A roadmap for amphibious drilling at the Campi Flegrei caldera: insights from a MagellanPlus workshop
Istituto di Scienze Marine (ISMAR), Consiglio Nazionale delle
Ricerche (CNR), Calata Porta di Massa, 80133 Naples, Italy
Giuseppe De Natale
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di
Napoli, Via Diocleziano, 328, 80124 Naples, Italy
Volkhard Spiess
Faculty of Geosciences, University of Bremen, Klagenfurter Str.,
28359 Bremen, Germany
Lena Steinmann
Faculty of Geosciences, University of Bremen, Klagenfurter Str.,
28359 Bremen, Germany
Valerio Acocella
Dipartimento di Scienze Geologiche, Università degli Studi Roma Tre,
Largo S.L. Murialdo, 1, 00146 Rome, Italy
Marta Corradino
Dipartimento di Scienze della Terra e del Mare (DiSTeM), Università degli Studi di Palermo, Via Archirafi, 22, 90123 Palermo, Italy
Shanaka de Silva
College of Earth, Ocean, and Atmospheric Sciences, Oregon State
University, Corvallis, OR 97331, USA
Alessandro Fedele
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di
Napoli, Via Diocleziano, 328, 80124 Naples, Italy
Lorenzo Fedele
Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse
(DiSTAR), Università degli Studi di Napoli Federico II, Via Cinthia, 21, 80126
Naples, Italy
Nobuo Geshi
Geological Survey of Japan, National Institute of Advanced Industrial Science
and Technology, AIST Tsukuba Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
Christopher Kilburn
UCL Hazard Centre, Department of Earth Sciences, University College
London, Gower Street, London WC1E 6BT, UK
Donatella Insinga
Istituto di Scienze Marine (ISMAR), Consiglio Nazionale delle
Ricerche (CNR), Calata Porta di Massa, 80133 Naples, Italy
Maria-José Jurado
Institut de Ciències de la Terra Jaume Almera, Consejo Superior de Investigaciones Científicas (CSIC), C/Lluís Solé i Sabarís s/n, 08028 Barcelona, Spain
Flavia Molisso
Istituto di Scienze Marine (ISMAR), Consiglio Nazionale delle
Ricerche (CNR), Calata Porta di Massa, 80133 Naples, Italy
Paola Petrosino
Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse
(DiSTAR), Università degli Studi di Napoli Federico II, Via Cinthia, 21, 80126
Naples, Italy
Salvatore Passaro
Istituto di Scienze Marine (ISMAR), Consiglio Nazionale delle
Ricerche (CNR), Calata Porta di Massa, 80133 Naples, Italy
Fabrizio Pepe
Dipartimento di Scienze della Terra e del Mare (DiSTeM), Università degli Studi di Palermo, Via Archirafi, 22, 90123 Palermo, Italy
Sabina Porfido
Istituto di Scienze dell'Alimentazione (ISA), Consiglio Nazionale
delle Ricerche (CNR), Via Roma, 64, 83100 Avellino, Italy
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di
Napoli, Via Diocleziano, 328, 80124 Naples, Italy
Claudio Scarpati
Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse
(DiSTAR), Università degli Studi di Napoli Federico II, Via Cinthia, 21, 80126
Naples, Italy
Hans-Ulrich Schmincke
GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1–3, 24148 Kiel, Germany
Renato Somma
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di
Napoli, Via Diocleziano, 328, 80124 Naples, Italy
Mari Sumita
GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1–3, 24148 Kiel, Germany
Stella Tamburrino
Istituto di Scienze Marine (ISMAR), Consiglio Nazionale delle
Ricerche (CNR), Calata Porta di Massa, 80133 Naples, Italy
Claudia Troise
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di
Napoli, Via Diocleziano, 328, 80124 Naples, Italy
Mattia Vallefuoco
Istituto di Scienze Marine (ISMAR), Consiglio Nazionale delle
Ricerche (CNR), Calata Porta di Massa, 80133 Naples, Italy
Guido Ventura
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Via di Vigna
Murata, 605, 00143 Rome, Italy
Related authors
Giuseppe Rolandi, Claudia Troise, Marco Sacchi, Massimo Di Lascio, and Giuseppe De Natale
EGUsphere, https://doi.org/10.5194/egusphere-2024-2035, https://doi.org/10.5194/egusphere-2024-2035, 2024
Short summary
Short summary
We compare recent unrest episodes at Campi Flegrei caldera (Naples, Italy), with phenomena occurred during the historical eruption in 1538. Besides proposing a new, accurate reconstruction of the ground movements in the area since VIII century BC, we deduce a striking similarity of the present unrest with the precursors to the 1538 eruption. We then infer that, if the ground uplift continues, earthquakes up to magnitude 5 are expected, as well as a considerable eruption risk in the next decades.
