IODP workshop: developing scientific drilling proposals for the Argentina Passive Volcanic Continental Margin (APVCM) – basin evolution, deep biosphere, hydrates, sediment dynamics and ocean evolution
Roger D. Flood
CORRESPONDING AUTHOR
School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794-5000, USA
Roberto A. Violante
Argentina Hydrographic Survey, Buenos Aires, C1270ABV, Argentina
Thomas Gorgas
GFZ German Research Centre for Geosciences, 14473, Potsdam, Germany
Ernesto Schwarz
Geological Research Center, University of La Plata – CONICET, B1904DPK, La Plata, Argentina
Jens Grützner
Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, 27568 Bremerhaven, Germany
Gabriele Uenzelmann-Neben
Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, 27568 Bremerhaven, Germany
F. Javier Hernández-Molina
Department of Earth Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
Jennifer Biddle
School of Marine Science and Policy, University of Delaware, Lewes, Delaware 19958, USA
Guillaume St-Onge
Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski, Québec, G5L 3A1, Canada
APVCM workshop participants
A full list of authors and their affiliations appears at the end of the paper.
Related authors
No articles found.
Marie-Eugénie Meusseunan Pascale Jamba, Pierre Francus, Antoine Gagnon-Poiré, and Guillaume St-Onge
EGUsphere, https://doi.org/10.5194/egusphere-2024-2511, https://doi.org/10.5194/egusphere-2024-2511, 2024
Short summary
Short summary
This article presents a non-destructive method for studying laminated sediments with X-ray computed tomography (μCT). It aims to study the possibility of using μCT as an analytical tool to analyse varved sediments in the context of paleoclimatic studies. As results, µCT offers the possibility of to do fasts analysis and constitutes a powerful tool to improve the quality of results through the access of a 3D view allowing choosing the most representative part of varved record.
Michel Michaelovitch de Mahiques, Roberto Violante, Paula Franco-Fraguas, Leticia Burone, Cesar Barbedo Rocha, Leonardo Ortega, Rosangela Felicio dos Santos, Bianca Sung Mi Kim, Rubens Cesar Lopes Figueira, and Marcia Caruso Bícego
Ocean Sci., 17, 1213–1229, https://doi.org/10.5194/os-17-1213-2021, https://doi.org/10.5194/os-17-1213-2021, 2021
Short summary
Short summary
In this work we used a concept called geochemical fingerprinting, with isotopes of neodymium and lead as tools to recognize the main sources and the physical processes responsible for the transport and deposition of sediments on a large area of the South Atlantic margin. Distinct sources, such as Antarctica, the Andean Cordillera, the Río de la Plata basin, and old rocks from the Brazilian shield, are identified.
David Roque, Ivan Parras-Berrocal, Miguel Bruno, Ricardo Sánchez-Leal, and Francisco Javier Hernández-Molina
Ocean Sci., 15, 1381–1397, https://doi.org/10.5194/os-15-1381-2019, https://doi.org/10.5194/os-15-1381-2019, 2019
Short summary
Short summary
Global circulation of intermediate water masses has been extensively studied; however, its regional and local circulation along continental margins and variability and implications on sea floor morphologies are still not well known. In this study the intermediate water mass variability in the Gulf of Cádiz and adjacent areas has been analysed and its implications discussed. Remarkable seasonal variations of the Antarctic Intermediate Water and the Subarctic Intermediate Water are determined.
Eleanor Georgiadis, Jacques Giraudeau, Philippe Martinez, Patrick Lajeunesse, Guillaume St-Onge, Sabine Schmidt, and Guillaume Massé
Clim. Past, 14, 1991–2010, https://doi.org/10.5194/cp-14-1991-2018, https://doi.org/10.5194/cp-14-1991-2018, 2018
Short summary
Short summary
We present our results from a radiocarbon-dated core collected in central Nares Strait, NW Greenland. Sedimentological and geochemical data reveal that marine sedimentation began ca. 9.0 cal ka BP with the complete opening of the strait occurring at 8.3 cal ka BP. The collapse of the glacial buttress in central Nares Strait led to accelerated glacial fluxes of the bordering ice sheets between 8.3 and 7.5 cal ka BP, while the Humboldt Glacier retreated in eastern Kane Basin ca. 8.1 cal ka BP.
