Blake, D., Vaniman, D., Achilles, C., Anderson, R., Bish, D., Bristow, T., Chen, C., Chipera, S., Crisp, J., Des Marais, D., Downs, R. T., Farmer, J., Feldman, S., Fonda, M., Gailhanou, M., Ma, H., Ming, D. W., Morris, R. V., Sarrazin, P., Stolper, E., Treiman, A., and Yen, A.: Characterization and Calibration of the CheMin Mineralogical Instrument on Mars Science Laboratory, Space Sci. Rev., 170, 341–399, https://doi.org/10.1007/s11214-012-9905-1, 2012.
Bradley, W. W.: Mines and mineral resources of the counties of Colusa, Glenn, Lake, Marin, Napa, Solano, Sonoma, Yolo, California State Mining Bureau, Ferry Building, San Francisco, California State Printing Office, No. 14456-A, 1915.
Brazelton, W. J., Schrenk, M. O., Kelley, D. S., and Baross, J. A.: Methane- and Sulfur-Metabolizing Microbial Communities Dominate the Lost City Hydrothermal Field Ecosystem, Appl. Environ. Microbiol., 72, 6257–6270, 2006.
Brazelton, W. J., Nelson, B., and Schrenk, M. O.: Metagenomic Evidence for H
2 Oxidation and H
2 Production by Serpentinite-Hosted Subsurface Microbial Communities, Front Microbiol., 2, 268, https://doi.org/10.3389/fmicb.2011.00268, 2012.
Brazelton, W. J., Morrill, P. L., Szponar, N., and Schrenk, M. O.: Bacterial Communities Associated with Subsurface Geochemical Processes in Continental Serpentinite Springs, Appl. Environ. Microbiol., 79, 3906–3916, 2013.
Fisk, M. R. and Giovannoni, S. J.: Sources of nutrients and energy for a deep biosphere on Mars, J. Geophys. Res., 104, 11805–11815, https://doi.org/10.1029/1999JE900010, 1999.
Früh-Green, G. L., Connolly, J. A., Plas, A., Kelley, D. S., and Grobéty, B.: Serpentinization of oceanic peridotites: Implications for geochemical cycles and biological activity, Geophys. Monogr. Ser., 144, 119–136, 2004.
Goff, F., Bergfeld, D., Janik, C. J., Counce, D., and Stimac, J. A.: Geochemical Data on Waters, Gases, Rocks, and Sediments from The Geysers-Clear Lake Region, California (1991–2000), LA-13882-MS, Los Alamos National Laboratory, Los Alamos, NM 87545, 2001.
Holm, N. G. and Andersson, E. M.: Organic molecules on the primitive Earth: Hydrothermal systems, in: The Molecular Origins of Life: Assembling Pieces of the Puzzle, Cambridge University Press, 86–99, 1998.
House, C. H., Cragg, B. A., Teske, A., and the Leg 201 Scientific Party: Drilling Contamination Tests during ODP Leg 201 Using Chemical and Particulate Tracers, in: Proc. ODP, Init. Repts., 201, 1–19 [CD-ROM], edited by: D'Hondt, S. L., Jørgensen, B. B., Miller, D. J., and the Leg 201 Shipboard Scientific Party, available from: Ocean Drilling Program, Texas A&M University, College Station TX 77845-9547, USA, 2003.
Karson, J. A., Cannat, M., Miller, D. J., and Elthon, D. (Eds.): Proc. ODP, Sci. Results, 153: College Station, TX (Ocean Drilling Program), https://doi.org/10.2973/odp.proc.sr.153.1997, 1997.
Kelemen, P. B., Kikawa, E., and Miller, D. J. (Eds.): Proc. ODP, Sci. Results, 209: College Station, TX (Ocean Drilling Program), https://doi.org/10.2973/odp.proc.sr.209.2007, 2007.
Kelley, D. S., Karson, J. A., Blackman, D. K., Früh-Green, G. L., Butterfield, D. A., Lilley, M. D., Olson, E. J., Schrenk, M. O., Roe, K. K., Lebon, G. T., Rivizzigno, P., and the AT3-60 Shipboard Party: An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30° N, Nature, 412, 145–149, 2001.
Klein, F., Bach, W., Jöns, N., McCollom, T., Moskowitz, B., and Berquó, T.: Iron partitioning and hydrogen generation during serpentinization of abyssal peridotites from 15° N on the Mid-Atlantic Ridge, Geochim. Cosmochim. Acta, 73, 6868–6893, https://doi.org/10.1016/j.gca.2009.08.021, 2009.
Martin, W. and Russell, M. J.: On the origin of biochemistry at an alkaline hydrothermal vent, Phil. Trans. R. Soc. Lond. B, 362, 1887–1925, 2007.
McCollom, T. M.: Geochemical constraints on sources of metabolic energy for chemolithoautotrophy in ultramafic-hosted deep-sea hydrothermal systems, Astrobiology, 7, 933–950, 2007.
McCollom, T. M. and Seewald, J. S.: A reassessment of the potential for reduction of dissolved CO
2 to hydrocarbons during serpentinization of olivine, Geochim. Cosmochim. Ac., 65, 3769–3778, 2001.
Mével, C., Gillis, K. M., Allan, J. F., and Meyer, P. S. (Eds.): Proc. ODP, Sci. Results, 147, College Station, TX (Ocean Drilling Program), https://doi.org/10.2973/odp.proc.sr.147.1996, 1996.