Federica Foglini, Marzia Rovere, Renato Tonielli, Giorgio Castellan, Mariacristina Prampolini, Francesca Budillon, Marco Cuffaro, Gabriella Di Martino, Valentina Grande, Sara Innangi, Maria Filomena Loreto, Leonardo Langone, Fantina Madricardo, Alessandra Mercorella, Paolo Montagna, Camilla Palmiotto, Claudio Pellegrini, Antonio Petrizzo, Lorenzo Petracchini, Alessandro Remia, Marco Sacchi, Daphnie Sanchez Galvez, Anna Nora Tassetti, and Fabio Trincardi
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-135, https://doi.org/10.5194/essd-2024-135, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
In 2022, the new CNR Research Vessel GAIA BLU explored the seafloor of the Naples and Pozzuoli Gulfs, and the Amalfi coastal area (Tyrrhenian Sea, Italy) from 50 to 2000 m water depth, covering 5000 m2 of seafloor. This paper describes data acquisition and processing and provides maps in unprecedented detail of this area abrupt to geological changes and human impacts. These findings support future geological and geomorphological investigations and mapping and monitoring seafloor and habitats.
Fabio Matano, Mauro Caccavale, Giuseppe Esposito, Alberto Fortelli, Germana Scepi, Maria Spano, and Marco Sacchi
Earth Syst. Sci. Data, 12, 321–344, https://doi.org/10.5194/essd-12-321-2020, https://doi.org/10.5194/essd-12-321-2020, 2020
Short summary
Short summary
Along the coastline of the Phlegraean Fields, Naples, Italy, severe retreat processes affect the tuff coastal cliffs, causing hazardous slope failures. An integrated monitoring system coupled with a weather station has been active since 2014. The measurements allowed us to assess the magnitude and temporal pattern of rock block deformations before failure and their correlation with meteorological parameters. A close correlation between temperature and deformation trends has been recognized.
Giuseppe Rolandi, Claudia Troise, Marco Sacchi, Massimo Di Lascio, and Giuseppe De Natale
EGUsphere, https://doi.org/10.5194/egusphere-2024-2035, https://doi.org/10.5194/egusphere-2024-2035, 2024
Short summary
Short summary
We compare recent unrest episodes at Campi Flegrei caldera (Naples, Italy), with phenomena occurred during the historical eruption in 1538. Besides proposing a new, accurate reconstruction of the ground movements in the area since VIII century BC, we deduce a striking similarity of the present unrest with the precursors to the 1538 eruption. We then infer that, if the ground uplift continues, earthquakes up to magnitude 5 are expected, as well as a considerable eruption risk in the next decades.
Federica Foglini, Marzia Rovere, Renato Tonielli, Giorgio Castellan, Mariacristina Prampolini, Francesca Budillon, Marco Cuffaro, Gabriella Di Martino, Valentina Grande, Sara Innangi, Maria Filomena Loreto, Leonardo Langone, Fantina Madricardo, Alessandra Mercorella, Paolo Montagna, Camilla Palmiotto, Claudio Pellegrini, Antonio Petrizzo, Lorenzo Petracchini, Alessandro Remia, Marco Sacchi, Daphnie Sanchez Galvez, Anna Nora Tassetti, and Fabio Trincardi
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-135, https://doi.org/10.5194/essd-2024-135, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
In 2022, the new CNR Research Vessel GAIA BLU explored the seafloor of the Naples and Pozzuoli Gulfs, and the Amalfi coastal area (Tyrrhenian Sea, Italy) from 50 to 2000 m water depth, covering 5000 m2 of seafloor. This paper describes data acquisition and processing and provides maps in unprecedented detail of this area abrupt to geological changes and human impacts. These findings support future geological and geomorphological investigations and mapping and monitoring seafloor and habitats.
Paolo Boncio, Eugenio Auciello, Vincenzo Amato, Pietro Aucelli, Paola Petrosino, Anna C. Tangari, and Brian R. Jicha
Solid Earth, 13, 553–582, https://doi.org/10.5194/se-13-553-2022, https://doi.org/10.5194/se-13-553-2022, 2022
Short summary
Short summary
We studied the Gioia Sannitica normal fault (GF) within the southern Matese fault system (SMF) in southern Apennines (Italy). It is a fault with a long slip history that has experienced recent reactivation or acceleration. Present activity has resulted in late Quaternary fault scarps and Holocene surface faulting. The maximum slip rate is ~ 0.5 mm/yr. Activation of the 11.5 km GF or the entire 30 km SMF can produce up to M 6.2 or M 6.8 earthquakes, respectively.