Robert McKay, Neville Exon, Dietmar Müller, Karsten Gohl, Michael Gurnis, Amelia Shevenell, Stuart Henrys, Fumio Inagaki, Dhananjai Pandey, Jessica Whiteside, Tina van de Flierdt, Tim Naish, Verena Heuer, Yuki Morono, Millard Coffin, Marguerite Godard, Laura Wallace, Shuichi Kodaira, Peter Bijl, Julien Collot, Gerald Dickens, Brandon Dugan, Ann G. Dunlea, Ron Hackney, Minoru Ikehara, Martin Jutzeler, Lisa McNeill, Sushant Naik, Taryn Noble, Bradley Opdyke, Ingo Pecher, Lowell Stott, Gabriele Uenzelmann-Neben, Yatheesh Vadakkeykath, and Ulrich G. Wortmann
Sci. Dril., 24, 61–70, https://doi.org/10.5194/sd-24-61-2018, https://doi.org/10.5194/sd-24-61-2018, 2018
Roy H. Wilkens, Thomas Westerhold, Anna J. Drury, Mitchell Lyle, Thomas Gorgas, and Jun Tian
Clim. Past, 13, 779–793, https://doi.org/10.5194/cp-13-779-2017, https://doi.org/10.5194/cp-13-779-2017, 2017
Short summary
Short summary
Here we introduce the Code for Ocean Drilling Data (CODD), a unified and consistent system for integrating disparate data streams such as micropaleontology, physical properties, core images, geochemistry, and borehole logging. As a test case, data from Ocean Drilling Program Leg 154 (Ceara Rise – western equatorial Atlantic) were assembled into a new regional composite benthic stable isotope record covering the last 5 million years.
K. Hochmuth, K. Gohl, G. Uenzelmann-Neben, and R. Werner
Solid Earth Discuss., https://doi.org/10.5194/sed-6-1863-2014, https://doi.org/10.5194/sed-6-1863-2014, 2014
Revised manuscript not accepted
Related subject area
Location/Setting: Deep sea | Subject: Geophysics/Seismology | Geoprocesses: Global climate change
The "Shackleton Site" (IODP Site U1385) on the Iberian Margin
D. A. Hodell, L. Lourens, D. A. V. Stow, J. Hernández-Molina, C. A. Alvarez Zarikian, and the Shackleton Site Project Members
Sci. Dril., 16, 13–19, https://doi.org/10.5194/sd-16-13-2013, https://doi.org/10.5194/sd-16-13-2013, 2013
Cited articles
Armstrong McKay, D. I., Tyrrell, T., Wilson, P. A., and Foster, G. L.: Estimating the impact of the cryptic degassing of Large Igneous Provinces: A mid-Miocene case-study. Earth and Sciences Letters, 403, 254–262, https://doi.org/10.1016/j.epsl.2014.06.040, 2014.
Bender, V. B., Hanebuth, T. J. J., and Chiessi, C. M.: Holocene shifts of the Subtropical Shelf Front off southeastern South America controlled by high and low latitude atmospheric forcings, Paleoceanography, 28, 481–490, https://doi.org/10.1002/palo.20044, 2013.
Bozzano, G., Violante, R. A., and Cerredo, M. E.: Middle slope contourite deposits and associated sedimentary facies off NE Argentina, Geo-Mar. Lett., 31, 495–507, https://doi.org/10.1007/s00367-011-0239-x, 2011.
Broecker, W.: The great ocean conveyor, Oceanography, 4, 79–89, https://doi.org/10.5670/oceanog.1991.07, 1991.
Chiessi, C. M., Ulrich, S., Mulitza, S., Pätzold, J., and Wefer, G.: Signature of the Brazil-Malvinas Confluence (Argentine Basin) in the isotopic composition of planktonic foraminifera from surface sediments, Mar. Micropaleontol., 64, 52–66, https://doi.org/10.1016/j.marmicro.2007.02.002, 2007.
Ewing, M. and Lonardi, A. G.: Sediment transport and deposition in the Argentine Basin. 5. Sedimentary structures of the Argentine margin, basin and related provinces, Phys. Chem. Earth, 8, 125–156, https://doi.org/10.1016/0079-1946(71)90017-6, 1971.
Foster, G. L., Lear, C. H., and Rae, J. W. B.: The evolution of pCO2, ice volume and climate during the middle Miocene, Earth Planet Sc. Lett., 341–344, 243–254, https://doi.org/10.1016/j.epsl.2012.06.007, 2012.
Friedrich, O., Norris, R. D., and Erbacher, J.: Evolution of middle to Late Cretaceous oceans – A 55 m.y. record of Earth's temperature and carbon cycle, Geology, 40, 107–110, https://doi.org/10.1130/G32701.1, 2012.
García Chapori, N., Laprida, C., Watanabe, S., Totah, V., and Violante, R. A.: Mid-Late Pleistocene benthic foraminifera from Southwestern South Atlantic: driven by primary productivity or watermass properties?, Micropaleontology, 60, 195–210, 2014.
