MagellanPlus Workshop: mission-specific platform approaches to assessing natural hazards that impact society
Center for Subsurface Energy and the Environment, The University of Texas at Austin, Austin, TX 78712, USA
João C. Duarte
Instituto Dom Luiz, Faculty of Sciences, University of Lisbon, Lisbon 1749-016, Portugal
Ake Fagereng
School of Earth and Environmental Sciences, Cardiff University, Cardiff, CF10 3AT, UK
Raphaël Paris
Centre National de la Recherche Scientifique, Université Clermont-Auvergne, 63178 Aubiere CEDEX, Clermont-Ferrand, France
Patricia Persaud
Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA
Ángela María Gómez-García
GEO3BCN, CSIC, Lluís Solé Sabarís/n, 08028 Barcelona, Spain
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
A full list of authors appears at the end of the paper.
Related authors
No articles found.
Emmie Malika Bonilauri, Catherine Aaron, Matteo Cerminara, Raphaël Paris, Tomaso Esposti Ongaro, Benedetta Calusi, Domenico Mangione, and Andrew John Lang Harris
Nat. Hazards Earth Syst. Sci., 24, 3789–3813, https://doi.org/10.5194/nhess-24-3789-2024, https://doi.org/10.5194/nhess-24-3789-2024, 2024
Short summary
Short summary
Currently on the island of Stromboli, only 4 min of warning time is available for a locally generated tsunami. We combined tsunami simulations and human exposure to complete a risk analysis. We linked the predicted inundation area and the tsunami warning signals to assess the hazard posed by future tsunamis and to design escape routes to reach safe areas and to optimise evacuation times. Such products can be used by civil protection agencies on Stromboli.
Montserrat Torne, Tiago Alves, Ivone Jiménez-Munt, Joao Carvalho, Conxi Ayala, Elsa Ramalho, Angela Gómez, Hugo Matias, Hanneke Heida, Abraham Balaguera, José Luis García-Lobón, and Jaume Vergés
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-210, https://doi.org/10.5194/essd-2024-210, 2024
Preprint under review for ESSD
Short summary
Short summary
Sediments are like history books for geologists and geophysicists. By studying sediments, we can learn about past environments, sea level and climate changes, and where the sediments came from. To aid in understanding the geology, georesources, and potential hazards in the Iberian Peninsula and surrounding seas, we present the SedDARE-IB sediments data repository. As an application in geothermal exploration, we investigate how sediments thickness affects the depth of the 150 °C isotherm.
Ángela María Gómez-García, Álvaro González, Mauro Cacace, Magdalena Scheck-Wenderoth, and Gaspar Monsalve
Solid Earth, 15, 281–303, https://doi.org/10.5194/se-15-281-2024, https://doi.org/10.5194/se-15-281-2024, 2024
Short summary
Short summary
We compute a realistic three-dimensional model of the temperatures down to 75 km deep within the Earth, below the Caribbean Sea and northwestern South America. Using this, we estimate at which rock temperatures past earthquakes nucleated in the region and find that they agree with those derived from laboratory experiments of rock friction. We also analyse how the thermal state of the system affects the spatial distribution of seismicity in this region.
Jack N. Williams, Luke N. J. Wedmore, Åke Fagereng, Maximilian J. Werner, Hassan Mdala, Donna J. Shillington, Christopher A. Scholz, Folarin Kolawole, Lachlan J. M. Wright, Juliet Biggs, Zuze Dulanya, Felix Mphepo, and Patrick Chindandali
Nat. Hazards Earth Syst. Sci., 22, 3607–3639, https://doi.org/10.5194/nhess-22-3607-2022, https://doi.org/10.5194/nhess-22-3607-2022, 2022
Short summary
Short summary
We use geologic and GPS data to constrain the magnitude and frequency of earthquakes that occur along active faults in Malawi. These faults slip in earthquakes as the tectonic plates on either side of the East African Rift in Malawi diverge. Low divergence rates (0.5–1.5 mm yr) and long faults (5–200 km) imply that earthquakes along these faults are rare (once every 1000–10 000 years) but could have high magnitudes (M 7–8). These data can be used to assess seismic risk in Malawi.