Christopher Garrison, Christopher Kilburn, David Smart, and Stephen Edwards
Clim. Past, 17, 2607–2632, https://doi.org/10.5194/cp-17-2607-2021, https://doi.org/10.5194/cp-17-2607-2021, 2021
Short summary
Short summary
An unidentified eruption in 1831 was one of the largest volcanic climate forcing events of the nineteenth century. We use reported observations of a blue sun to reconstruct the transport of an aerosol plume from that eruption and, hence, identify it as the 1831 eruption of Ferdinandea, near Sicily. We propose that, although it was only a modest eruption, its volcanic plume was enriched with sulfur from sedimentary deposits and that meteorological conditions helped it reach the stratosphere.
Stefano Urbani, Guido Giordano, Federico Lucci, Federico Rossetti, and Gerardo Carrasco-Núñez
Solid Earth, 12, 1111–1124, https://doi.org/10.5194/se-12-1111-2021, https://doi.org/10.5194/se-12-1111-2021, 2021
Short summary
Short summary
Structural studies in active calderas have a key role in the exploration of geothermal systems. We reply in detail to the points raised by the comment of Norini and Groppelli (2020), strengthening the relevance of our structural fieldwork for geothermal exploration and exploitation in active caldera geothermal systems including the Los Humeros caldera.
Giuseppe De Natale, Claudia Troise, and Renato Somma
Nat. Hazards Earth Syst. Sci., 20, 2037–2053, https://doi.org/10.5194/nhess-20-2037-2020, https://doi.org/10.5194/nhess-20-2037-2020, 2020
Short summary
Short summary
This paper starts by showing the present low performance of eruption forecasting and then addresses the problem of effectively mitigating the highest volcanic risk in the world, represented by the Naples area (southern Italy). The problem is considered in a highly multidisciplinary way, taking into account the main economic, sociological and urban planning issues. Our study gives precise guidelines to assessing and managing volcanic risk in any densely urbanised area.
Stefano Urbani, Guido Giordano, Federico Lucci, Federico Rossetti, Valerio Acocella, and Gerardo Carrasco-Núñez
Solid Earth, 11, 527–545, https://doi.org/10.5194/se-11-527-2020, https://doi.org/10.5194/se-11-527-2020, 2020
Short summary
Short summary
In Los Humeros, through field structural–geological mapping and analogue experiments, we show a discontinuous and small-scale (areal size
~ 1 km2) uplift of the caldera floor due to the emplacement of multiple shallow (< 1 km) magmatic bodies. These results allow for a better assessment of the subsurface structure of Los Humeros, with crucial implications for planning future geothermal exploration, which should account for the local geothermal gradient affected by such a shallow heat source.
Fabio Matano, Mauro Caccavale, Giuseppe Esposito, Alberto Fortelli, Germana Scepi, Maria Spano, and Marco Sacchi
Earth Syst. Sci. Data, 12, 321–344, https://doi.org/10.5194/essd-12-321-2020, https://doi.org/10.5194/essd-12-321-2020, 2020
Short summary
Short summary
Along the coastline of the Phlegraean Fields, Naples, Italy, severe retreat processes affect the tuff coastal cliffs, causing hazardous slope failures. An integrated monitoring system coupled with a weather station has been active since 2014. The measurements allowed us to assess the magnitude and temporal pattern of rock block deformations before failure and their correlation with meteorological parameters. A close correlation between temperature and deformation trends has been recognized.
Torsten Haberzettl, Gerhard Daut, Nora Schulze, Volkhard Spiess, Junbo Wang, Liping Zhu, and the 2018 Nam Co
workshop party
Sci. Dril., 25, 63–70, https://doi.org/10.5194/sd-25-63-2019, https://doi.org/10.5194/sd-25-63-2019, 2019
Short summary
Short summary
The Tibetan Plateau is of relevance as it provides water to a large portion of the Asian population. To define parameters for climate change scenarios it is necessary to improve the knowledge about past climatic changes in this area. Sedimentary archives like Nam Co provide the possibility to get such information. In order to explore opportunities of an ICDP drilling at Nam Co, 40 scientists met in May 2018. Everybody agreed on the need to drill this site with a sediment thickness > 1 km (> 1 Ma).
Alain Bonneville, Trenton T. Cladouhos, Susan Petty, Adam Schultz, Carsten Sørlie, Hiroshi Asanuma, Guðmundur Ómar Friðleifsson, Claude Jaupart, and Giuseppe de Natale
Sci. Dril., 24, 79–86, https://doi.org/10.5194/sd-24-79-2018, https://doi.org/10.5194/sd-24-79-2018, 2018
Short summary
Short summary
The Newberry Deep Drilling Project (NDDP) will be located on the Newberry Volcano, Oregon, USA, at an idle geothermal exploration well, NWG 46-16, drilled in 2008, 3500 m deep and 340–374 °C at bottom, which will be deepened another 1000 to 1300 m to reach 500 °C. The main goals are to test EGS in the ductile/brittle transition zone and to test technology for drilling, well completion, and geophysical monitoring in a very high temperature environment.