García Chapori, N., Chiessi, C. M., Bickert, T., and Laprida, C.: Sea-surface temperature reconstruction of the Quaternary western South Atlantic: New planktonic foraminiferal correlation function, Palaeogeogr. Palaeocl., 425, 67–75, https://doi.org/10.1016/j.palaeo.2015.02.027, 2015.
Ghiglione, M. C., Sue, C., Ramos, M., Tobal, J. E., and Gallardo, R. E.: The Relation Between Neogene Denudation of the Southernmost Andes and Sedimentation in the Offshore Argentine and Malvinas Basins During the Opening of the Drake Passage. Chapter 5 in: Geodynamic Evolution of the Southernmost Andes, edited by: Ghiglione, M. C., 206 pp., ISBN: 978-3-319-39727-6, 2016.
Gladczenko, T. P., Hinz, K., Eldholm, O., Meyer, H., Neben, S., and Skogseid, J.: South Atlantic volcanic margins, J. Geol Soc. London, 154, 465–470, https://doi.org/10.1144/gsjgs.154.3.0465, 1997.
Govin, A., Holzwarth, U., Heslop, D., Ford Keeling, L., Zabel, M., Mulitza, S., Collins, J. A., and Chiessi, C. M.: Distribution of major elements in Atlantic surface sediments (36N°–49°S): Imprints of terrigenous input and continental weathering, Geochem. Geophy. Geosy., 13, Q01013, https://doi.org/10.1029/2011GC003785, 2012.
Granot, R. and Dyment, J.: The Cretaceous opening of the South Atlantic Ocean, EPSL, 414, 156–163, https://doi.org/10.1016/j.epsl.2015.01.015, 2015.
Grützner, J., Uenzelmann-Neben, G., and Franke, D.: Variations in bottom water activity at the southern Argentine margin: indications from a seismic analysis of a continental slope terrace, Geo-Mar. Lett, 31, 405–417, https://doi.org/10.1007/s00367-011-0252-0, 2011.
Grützner, J., Uenzelmann-Neben, G., and Franke, D.: Variations in sediment transport at the central Argentine continental margin during the Cenozoic, Geochem. Geophy. Geosy., 13, Q10003, https://doi.org/10.1029/2012GC004266, 2012.
Grützner, J., Uenzelmann-Neben, G., and Franke, D.: Evolution of the northern Argentine margin during the Cenozoic controlled by bottom current dynamics and gravitational processes, Geochem. Geophy. Geosy., 17, 3131–3149, https://doi.org/10.1002/2015GC006232, 2016.
Hamon, N., Sepulchre, P., Lefebvre, V., and Ramstein, G.: The role of eastern Tethys seaway closure in the Middle Miocene Climatic Transition (ca. 14 Ma), Clim. Past, 9, 2687–2702, https://doi.org/10.5194/cp-9-2687-2013, 2013.
Hanna, G. D., Hendey, I. N., and Brigger, A. L.: Some Eocene diatoms from South Atlantic cores, Part I. California Academy of Sciences, Occ. Papers, 123, 1–19, 1976.
Heil Jr., C. W., King, J. W., Zarate, M., and Schultz, P. H.: Climatic interpretation of 1.9 Ma environmental magnetic record of loess deposition and soil formation in the central eastern Pampas of Buenos Aires, Argentina, Quaternary Sci. Rev., 29, 2705–2718, https://doi.org/10.1016/j.quascirev.2010.06.024, 2010.
Heine, C., Zoethout, J., and Müller, R. D.: Kinematics of the South Atlantic rift, Solid Earth, 4, 215–253, https://doi.org/10.5194/se-4-215-2013, 2013.
Hensen, C., Zabel, M., Pfeifer, K., Schwenk, T., Kasten, S., Riedinger, N., Schulz, H. D., and Boetius, A.: Control of sulfate pore-water profiles by sedimentary events and the significance of anaerobic oxidation of methane for burial of sulfur in marine sediments, Geochim. Cosmochim. Ac., 67, 2631–2647, https://doi.org/10.1016/S0016-7037(03)00199-6, 2003.
Hernández-Molina, F. J., Paterlini, M., Violante, R., Marshall, P., de Isasi, M., Somoza, L., and Rebesco, M.: Contourite depositional system on the Argentine Slope: An exceptional record of the influence of Antarctic water masses, Geology, 37, 507–510, https://doi.org/10.1130/G25578A.1, 2009.