Ángela María Gómez-García, Eline Le Breton, Magdalena Scheck-Wenderoth, Gaspar Monsalve, and Denis Anikiev
Solid Earth, 12, 275–298, https://doi.org/10.5194/se-12-275-2021, https://doi.org/10.5194/se-12-275-2021, 2021
Short summary
Short summary
The Earth’s crust beneath the Caribbean Sea formed at about 90 Ma due to large magmatic activity of a mantle plume, which brought molten material up from the deep Earth. By integrating diverse geophysical datasets, we image for the first time two fossil magmatic conduits beneath the Caribbean. The location of these conduits at 90 Ma does not correspond with the present-day Galápagos plume. Either this mantle plume migrated in time or these conduits were formed above another unknown plume.
Jack N. Williams, Hassan Mdala, Åke Fagereng, Luke N. J. Wedmore, Juliet Biggs, Zuze Dulanya, Patrick Chindandali, and Felix Mphepo
Solid Earth, 12, 187–217, https://doi.org/10.5194/se-12-187-2021, https://doi.org/10.5194/se-12-187-2021, 2021
Short summary
Short summary
Earthquake hazard is often specified using instrumental records. However, this record may not accurately forecast the location and magnitude of future earthquakes as it is short (100s of years) relative to their frequency along geologic faults (1000s of years). Here, we describe an approach to assess this hazard using fault maps and GPS data. By applying this to southern Malawi, we find that its faults may host rare (1 in 10 000 years) M 7 earthquakes that pose a risk to its growing population.
Michael Hodge, Juliet Biggs, Åke Fagereng, Austin Elliott, Hassan Mdala, and Felix Mphepo
Solid Earth, 10, 27–57, https://doi.org/10.5194/se-10-27-2019, https://doi.org/10.5194/se-10-27-2019, 2019
Short summary
Short summary
This work attempts to create a semi-automated algorithm (called SPARTA) to calculate height, width and slope of surface breaks produced by earthquakes on faults. We developed the Python algorithm using synthetic catalogues, which can include noise features such as vegetation, hills and ditches, which mimic natural environments. We then apply the algorithm to four fault scarps in southern Malawi, at the southern end of the East African Rift system, to understand their earthquake potential.
Johann F. A. Diener, Åke Fagereng, and Sukey A. J. Thomas
Solid Earth, 7, 1331–1347, https://doi.org/10.5194/se-7-1331-2016, https://doi.org/10.5194/se-7-1331-2016, 2016
Cited articles
Andrén, T., Jørgensen, B. B., Cotterill, C., and the Expedition 347 Scientists: Expedition 347 summary, Proc. IODP, 347, 1–66, https://doi.org/10.2204/iodp.proc.347.101.2015, 2015.
Araki, E., Saffer, D. M., Kopf, A. J., Wallace, L. M., Kimura, T., Machida, Y., Ide, S., Davis, E., and the Expedition 365 Scientists: Recurring and triggered slow-slip events near the trench at the Nankai Trough subduction megathrust, Science, 356, 1157–1160, https://doi.org/10.1126/science.aan3120, 2017.
Backman, J., Moran, K., McInroy, D. B., Mayer, L. A., and the Expedition 302 Scientists: Expedition 302 summary, Proc. IODP, 302, 1–22, https://doi.org/10.2204/iodp.proc.302.101.2006, 2006.
Bacmeister, J. T., Reed, K. A., Hannay, C., Lawrence, P., Bates, S., Truesdale, J. E., Rosenbloom, N., and Levy, M.: Projected changes in tropical cyclone activity under future warming scenarios using a high-resolution climate model, Climatic Change, 146, 547–560, https://doi.org/10.1007/s10584-016-1750-x, 2018.
Barrientos, S. and the National Seismological Center (CSN) Team: The seismic network of Chile, Seismol. Res. Lett., 89, 467–474, https://doi.org/10.1785/0220160195, 2018.
Bell, R. E., McNeill, L. C., Henstock, T. J., and Bull, J. M.: Comparing extension on multiple time and depth scales in the Corinth Rift, Central Greece, Geophys. J. Int., 186, 463–470, https://doi.org/10.1111/j.1365-246X.2011.05077.x, 2011.
Bernhardt, A., Melnick, D., Hebbeln, D., Lückge, A., and Strecker, M. R.: Turbidite paleoseismology along the active continental margin of Chile – Feasible or not?, Quaternary Sci. Rev., 120, 71–92, https://doi.org/10.1016/j.quascirev.2015.04.001, 2015.
Brothers, D. S., Driscoll, N. W., Kent, G. M., Harding, A. J., Babcock, J. M., and Baskin, R. L.: Tectonic evolution of the Salton Sea inferred from seismic reflection data, Nat. Geosci., 2, 581–584, https://doi.org/10.1038/ngeo590, 2009.