A. Tramelli, C. Troise, G. De Natale, and M. Orazi
Adv. Geosci., 36, 49–55, https://doi.org/10.5194/adgeo-36-49-2013, https://doi.org/10.5194/adgeo-36-49-2013, 2013
Related subject area
Location/Setting: Shelf | Subject: Geology | Geoprocesses: Geohazards
High-resolution late Holocene sedimentary cores record the long history of the city of Cádiz (south-western Spain)
Ferréol Salomon, Darío Bernal-Casasola, José J. Díaz, Macarena Lara, Salvador Domínguez-Bella, Damien Ertlen, Patrick Wassmer, Pierre Adam, Philippe Schaeffer, Laurent Hardion, Cécile Vittori, Stoil Chapkanski, Hugo Delile, Laurent Schmitt, Frank Preusser, Martine Trautmann, Alessia Masi, Cristiano Vignola, Laura Sadori, Jacob Morales, Paloma Vidal Matutano, Vincent Robin, Benjamin Keller, Ángel Sanchez Bellón, Javier Martínez López, and Gilles Rixhon
Sci. Dril., 27, 35–47, https://doi.org/10.5194/sd-27-35-2020, https://doi.org/10.5194/sd-27-35-2020, 2020
Short summary
Short summary
PalaeoCADIX-Z is an interdisciplinary project that studied three cores drilled in a marine palaeochannel that ran through the ancient city of Cádiz (Spain). These cores reveal a ≥ 50 m thick Holocene sedimentary sequence. Importantly, most of the deposits date from the 1st millennium BCE to the 1st millennium CE. Geoarchaeologists, geomorphologists, archaeologists, sedimentologists, palaeoenvironmentalists, geochemists, and geochronologists collaborated within this project.
Cited articles
Acocella, V., Salvini, F., Funiciello, R., and Faccenna, C.: The role of
transfer structures on volcanic activity at Campi Flegrei (Southern Italy),
J. Volcanol. Geoth. Res., 91, 123–139, 1999.
Acocella, V., Cifelli, F., and Funiciello, R.: Analogue models of collapse
calderas and resurgent domes. J. Volcanol. Geoth. Res.,
104, 81–96, 2000.
Acocella, V., Cifelli, F., and Funiciello, R.: The control of overburden
thickness on resurgent domes: insights from analogue models, J. Volcanol. Geoth. Res., 111, 137–153, 2001.
Acocella, V., Funiciello, R., Marotta, E., Orsi, G., and de Vita, S.: The
role of extensional structures on experimental calderas and resurgence,
J. Volcanol. Geoth. Res., 129, 199–217, 2004.
Acocella, V., Di Lorenzo, R., Newhall, C., and Scandone, R.: An overview of
recent (1988 to 2014) caldera unrest: Knowledge and perspectives, Rev.
Geophys., 53, 1–60, https://doi.org/10.1002/2015RG000492, 2015.
AGIP: Geologia e Geofisica del Sistema Geotermico dei Campi Flegrei,
Technical Report, SERG-ESG, San Donato, Italy, 1–23, 1987.
Battaglia, M., Troise, C., Obrizzo, F., Pingue, F., and De Natale, G.:
Evidence for fluid migration as the source of deformation at Campi Flegrei
caldera (Italy), Geophys. Res. Lett., 33, 1–4, 2006.
Bellucci, F., Milia, A., Rolandi, G., and Torrente, M. M.: Structural control
on the Upper Pleistocene ignimbrite eruptions in the Neapolitan area
(Italy): volcano tectonic faults versus caldera faults, in: Volcanism in the Campania Plain: Vesuvius, Campi Flegrei and
Ignimbrites, edited by: De Vivo, B., Elsevier B. V., Amsterdam, the Netherlands, 163–180, 2006.
Berrino, G., Corrado, G., Luongo, G., and Toro, B.: Ground deformation and
gravity changes accompanying the 1982 Pozzuoli uplift, B. Volcanol., 47,
188–200, 1984.
Bronk-Ramsey, C., Albert, P. G., Blockley, S. P. E., Hardiman, M., Housley,
R. A., Lane, C. S., Lee, S., Matthews, I. P., Smith, V. C., and Lowe, J. J.:
Improved age estimates for key Late Quaternary European tephra horizons in
the RESET lattice, Quaternary Sci. Rev., 118, 18–32, 2015.
