-2, 1997.
Tzedakis, P. C., Andrieu, V., De Beaulieu, J.-L., Birks, H. J. B., Crowhurst,
S., Follieri, M., Hooghiemstra, H., Magri, D., Reille, M., Sadori, L.,
Shackleton, N. J., and Wijmstra, T. A.: Establishing a terrestrial
chronological framework as a basis for biostratigraphical comparisons. Quaternary Sci. Rev., 20, 1583–1592, https://doi.org/10.1016/S0277-3791(01)00025-7,
2001.
Tzedakis, P. C., Hooghiemstra, H., and Palike, H.: The last 1.35 milion years
at Tenaghi Philippon: revised chronostratigraphy and long-term vegetation
trends, Quaternary Sci. Rev., 25, 3416–3430, https://doi.org/10.1016/j.quascirev.2006.09.002, 2006.
Van der Hammen, T.: Climate and vegetational succession in the equatorial
Andes of Colombia, in: Geo-ecology of the mountainous
regions of the tropical Americas, edited by: Troll, C., Coll. Geogr., 9, 187–194, 1968.
Van der Hammen, T.: The Pleistocene changes of vegetation and climate in the
Northern Andes, in: The glaciation of the Ecuadorian Andes, edtied by: Hastenrath, S., Balkema, Rotterdam, 125–145, ISBN 90-6191-038-2, 1981.
Van der Hammen, T.: Plan ambiental de la cuenca alta del Río Bogotá, Corpocación Autónoma Regional (CAR) de Cundinamarca, Bogotá, 142 pp., http://sie.car.gov.co/bitstream/handle/20.500.11786/33796/28263.pdf?sequence=1&isAllowed=y
(last access: 4 February 2022), 1998.
Van der Hammen, T. and Hooghiemstra, H.: Interglacial-glacial Fúquene-3 pollen record from Colombia: an Eemian to Holocene climate record, Glob. Planet. Change, 36, 181–199, https://doi.org/10.1016/S0921-8181(02)00184-4, 2003.
Van der Hammen, T., Wijmstra, T. A., and Van der Molen, W. H.: Palynological
study of a very thick peat section in Greece and the Würm-glacial
vegetation in the Mediterranean region, Geol. Mijnb., 44, 37–39, 1965.
Van der Hammen, T., Wijmstra, T. A., and Zagwijn, W. H.: The floral record of
the late Cenozoic of Europe, in: Late Cenozoic glacial ages, edited by: Turekian, K. K., Yale Univ. Press, 391–424, ISBN 0-300-01420-1, 1971.
Van der Hammen, T., Werner, J. H., and Van Dommelen, H.: Palynological record of the upheaval of the Northern Andes; a study of the Pliocene and Lower Quaternary of the Colombian Eastern Cordillera and the early evolution of its high-Andean biota, Palaeogeogr. Palaeoclimatol. Palaeoecol., 16, 1–122, https://doi.org/10.1016/0034-6667(73)90031-6, 1973.
Van Geel, B. and Van der Hammen, T.: Upper Quaternary vegetational and climatic sequence of the Fúquene area (Eastern Cordillera, Colombia), Palaeogeogr. Palaeoclimatol. Palaeoecol., 14, 9–92, https://doi.org/10.1016/0031-0182(73)90064-3, 1973.
Vriend, M., Groot, M. H. M., Hooghiemstra, H., Bogotá-Angel, R. G., and
Berrio, J. C.: Changing depositional environments in the Colombian
Fúquene Basin at submillennial time-scales during 284–27 ka from unmixed grain-size distributions and aquatic pollen, Neth. J. Geosci., 91, 199–214, https://doi.org/10.1017/S0016774600001591, 2012.
Wijmstra, T. A.: Palynology of the first 30 metres of a 120 m deep section
in Northern Greece, Acta Bot. Neerl., 18, 511–527, https://doi.org/10.1111/j.1438-8677.1969.tb00591.x, 1969.
Wijninga, V. M.: Neogene ecology of the Salto de Tequendama site (2475 m alt. Cordillera Oriental, Colombia): the paleobotanical record of montane and lowland forests, Rev. Palaeobot. Palynol., 92, 97–156, 1996.
Williams, J. W., Grimm, E. C., Blois, J. L., Charles, D. F., Davis, E. B., Goring, S. J., Graham, R. W., Smith, A. J., Anderson, M., Arroyo-Cabrales, J., Ashworth, A. C., Betancourt, J. L., Bills, B. W., Booth, R. K., Buckland, P. I., Curry, B. B., Giesecke, T., Jackson, S. T., Latorre, C., Nichols, J., Purdum, T., Roth, R. E., Stryker, M., and Takahara, H.: The Neotoma Paleoecology Database, a multiproxy, international, community-curated data resource, Quaternary Res., 89, 156–177, https://doi.org/10.1017/qua.2017.105, 2018.
Woillard, G. M.: Grande Pile peat bog: a continuous pollen record for the last 140 000 years, Quaternary Res., 12, 152–155, https://doi.org/10.1016/0033-5894(78)90079-0, 1978.
Zagwijn, W. H.: Aspects of the Pliocene and early Pleistocene vegetation of
the Netherlands, Meded. Geol. Stichting, Serie C-III-1(5), 1–78, 1960.
Zagwijn, W. H.: The beginning of the ice age in Europe and its major
subdivisions, Quaternary Sci. Rev., 11, 583–591, https://doi.org/10.1016/0277-3791(92)90015-Z, 1992.
Short summary
This is a brief overview of long continental fossil pollen records globally in relationship with marine records. Specifically, the Northern Andes is a key area in developing and testing hypotheses in the fields of ecology, paleobiogeography, and climate change in tropical regions. We review 60 years of deep drilling experience in this region that have led to landmark records. We also highlight the early development of long continental pollen records from unique, deep, sediment-filled basins.
This is a brief overview of long continental fossil pollen records globally in relationship with...