Brown, P. A. and Kennett, J. P.: Megaflood erosion and meltwater plumbing changes during last North American deglaciation recorded in Gulf of Mexico sediments, Geology, 26, 599–602, https://doi.org/10.1130/0091-7613(1998)026<0599:MEAMPC>2.3.CO;2, 1998.
Bugge, T., Belderson, R. H., and Kenyon, N. H.: The Storegga Slide, Philos. T. Roy. Soc. A, 325, 357–388, https://doi.org/10.1098/rsta.1988.0055, 1988.
Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G., and Saba, V.: Observed fingerprint of a weakening Atlantic Ocean overturning circulation, Nature, 556, 191–196, https://doi.org/10.1038/s41586-018-0006-5, 2018.
Camoin, G. F., Iryu, Y., McInroy, D. B., and the Expedition 310 Scientists: Methods, Proc. IODP, 310, 1–43, https://doi.org/10.2204/iodp.proc.310.103.2007, 2007.
Chen, W. P., Yu, C. Q., Tseng, T. L., Yang, Z., Wang, C. yuen, Ning, J., and Leonard, T.: Moho, seismogenesis, and rheology of the lithosphere, Tectonophys., 609, 491–503, https://doi.org/10.1016/j.tecto.2012.12.019, 2013.
Clark, P. U., Alley, R. B., Keigwin, L. D., Licciardi, J. M., Johnsen, S. J., and Wang, H.: Origin of the first global meltwater pulse following the Last Glacial Maximum, Paleoceanogr. Paleoclimatology, 11, 563–577, https://doi.org/10.1029/96PA01419, 1996.
Collot, J.-Y., Marcaillou, B., Sage, F., Michaud, F., Agudelo, W., Charvis, P., Graindorge, D., Gutscher, M.-A., and Spence, G.: Are rupture zone limits of great subduction earthquakes controlled by upper plate structures? Evidence from multichannel seismic reflection data acquired across the northern Ecuador–southwest Colombia margin, J. Geophys. Res.-Sol. Ea., 109, B11103, https://doi.org/10.1029/2004JB003060, 2004.
Cowie, P. A. and Scholz, C. H.: Displacement-length scaling relationship for faults: data synthesis and discussion, J. Struct. Geol., 14, 1149–1156, https://doi.org/10.1016/0191-8141(92)90066-6, 1992.
Cowie, P. A., Roberts, G. P., Bull, J. M., and Visini, F.: Relationships between fault geometry, slip rate variability and earthquake recurrence in extensional settings, Geophys. J. Int., 189, 143–160, https://doi.org/10.1111/j.1365-246X.2012.05378.x, 2012.
Daigle, H., Duarte, J., Fagereng, A., Paris, R., Persaud, P., Bell, R., Davies, G., Nomikou, P., Stewart, M., Toomey, M., Ummenhofer, C., Wallace, L., Alves, T., Carvalho, J., Chang, Y., Gamboa, D., Gómez-García, A. M., González, A., Kopf, A., Kuhlmann, H., Le Ber, E., McNeill, L., Nicholson, U., Strasser, M., Thompson, M., Vannucchi, P., and Wils, K.: MagellanPlus Workshop: Mission-specific platform approaches to assessing natural hazards that impact society, MagellanPlus workshop report, ECORD/ICDP, https://www.ecord.org/?ddownload=16319 (last access: 29 September 2023), 2022.
Davis, E. E., Villinger, H., and Sun, T.: Slow and delayed deformation and uplift of the outermost subduction prism following ETS and seismogenic slip events beneath Nicoya Peninsula, Costa Rica, Earth Planet. Sci. Lett., 410, 117–127, https://doi.org/10.1016/j.epsl.2014.11.015, 2015.
Fagereng, Å.: Wedge geometry, mechanical strength, and interseismic coupling of the Hikurangi subduction thrust, New Zealand, Tectonophysics, 507, 26–30, https://doi.org/10.1016/j.tecto.2011.05.004, 2011.
Fagereng, Å. and Biggs, J.: New perspectives on “geological strain rates” calculated from both naturally deformed and actively deforming rocks, J. Struct. Geol., 125, 100–110, https://doi.org/10.1016/j.jsg.2018.10.004, 2019.