Burov, E. B. and Guillou-Frottier, L.: Thermomechanical behavior of large ash
flow calderas, J. Geophys. Res., 104, 23081–23109,
1999.
Chiodini, G., Vandemeulebrouck, J., Caliro, S., D'Auria L., De Martino P.,
Mangiacapra A., and Petrillo, Z.: Evidence of thermal-driven processes
triggering the 2005–2014 unrest at Campi Flegrei caldera, Earth Planet.
Sc. Lett., 414, 58–67, 2015.
Chiodini, G., Selva, J., Del Pezzo, E., Marsan, D., De Siena, L., D'Auria,
L., Bianco, F., Caliro, S., De Martino, P., Ricciolino, P., and Petrillo, Z.:
Clues on the origin of post-2000 earthquakes at Campi Flegrei caldera
(Italy), Sci. Rep., 7, 4472, https://doi.org/10.1038/s41598-017-04845-9, 2017.
Crocitti, M., Sulpizio, R., Insinga, D. D., De Rosa, R., Donato, P., Iorio,
M., Zanchetta, G., Barca, D., and Lubritto, C.: On ash dispersal from
moderately explosive volcanic eruptions: Examples from Holocene and Late
Pleistocene eruptions of Italian volcanoes, J. Volcanol. Geoth. Res., https://doi.org/10.1016/j.jvolgeores.2018.07.009, in press, 2018.
D'Argenio, B., Angelino, A., Aiello, G., de Alteriis, G., Milia, A., Sacchi,
M., Tonielli, R., Budillon, F., Chiocci, F., Conforti, A., De Lauro, M., Di
Martino, G., D'Isanto, C., Esposito, E., Ferraro, L., Innangi, S., Insinga,
D., Iorio, M., Marsella, E., Molisso, F., Morra, V., Passaro, S., Pelosi,
N., Porfido, S., Raspini, A., Ruggieri, S., Sarnacchiaro, G., Terranova, C.,
Vilardo, G., and Violante, C.: Digital elevation model of the Naples bay and
adjacent areas, eastern Tyrrhenian Sea, in: Mapping geology in Italy, edited by: Pasquaré, G., Venturini, C.,
and Groppelli, G., Rome APAT, Dipartimento
Difesa del Suolo-Servizio Geologico d'Italia, 21–28, 2004.
Deino, A. L., Orsi, G., de Vita, S., and Piochi, M.: The age of the
Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei caldera,
Italy) assessed by 40Ar/39Ar dating method, J. Volcanol. Geotherm. Res., 133,
157–170, 2004.
Del Gaudio, C., Aquino, I., Ricco, C., and Scandone, R.: Unrest episodes at
Campi Flegrei: A reconstruction of vertical ground movements during
1905–2009, J. Volcanol. Geoth. Res., 195, 48–56, https://doi.org/10.1016/j.jvolgeores.2010.05.014,
2010.
De Natale, G. and Troise, C.: The “Campi Flegrei Deep Drilling Project”: From risk mitigation to renewable energy production, Eur. Rev., 19, 337–353, https://doi.org/10.1017/S1062798711000111, 2011.
De Natale, G. and Zollo A.: Statistical analysis and clustering features of
the Phlegraean Fields earthquake sequence, May '83-May '84, B. Seismol.
Soc. Am., 76, 801–814, 1986.
De Natale, G., Pingue, F., Allard, P., and Zollo A.: Geophysical and
geochemical modeling of the Campi Flegrei caldera, J. Volcanol. Geotherm.
Res., 48, 199–222, 1991.
De Natale, G., Zollo, A., Ferraro, A., and Virieux, J.: Accurate fault
mechanism determinations for a 1984 earthquake swarm at Campi Flegrei
caldera (Italy) during an unrest episode: implications for volcanological
research, J. Geophys. Res., 100, 24167–24185, 1995.
De Natale, G., Troise, C., and Pingue, F.: A mechanical fluid-dynamical model
for ground movements at Campi Flegrei caldera, J. Geodyn., 32,
487–517, 2001.
De Natale, G., Troise, C., Pingue, F., Mastrolorenzo, G., Pappalardo, L.,
Battaglia, M., and Boschi, E.: The Campi Flegrei Caldera: unrest mechanisms
and hazards, in: Mechanisms of Activity and Unrest at Large Calderas, edited by: Troise, C., De Natale, G., and Kilburn, C. R. J.,
Geological Society,
London, UK, Special Publications, 269, 25–45, 2006.
De Natale, G., Troise, C., Mark, D., Mormone, A., Piochi, M., Di Vito, M.,
A., Isaia, R., Carlino, S., Barra, D., and Somma, R.: The Campi Flegrei Deep
Drilling Project (CFDDP): New insight on caldera structure, evolution and
hazard implications for the Naples area (Southern Italy), Geochem. Geophy.