Hernández-Molina, F. J., Paterlini, M., Somoza, L., Violante, R., Arecco, M. A., de Isasi, M., Rebesco, M., Uenzelmann-Neben, G., Neben, S., and Marshall, P.: Giant mounded drifts in the Argentine Continental Margin: Origins and global implications for the history of thermohaline circulation. Mar. Petrol. Geol., 27, 1508–1530, https://doi.org/10.1016/j.marpetgeo.2010.04.003, 2010.
Hernández-Molina, F. J., Soto, M., Piola, A. R., Tomasini, J., Preu, B., Thompson, P., Badalini, G., Creaser, A., Violante, R., Morales, E., and de Santa Ana, H.: A contourite depositional system along the Uruguyan continental margin: Sedimentary, oceanographic and paleocenographic implications, Mar. Geol., 378, 333–349, https://doi.org/10.1016/j.margeo.2015.10.008, 2015.
Hinz, K., Neben, S., Schreckenberger, B., Roeser, H. A., Block, M., Gonçalves de Souza, K., and Meyer, H.: The Argentine continental margin north of 48° S: Sedimentary successions, volcanic activity during breakup Mar. Petrol. Geol., 16, 1–25, https://doi.org/10.1016/S0264-8172(98)00060-9, 1999.
Katz, M. E., Cramer, B. S., Toggweiler, J. R., Esmay, G., Liu, C., Miller, K. G., Rosenthal, Y., Wade, B. S., and Wright, J. D.: Impact of Antarctic Circumpolar Current development on Late Paleogene ocean structure, Science, 332, 1076–1079, https://doi.org/10.1126/science.1202122, 2011.
Krastel, S., Wefer, G., Hanebuth, T. J. J., Antobreh, A. A., Freudenthal, T., Preu, B., Schwenk, T., Strasser, M., Violante, R., and Winkelmann, D.: Sediment dynamics and geohazards off Uruguay and the de la Plata region (northern Argentina and Uruguay), Geo-Mar. Lett., 31, 271–283, https://doi.org/10.1007/s00367-011-0232-4, 2011.
Lastras, G., Acosta, J., Muñoz, A., and Canals, M.: Submarine canyon formation and evolution in the Argentine Continental Margin between 44°30'S and 48°S, Geomorphology, 128, 116–136, https://doi.org/10.1016/j.geomorph.2010.12.027, 2011.
Lisé-Pronovost, A., St-Onge, G., Gogorza, C., Haberzettl, T., Jouve, G., Francus, P., Ohlendorf, C., Gebhardt, C., and Zolitschka, B., and PASADO Science Team: Rock-magnetic proxies of wind intensity and dust since 51,200 cal BP from lacustrine sediments of Laguna Potrok Aike, southeastern Patagonia, EPSL, 411, 72–86, https://doi.org/10.1016/j.epsl.2014.11.007, 2015.
Loegering, M. J., Anka, Z., Autin, J., di Primio, R., Marchal, D., Rodriguez, J. F., Franke, D., and Vallejo, E.: Tectonic evolution of the Colorado Basin, offshore Argentina, inferred from seismo-stratigraphy and depositional rates analysis, Tectonophysics, 604, 245–263, https://doi.org/10.1016/j.tecto.2013.02.008, 2013.
Lonardi, A. G. and Ewing, M.: Sediment transport and distribution in the Argentine Basin. 4. Bathymetry of the continental margin, Argentine Basin and other related provinces. Canyons and sources of sediments, Phys. Chem. Earth, 8, 79–121, https://doi.org/10.1016/0079-1946(71)90016-4, 1971.
Martinod, J., Husson, L., Roperch, P., Guillaume, B., and Espurt, N.: Horizontal subduction zones, convergence velocity and the building of the Andes, Earth Planet Sc. Lett., 299, 299–309, https://doi.org/10.1016/j.epsl.2010.09.010, 2010.
Moulin, M., Aslanian, D., and Unternehr, P.: A new starting point for the South and Equatorial Atlantic Ocean, Earth-Sci. Rev., 98, 1–37, https://doi.org/10.1016/j.earscirev.2009.08.001, 2010.
Muñoz, A., Cristobo, J., Rios, P., Druet, M., Polonio, V., Uchipi, E., Acosta, J., and Atlantis Group: Sediment drifts and cold-water coral reefs in the Patagonian upper and middle continental slope, Mar. Petrol. Geol., 36, 70–82, https://doi.org/10.1016/j.marpetgeo.2012.05.008, 2012.
Pardo-Casas, F. and Molnar, P.: Relative motion of the Nazca (Farallon) and South-American plates since late Cretaceous time, Tectonics, 6, 233–248, https://doi.org/10.1029/TC006i003p00233, 1987.