Früh-Green, G. L., Orcutt, B. N., Green, S. L., Cotterill, C., and the Expedition 357 Scientists: Expedition 357 summary, Proc. IODP, 357, 1–34, https://doi.org/10.14379/iodp.proc.357.101.2017, 2017.
Galloway, W. E.: Depositional evolution of the Gulf of Mexico sedimentary basin, Sediment. Basins World, 5, 505–549, https://doi.org/10.1016/S1874-5997(08)00015-4, 2008.
Goldfinger, C., Ikeda, Y., Yeats, R. S. and Ren, J.: Superquakes and supercycles, Seismolog. Res. Lett., 84, 24–32, https://doi.org/10.1785/0220110135, 2013.
Graham, S. E., Loveless, J. P., and Meade, B. J.: A Global Set of Subduction Zone Earthquake Scenarios and Recurrence Intervals Inferred From Geodetically Constrained Block Models of Interseismic Coupling Distributions, Geochem. Geophys. Geosyst., 22, e2021GC009802, https://doi.org/10.1029/2021GC009802, 2021.
Hampton, M. J., Lee, H. J., and Locat, J.: Submarine landslides, Rev. Geophys., 34, 33–59, https://doi.org/10.1029/95RG03287, 1996.
Huang, Y.: Earthquake rupture in fault zones with along-strike material heterogeneity, J. Geophys. Res.-Sol. Ea., 123, 9884–9898, https://doi.org/10.1029/2018JB016354, 2018.
Ito, Y., Hino, R., Kido, M., Fujimoto, H., Osada, Y., Inazu, D., Ohta, Y., Iinuma, T., Ohzono, M., Miura, S., and Mishina, M.: Episodic slow slip events in the Japan subduction zone before the 2011 Tohoku-Oki earthquake, Tectonophys., 600, 14–26, https://doi.org/10.1016/j.tecto.2012.08.022, 2013.
Koppers, A. A. P. and Coggon, R. (Eds.): Exploring Earth by Scientific Ocean Drilling: 2050 Science Framework, International Ocean Discovery Program, College Station, TX, https://doi.org/10.6075/J0W66J9H, 2020.
Martin, R. G.: Northern and eastern Gulf of Mexico continental margin: stratigraphic and structural framework, in: AAPG Studies in Geology 7: Framework, Facies, and Oil-Trapping Characteristics of the Upper Continental Margin, edited by: Coleman, J., Bouma, A. H., and Moore, G., American Association of Petroleum Geologists, Tulsa, OK, 21–42, https://doi.org/10.1306/St7399C2, 1978.
McGuire, J.: Seismic cycles and earthquake predictability on East Pacific Rise transform faults, B. Seismol. Soc. Am., 98, 1067–1084, https://doi.org/10.1785/0120070154, 2008.
McNeill, L. C., Shillington, D. J., Carter, G. D. O., and the Expedition 381 Participants: Corinth Active Rift Development, Proc. IODP, 381, https://doi.org/10.14379/iodp.proc.381.2019, 2019.
Métois, M., Socquet, A., and Vigny, C.: Interseismic coupling, segmentation and mechanical behavior of the central Chile subduction zone, J. Geophys. Res.-Sol. Ea., 117, B03406, https://doi.org/10.1029/2011JB008736, 2012.
Minson, S. E., Brooks, B. A., Glennie, C. L., Murray, J. R., Langbein, J. O., Owen, S. E., Heaton, T. H., Iannucci, R. A., and Hauser, D. L.: Crowdsourced earthquake early warning, Sci. Adv., 1, e1500036, https://doi.org/10.1126/sciadv.1500036, 2015.
Moreno, M., Haberland, C., Oncken, O., Rietbrock, A., Angiboust, S., and Heidbach, O.: Locking of the Chile subduction zone controlled by fluid pressure before the 2010 earthquake, Nat. Geosci., 7, 292–296, https://doi.org/10.1038/ngeo2102, 2014.
Morgan, J., Gulick, S., Mellett, C. L., Green, S. L., and the Expedition 364 Scientists: Chicxulub: Drilling the K-Pg impact crater, Proc. IODP, 364, https://doi.org/10.14379/iodp.proc.364.2017, 2017.
Morris, J. T. and Renken, K. A.: Past, present, and future nuisance flooding on the Charleston peninsula, PLOS One, 15, e0238770, https://doi.org/10.1371/journal.pone.0238770, 2020.
Mountain, G., Proust, J.-N., McInroy, D., Cotterill, C., and the Expedition 313 Scientists: New Jersey Shallow Shelf, Proc. IODP, 313, https://doi.org/10.2204/iodp.proc.313.2010, 2010.