Geosy., 17, 4836–4847, 2016.
De Vivo, B. and Lima, A.: A hydrothermal model for ground movements
(bradyseism) at Campi Flegrei, Italy, in: Volcanism in the Campania Plain:
Vesuvius, Campi Flegrei, Ignimbrites, edited by: De Vivo, B., Elsevier,
Dev. Volcano., 9, 289–317, 2006.
De Vivo, B., Rolandi, G., Gans, P. B., Calvert, A., Bohrson, W. A., Spera,
F. J., and Belkin, H. E.: New constraints on the pyroclastic eruptive history
of the Campanian Volcanic Plain (Italy), Mineral. Petrol. 73, 47–65, 2001.
Di Donato, V., Insinga, D.D., Iorio, M., Molisso, F., Rumolo, P., Cardines,
C., and Passaro, S.: The palaeoclimatic and palaeoceanographic history of
the Gulf of Taranto (Mediterranean Sea) in the last 15 kyr, Global
Planet. Change, 172, 278–297, 2019.
Di Luccio, F., Pino, N. A., Piscini, A., and Ventura, G.: Significance of
the 1982-2014 Campi Flegrei seismicity: pre-existing structures,
hydrothermal processes and hazard assessment, Geophys. Res. Lett.,
42, 7498–7506, https://doi.org/10.1002/2015GL064962, 2015.
Di Vito, M. A., Isaia, R., Orsi, G., Southon, J., De Vita, S., D'antonio, M.,
Pappalardo, L., and Piochi, M.: Volcanism and deformation since 12,000 years at
the Campi Flegrei Caldera (Italy), J. Volcanol. Geoth. Res., 91, 221–246, https://doi.org/10.1016/S0377-0273(99)00037-2, 1999.
Di Vito, M. A., Acocella, V., Aiello, G., Barra, D., Battaglia, M.,
Carandente, A., Del Gaudio, C., De Vita, S., Ricciardi, G. P., Ricco, C.,
Scandone, R., and Terrasi, F.: Magma transfer at Campi Flegrei caldera
(Italy) before the 1538 AD eruption, Sci. Rep., 6, 1–9,
https://doi.org/10.1038/srep32245, 2016.
Druitt, T. H. and Sparks, R. S. J.: On the formation of calderas during ignimbrite
eruptions, Nature, 310, 679–681, 1984.
Dvorak, J. and Berrino, G.: Recent ground movement and seismic activity in
Campi Flegrei, southern Italy, episodic growth of a resurgent dome, J.
Geophys. Res., 96, 2309–2323, 1991.
Elders, A., Friðleifsson, G. Ó., Zierenberg, R. A., Pope, E. C.,
Mortensen, A. K., Guðmundsson, Á., Lowenstern, J. B., Marks, N. E.,
Owens, L., Bird, D. K., Reed, M., Olsen, N. J., and Schiffman, P.: Origin of
a rhyolite that intruded a geothermal well while drilling at the Krafla
volcano, Iceland, Geology, 39, 231–234, 2011.
Ferranti, L., Oldow, J. S., and Sacchi, M.: Pre-Quaternary orogen-parallel
extension in the Southern Apennine belt, Italy, Tectonophysics, 260,
325–347, 1996.
Fitzsimmons, K. E., Hambach, U., Veres, D., and Iovita R.: The Campanian
Ignimbrite Eruption: New Data on Volcanic Ash Dispersal and Its Potential
Impact on Human Evolution, PLoS ONE, 8, e65839, https://doi.org/10.1371/journal.pone.0065839, 2013.
Folch, A. and Martí, J.: Geometrical and mechanical constraints on the
formation of ring-fault calderas, Earth Planet. Sc. Lett., 22, 215–225, 2004.
Geyer, A., Folch, A., and Martì, J.: Relationship between caldera
collapse and magma chamber withdrawal: An experimental approach, J.
Volcanol. Geotherm. Res., 157, 375–386, 2006.
Giaccio, B., Isaia, R., Fedele, F., Canzio, E., Hoffecker, J., Ronchitelli,
A., Sinitsyn, A., Anikovich, M., Lisitsyn, S., and Popov, V.: The Campanian
Ignimbrite and Codola tephra layers: Two temporal/stratigraphic markers for
the Early Upper Palaeolithic in southern Italy and eastern Europe, J. Volcanol. Geoth. Res., 177, 208–226, 2008.