Moody, J. B.: Serpentinization: a review, Lithos, 9, 125–138, 1976.
Morrill, P. L., Gijs Kuenen, J., Johnson, O. J., Suzuki, S., Rietze, A., Sessions, A. L., Fogel, M. L., and Nealson, K. H.: Geochemistry and geobiology of a present-day serpentinization site in California: The Cedars, Geochim. Cosmochim. Ac., 109, 222–240, 2013.
Nealson, K. H.: The limits of life on Earth and searching for life on Mars, J. Geophys. Res., 102, 23675–23686, https://doi.org/10.1029/97JE01996, 1997.
Paukert, A. N., Matter, J. M., Kelemen, P. B., Shock, E. L., and Havig, J. R.: Reaction path modeling of enhanced in situ CO
2 mineralization for carbon sequestration in the peridotite of the Samail Ophiolite, Sultanate of Oman, Chem. Geol., 330–331, 86–100, 2012.
Peters, E. K.: D-
18O enriched waters of the Coast Range Mountains, northern California: connate and ore-forming fluids, Geochim. Cosmochim. Ac., 57, 1093–1104, 1993.
Proskurowski, G., Lilley, M. D., Seewald, J. S., Früh-Green, G. L., Olson, E. J., Lupton, J. E., Sylva, S. P., and Kelley, D. S.: Abiogenic Hydrocarbon Production at Lost City Hydrothermal Field, Science, 319, 604–607, 2008.
Schrenk, M. O., Kelley, D. S., Bolton, S. A., and Baross, J. A.: Low archaeal diversity linked to subseafloor geochemical processes at the Lost City Hydrothermal Field, Mid-Atlantic Ridge, Environ. Microbiol., 6, 1086–1095, 2004.
Schrenk, M. O., Brazelton, W. J., and Lang, S. Q.: Serpentinization, carbon, and deep life, Rev. Mineral. Geochem., 75, 575–606, 2013.
Schulte, M., Blake, D., Hoehler, T., and McCollom, T.: Serpentinization and Its Implications for Life on the Early Earth and Mars, Astrobiology, 6, 364–376, https://doi.org/10.1089/ast.2006.6.364, 2006.
Seyfried Jr., W. E., Foustoukos, D. I., and Fu, Q.: Redox evolution and mass transfer during serpentinization: An experimental and theoretical study at 200°C, 500bar with implications for ultramafic-hosted hydrothermal systems at Mid-Ocean Ridges, Geochim. Cosmochim. Ac., 71, 3872–3886, 2007.
Shervais, J. W., Murchey, B. L., Kimbrough, D. L., Renne, P. R., and Hanan, B.: Radioisotopic and biostratigraphic age relations in the Coast Range Ophiolite, northern California: Implications for the tectonic evolution of the Western Cordillera, Geol. Soc. Am. Bull., 117, 633–653, 2005.
Shock, E. L.: High-temperature life without photosynthesis as a model for Mars, J. Geophys. Res., 102, 23687–23694, https://doi.org/10.1029/97JE01087, 1997.
Shock, E. L. and Schulte, M. D.: Organic synthesis during fluid mixing in hydrothermal systems, J. Geophys. Res., 103, 28513–28527, https://doi.org/10.1029/98JE02142, 1998.
Sleep, N. H., Meibom, A., Fridriksson, Th., Coleman, R. G., and Bird, D. K.: H
2-rich fluids from serpentinization: Geochemical and biotic implications, P. Natl. Acad. Sci., 101, 12818–12823, 2004.
Smith, D. C., Spivack, A. J., Fisk, M. R., Haveman, S. A., and Staudigel, H.: Tracer-Based Estimates of Drilling-Induced Microbial Contamination of Deep Sea Crust, Geomicrobiol. J., 17, 207–219, https://doi.org/10.1080/01490450050121170, 2000a.
Smith, D. C., Spivack, A. J., Fisk, M. R., Haveman, S. A., Staudigel, H., and ODP Leg 185 Shipboard Scientific Party: Methods for Quantifying Potential Microbial Contamination during Deep Ocean Coring, ODP Tech. Note, 28 [Online], available at: http://www-odp.tamu.edu/publications/tnotes/tn28/INDEX.HTM, 2000b.
Suzuki, S., Ishii, S., Wu, A., Cheung, A., Tenney, A., Wanger, G., Gijs Kuenen, J., and Nealson, K. H.: Microbial diversity in The Cedars, an ultrabasic, ultrareducing, and low salinity serpentinizing ecosystem, P. Natl. Acad. Sci., 110, 15336–15341, 2013.
Takai, K., Gamo, T., Tsunogai, U., Nakayama, N., Hirayama, H., Nealson, K. H., and Horikoshi, K.: Geochemical and microbiological evidence for a hydrogen-based, hyperthermophilic subsurface lithoautotrophic microbial ecosystem (HyperSLiME) beneath an active deep-sea hydrothermal field, Extremophiles, 8, 269–282, 2004.
US-EPA METHOD 6200: Field Portable X-ray Fluorescence Spectrometry for the Determination of Elemental Concentrations in Soil and Sediment, available at: http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/6200.pdf, 2007.
USGS Open-File Report 2005-1305: Preliminary integrated geologic map databases for the United States – western states: California, Nevada, Arizona, Washington, Oregon, Idaho, and Utah, available at: http://pubs.usgs.gov/of/2005/1305/, 2007.