National Geophysical Data Center/World Data Service (NGDC/WDS): NCEI/WDS Global Significant Earthquake Database, NOAA National Centers for Environmental Information [data set], https://doi.org/10.7289/V5TD9V7K, 2023a.
National Geophysical Data Center/World Data Service (NGDC/WDS): NGDC/WDS Global Historical Tsunami Database, NOAA National Centers for Environmental Information [data set], https://doi.org/10.7289/V5PN93H7, 2023b.
National Ocean Service (NOS)/Center for Operational Oceanographic Products & Services (CO-OPS): Tsunami Capable Tide Stations, National Oceanic and Atmospheric Administration (NOAA) [data set], https://tidesandcurrents.noaa.gov/tsunami/ (last access: 29 September 2023), 2023.
Nixon, C. W., McNeill, L. C., Bull, J. M., Bell, R. E., Gawthorpe, R. L., Henstock, T. L., Christodoulou, D., Ford, M., Taylor, B., Sakellariou, D., Ferentinos, G., Papatheodorou, G., Leeder, M. R., Coller, R. E. L. I., Goodliffe, A. M., Sachpazi, M., and Kranis, H.: Rapid spatiotemporal variations in rift structure during development of the Corinth Rift, central Greece, Tectonics, 35, 1225–1248, https://doi.org/10.1002/2015TC004026, 2016.
Özel, N. M., Necmioglu, O., Ergintav, S., Özel, O., Italiano, F., Favali, P., Bigarre, P., Cakir, Z., Geli, L., Aochi, H., Bossu, R., Zulfikar, C., and Sesetyan, K.: MARSite-Marmara Supersite: accomplishments and outlook, EGU General Assembly 2017, 23–28 April 2017, Vienna, Austria, EGU2017-18891, 2017.
Pan, S., Naliboff, J., Bell, R., and Jackson, C.: Bridging spatiotemporal scales of normal fault growth during continental extension using high-resolution 3D numerical models, Geochem. Geophys. Geosyst., 23, e2021GC010316, https://doi.org/10.1029/2021GC010316, 2022.
Popenoe, P., Schmuck, E. A., and Dillon, W. P.: The Cape Fear landslide: slope failure associated with salt diapirism and gas hydrate decomposition, in: Submarine Landslides: Selected Studies in the U.S. Exclusive Economic Zone, edited by: Schwab, W. C., Lee, H. J., and Twichell, D. C., U.S. Geological Survey, Washington, D.C., 40–53, https://doi.org/10.3133/b2002, 1993.
Ruff, L. J.: Do trench sediments affect great earthquake occurrence in subduction zones?, Pure Appl. Geophys., 129, 263–282, https://doi.org/10.1007/BF00874629, 1989.
Ruiz, S., Metois, M., Fuenzalida, A., Ruiz, J., Leyton, F., Grandin, R., Vigny, C., Madariaga, R. and Campos, J.: Intense foreshocks and a slow slip event preceded the 2014 Iquique Mw 8.1 earthquake, Science, 345, 1165–1169, https://doi.org/10.1126/science.1256074, 2014.
Sainsbury, E. M., Schiemann, R. K. H., Hodges, K. I., Shaffrey, L. C., Baker, A. J., and Bhatia, K. T.: How important are post-tropical cyclones for European windstorm risk?, Geophys. Res. Lett., 47, e2020GL089853, https://doi.org/10.1029/2020GL089853, 2020.
Saito, T. and Noda, A.: Mechanically coupled areas on the plate interface in the Nankai Trough, Japan and a possible seismic and aseismic rupture scenario for megathrust earthquakes, J. Geophys. Res.-Sol. Ea., 127, e2022JB023992, https://doi.org/10.1029/2022JB023992, 2022.
Sawyer, D. E. and DeVore, J. R.: Elevated shear strength of sediments on active margins: evidence for seismic strengthening, Geophys. Res. Lett., 42, 10216–10221, https://doi.org/10.1002/2015GL066603, 2015.
Scharroo, R., Smith, W. H. F., and Lillibridge, J. L.: Satellite altimetry and the intensification of Hurricane Katrina, Eos Trans. AGU, 86, 366, https://doi.org/10.1029/2005EO400004, 2005.
Scholz, C. H.: The Mechanics of Earthquakes and Faulting, 3rd edn., Cambridge University Press, Cambridge, UK, https://doi.org/10.1017/9781316681473, 2019.