Giaccio, B., Hajdas, I., Isaia, R., Deino, A., and Nomade, S.:
High-precision 14C and 40Ar/39Ar dating of the Campanian Ignimbrite (Y-5)
reconciles the time-scales of climatic-cultural processes at 40 ka,
Sci. Rep., 7, 45940, https://doi.org/10.1038/srep45940, 2017.
Gregg, P. M., de Silva, S. L., Grosfils, E. B., and Parmigiani, J. P.:
Catastrophic Caldera Collapse: Models implementing temperature-dependant
rheology, J. Volcanol. Geoth. Res., 241–242, 1–12,
https://doi.org/10.1016/j.jvolgeores.2012.06.009, 2012.
Gregg, P. M., de Silva, S. L., and Grosfils, E. B.: Thermomechanics of shallow
magma chamber pressurization: Implications for the assessment of ground
deformation data at active volcanoes, Earth Planet. Sc. Lett.,
384, 100–108, https://doi.org/10.1016/j.epsl.2013.09.040, 2013.
Gudmundsson, A.: Formation and development of normal-fault calderas and the
initiation of large explosive eruptions, B. Volcanol., 60, 160–170,
1998.
Gudmundsson, M. T., Sigmundsson, F., and Björnsson, H.: Ice-volcano
interaction of the 1996 Gjálp subglacial eruption, Vatnajökull,
Iceland, Nature, 389, 954–957, 1997.
Homuth, S., Pálsson, B., Holmgeirsson, S., and Sass, I.: Risk Management and
Contingency Planning for the First Icelandic Deep Drilling Project Well in
Krafla, Iceland, Proceedings World Geothermal Congress, 25–29 April 2010, Bali, Indonesia, 1–12, 2010.
Insinga, D. D., Tamburrino, S., Lirer, F., Vezzoli, L., Barra, M., De Lange,
G. L., Tiepolo, M., Vallefuoco, M., Mazzola, S., and Sprovieri, M.:
Tephrocronology of the astronomically-tuned KC01B deep-sea core, Ionian Sea
insights into the explosive activity of the Central Mediterranean during the
last 200 ka, Quaternary Sci. Rev., 85, 63–84, 2014.
Kilburn, C. R. J., De Natale, G., and Carlino, S.: Progressive approach to
eruption at Campi Flegrei caldera in southern Italy, Nat. Commun.,
8, 15312, https://doi.org/10.1038/ncomms15312, 2017.
Lavallee, Y., Stix, J., Kennedy, B., Richer, M., and Longpré, M.-A.:
Caldera subsidence in areas of variable topographic relief: Results from
analogue modelling, J. Volcanol. Geotherm. Res., 129, 219–236, 2004.
Lima, A., De Vivo, B., Spera, F. J., Bodnar, R. J., Milia, A., Nunziata. C.,
Belkin, H. E., and Cannatelli. C.: Thermodynamic model for uplift and
deflation episodes (bradyseism) associated with magmatic: Hydrothermal
activity at the Campi Flegrei (Italy), Earth Sci. Rev., 97, 44–58, 2009.
Lipman, P. W.: Calderas, in: Encyclopedia of
Volcanoes, edited by: Sigurdsson, H., Academic Press, San Diego, USA, 643–662, 2000.
Lowenstern, J. B., Sisson, T. W., and Hurwitz, S.: Probing magma
reservoirs to improve volcano forecasts, Eos, 98,
https://doi.org/10.1029/2017EO085189, 2017.
Martí, J. and Gudmundsson, A.: The Las Cañadas caldera (Tenerife,
Canary Islands): an overlapping collapse calderas generated by magma chamber
migration, J. Volcanol. Geoth. Res., 103, 161–173,
2000.
Martí, J., Mitjavila, J., and Araña,V.: Stratigraphy, structure and
geochronology of the Las Cañadas caldera (Tenerife, Canary Islands),
Geol. Mag., 131, 715–727, 1994.
Martí, J., Geyer, A., Folch, A., and Gottsmann, J.: A review on
collapse calderas modeling, in: Caldera Volcanism: Analysis, Modelling and Response. Developments in
Volcanology, edited by: Gottsmann, J. and Martí, J., Elsevier B. V, Amsterdam, the Netherlands,
10, 233–283, 2008.
Mastrolorenzo, G., Papparlardo, L., Troise, C., Rossano, S., Panizza, A., and
De Natale, G.: Volcanic hazard assessment at Campi Flegrei Caldera, in: Mechanisms of
Activity and Unrest at Large Calderas, edited by:
Troise, C., De Natale, G., and Kilburn, C. R. J., Geological Society, London, UK, Special
Publications, 269, 159–172, 2006.
Mastrolorenzo, G., Pappalardo L., Troise, C., Panizza A., and De Natale, G.:
Probabilistic tephra fall-out hazard maps in Neapolitan area from
quantitative volcanological study of Campi Flegrei eruptions, J. Geophys.