Planke, S. and Berndt, C.: “Anordning for seismikkmåling”, Patent 20021140, 2002.
Planke, S., Erikson, F. N., Berndt, C., Mienert, J., and Masson, D.: P-Cable High-Resolution Seismic, Oceanography, 22, 85–85, https://doi.org/10.5670/oceanog.2009.09, 2009.
Preu, B., Schwenk, T., Hernández-Molina, F. J., Violante, R., Paterlini, M., Krastel, S., Tomasini, J., and Spiess, V.: Sedimentary growth pattern on the northern Argentine slope: the impact of North Atlantic Deep Water on southern hemisphere slope architecture, Mar. Geol., 329–331, 113–125, https://doi.org/10.1016/j.margeo.2012.09.009, 2012.
Preu, B., Hernández-Molina, F. J., Violante, R., Piola, A. R., Paterlini, C. M., Schwenk, T., Voigt, I., Krastel, S., and Spiess, V.: Morphosedimentary and hydrographic features of the northern Argentine margin: the interplay between erosive, depositional and gravitational processes and its conceptual implications, Deep-Sea Res. Pt. I, 75, 157–174, https://doi.org/10.1016/j.dsr.2012.12.013, 2013.
Razik, S.: How magnetics and granulometry of continental margin sediments reflect terrestrial and marine environment of South America and West Africa. Dissertation for the doctoral degree in natural sciences (Dr. rer. nat.) at the Faculty of Geosciences of the Bremen University, 147 pp., 2014.
Razik, S., Chiessi, C. M., Romero, O. E., and von Dobeneck, T.: Interaction of the South American Monsoon System and the Southern Westerly Wind Belt during the last 14 kyr, Palaeogeogr. Palaeocl., 374, 28–40, https://doi.org/10.1016/j.palaeo.2012.12.022, 2013.
Riedinger, N., Formolo, M. J., Lyons, T. W., Henkel, S., Beck, A., and Kasten, S.: An inorganic geochemical argument for coupled anerobic oxidation of methane and iron reduction in marine sediments, Geobiology, 12, 172–181, https://doi.org/10.1111/gbi.12077, 2014.
Ross, R.: Some Eocene diatoms from South Atlantic cores, Part II., California Academy of Sciences, Occ. Papers, 123, 21–27, 1976.
Ryan, W. B. F., Carbotte, S. M., Coplan, J. O., O'Hara, S., Melkonian, A., Arko, R., Weissel, R. A., Ferrini, V., Goodwillie, A., Nitsche, F., Bonczkowski, J., and Zemsky, R.: Global Multi-Resolution Topography synthesis, Geochem. Geophy. Geosy., 10, Q03014, https://doi.org/10.1029/2008GC002332, 2009.
Shevenell, A. E.: Middle Miocene Southern Ocean cooling and Antarctic cryosphere expansion, Science, 305, 1766–1770, https://doi.org/10.1126/science.1100061, 2004.
Torsvik, T. H., Rousse, S., Labails, C., and Smethurst, M. A.: A new scheme for opening of the South Atlantic Ocean and the dissection of an Aptian salt basin, Geophys. J. Int., 177, 1315–1333, https://doi.org/10.1111/j.1365-246X.2009.04137.x, 2009.
Uenzelmann-Neben, G., Weber, T., Grützner, J., and Thomas, M.: Transition from the Cretaceous ocean to Cenozoic circulation in the western South Atlantic – A twofold reconstruction, Tectonophysics, https://doi.org/10.1016/j.tecto.2016.05.036, in press, 2016.
Violante, R. A., Paterlini, C. M., Costa, I. P., Hernández-Molina, F. J., Segovia, L. M., Cavallotto, J. L., Marcolini, S., Bozzano, G., Laprida, C., Garcia-Chapori, N., Bickert, T., and Spiess, V.: Sismostratigrafia y Evolucion Geomorfologica del Talud Continental Adyacente al Litoral del Este Bonarense, Argentina, Latin American Journal of Sedimentology and Basin Analysis, 17, 33–62, http://ref.scielo.org/qnx2ts, 2010.
Voigt, I., Henrich, R., Preu, B. M., Piola, A. R., Hanebuth, T. J. J., Schwenk, T., and Chiessi, C. M.: A submarine canyon as a climate archive – interaction of the Antarctic Intermediate Water with the Mar del Plata Canyon (Southwest Atlantic), Mar. Geol., 341, 46–57, https://doi.org/10.1016/j.margeo.2013.05.002, 2013.