Schulten, I., Mosher, D. C., Piper, D. J. W., and Krastel, S.: A Massive Slump on the St. Pierre Slope, A New Perspective on the 1929 Grand Banks Submarine Landslide, J. Geophys. Res.-Sol. Ea., 124, 7538–7561, https://doi.org/10.1029/2018JB017066, 2019.
Sparkes, R., Tilmann, F., Hovius, N., and Hillier, J.: Subducted seafloor relief stops rupture in South American great earthquakes: Implications for rupture behaviour in the 2010 Maule, Chile earthquake, Earth Planet. Sci. Lett., 298, 89–94, https://doi.org/10.1016/j.epsl.2010.07.029, 2010.
Stein, S., Geller, R. J., and Liu, M.: Why earthquake hazard maps often fail and what to do about it, Tectonophys, 562–563, 1–25, https://doi.org/10.1016/j.tecto.2012.06.047, 2012.
Taylor, S. K., Bull, J. M., Lamarche, G., and Barnes, P. M.: Normal fault growth and linkage in the Whakatane Graben, New Zealand, during the last 1.3 Myr, J. Geophys. Res., 109, B02408, https://doi.org/10.1029/2003JB002412, 2004.
Telesca, L.: Time-clustering of natural hazards, Nat. Hazards, 40, 593–601, https://doi.org/10.1007/s11069-006-9023-z, 2007.
Urlaub, M., Talling, P. J., and Masson, D. G.: Timing and frequency of large submarine landslides: implications for understanding triggers and future geohazard, Quaternary Sci. Rev., 72, 63–82, https://doi.org/10.1016/j.quascirev.2013.04.020, 2013.
van Rijsingen, E., Lallemand, S., Peyret, M., Arcay, D., Heuret, A., Funiciello, F., and Corbi, F.: How subduction interface roughness influences the occurrence of large interplate earthquakes, Geochem. Geophys. Geosyst., 19, 2342–2370, https://doi.org/10.1029/2018GC007618, 2018.
Vega, A. J., Miller, P. W., Rohli, R. V., and Heavilin, J.: Synoptic climatology of nuisance flooding along the Atlantic and Gulf of Mexico coasts, USA, Nat. Hazards, 105, 1281–1297, https://doi.org/10.1007/s11069-020-04354-5, 2021.
Wallace, L. M., Barnes, P., Beavan, J., Van Dissen, R., Litchfield, N., Mountjoy, J., Langridge, R., Lamarche, G., and Pondard, N.: The kinematics of a transition from subduction to strike-slip: An example from the central New Zealand Plate boundary, J. Geophys. Res.-Sol. Ea., 117, B02405, https://doi.org/10.1029/2011JB008640, 2012.
Wallace, L. M., Saffer, D. M., Barnes, P. M., Pecher, I. A., Petronotis, K. E., LeVay, L. J., and the Expedition 372/375 Scientists: Hikurangi Subduction Margin Coring, Logging, and Observatories, Proc. IODP, 372B/375, https://doi.org/10.14379/iodp.proc.372B375.2019, 2019.
Walsh, K. J. E., McBride, J. L., Klotzbach, P. J., Balachandran, S., Camargo, S. J., Holland, G., Knutson, T. R., Kossin, J. P., Lee, T., Sobel, A., and Sugi, M.: Topical cyclones and climate change, WIREs Climate Change, 7, 65–89, https://doi.org/10.1002/wcc.371, 2016.
Wang, K. and Bilek, S. L.: Do subducting seamounts generate or stop large earthquakes?, Geology, 39, 819–822, https://doi.org/10.1130/G31856.1, 2011.
Webster, J. M., Yokoyama, Y., Cotterill, C., and the Expedition 325 Scientists: Great Barrier Reef Environmental Changes, Proc. IODP, 325, https://doi.org/10.2204/iodp.proc.325.2011, 2011.
Wells, D. L. and Coppersmith, K. J.: New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement, B. Seismol. Soc. Am., 84, 974–1002, 1994.
Short summary
Natural hazards associated with the ocean can have a direct impact on coastal populations and even affect populations located far away from the coast. These hazards may interact, and they include tsunamis that result in major damage and catastrophic loss of life and submarine landslides, which themselves can produce tsunamis and damage subsea infrastructure. We present ideas for investigating these hazards with scientific ocean drilling.
Natural hazards associated with the ocean can have a direct impact on coastal populations and...