Res., 113, B07203, https://doi.org/10.1029/2007JB004954, 2008.
Milia, A. and Torrente, M. M.: Tectonics and stratigraphic architecture of a
peri-Tyrrhenian halfgraben (Bay of Naples, Italy), Tectonophysics, 315,
297–314, 1999.
Milia, A. and Torrente, M. M.: The influence of paleogeographic setting and
crustal subsidence on the architecture of ignimbrites in the Bay of Naples
(Italy), Earth Planet. Sc. Lett., 263, 192–206, 2007.
Moretti, R., De Natale, G., and Troise, C.: A geochemical and geophysical
reappraisal to the significance of the recent unrest at Campi Flegrei
caldera (Southern Italy), Geochem. Geophy. Geosy., 18, 1244–1269,
https://doi.org/10.1002/2016GC006569, 2017.
Moretti, R., Troise, C., Sarno, F., and De Natale, G.: Caldera unrest driven by
CO2-induced drying of the deep hydrothermal system, Sci. Rep., 8, 8309,
https://doi.org/10.1038/s41598-018-26610-2, 2018.
Nakada, S.: Scientific Results of Volcano Drilling and Future Prospects,
J. Geogr., 122, 258–272, 2013.
Newhall, C. G. and Dzurisin, D.: Historical Unrest at Large Calderas of the
World: U.S. Geological Survey Bulletin 1855, U.S. Government Printing Office, Washington, USA, 1108 pp., 1988.
Oldow, J. S., D'Argenio, B., Ferranti, L., Pappone, G., Marsella, E., and
Sacchi, M.: Large-scale longitudinal extension in the southern Apennines
contractional belt, Italy, Geology, 21, 1123–1126, 1993.
Orsi, G., De Vita, S., and di Vito, M.: The restless, resurgent Campi
Flegrei nested caldera (Italy): Constraints on its evolution and
configuration, J. Volcanol. Geotherm. Res., 74, 179–214, 1996.
Passaro, S., Genovese, S., Sacchi, M., Barra, M., Rumolo, P., Tamburrino S., Mazzola, S., Basilone, G., Placenti, F., Aroica, S., and Bonanno, A.: First hydroacoustic evidence of marine, active fluid vents in the Naples Bay continental shelf (Southern Italy), J. Volcanol. Geoth. Res., 285, 29–35, 2014.
Passaro, S., Tamburrino, S., Vallefuoco, M., Tassi, F., Vaselli, O.,
Giannini, L., Chiodini, G., Caliro, S., Sacchi, M., Rizzo, A. L., and
Ventura, G.: Seafloor doming driven by degassing processes unveils sprouting
volcanism in coastal areas, Sci. Rep., 6, 22448, https://doi.org/10.1038/srep22448, 2016.
Pyle, D., Ricketts, G., Margari, V., Andel, T., Sinitsyn, A., Praslov, N., and
Lisitsyn, S.: Wide dispersal and deposition of distal tephra during the
Pleistocene “Campanian Ignimbrite/Y5” eruption, Italy, Quaternary Sci. Rev., 25, 2713–2728, https://doi.org/10.1016/j.quascirev.2006.06.008, 2006.
Roche, O. and Druitt, T. H.: Onset of caldera collapse during ignimbrite
eruptions, Earth Planet. Sc. Lett., 191, 191–202, 2001.
Roche, O., Druitt, T. H., and Merle, O.: Experimental study of caldera
formation, J. Geophys. Res., 105B, 395–416, 2000.
Rolandi, G., Bellucci, F., Heizler, M., Belkin, H. E., and De Vivo, B.:
Tectonic controls on the genesis of ignimbrites from the Campanian Volcanic
Zone, southern Italy, Mineral. Petrol., 79, 3–31, 2003.
Rosi, M. and Sbrana, A.: Phlegrean Fields, CNR, Quaderni de “La Ricerca
Scientifica”, 176, 114–119, 1987.
Rossano, S., Mastrolorenzo G., and De Natale G.: Numerical simulation of
pyroclastic density currents on Campi Flegrei topography: a tool for
statistical hazard estimation, J. Volcanol. Geoth. Res., 132, 1–14, 2004.
Sacchi, M., Alessio, G., Aquino, I., Esposito, E., Molisso, F., Nappi, R.,
Porfido, S., and Violante, C.: Risultati preliminari della campagna
oceanografica CAFE_07 – Leg 3 nei Golfi di Napoli e Pozzuoli,
Mar Tirreno Orientale, Quaderni di Geofisica, 64, 3–26, 2009.
Sacchi, M., Pepe, F., Corradino, M., Insinga, D. D., Molisso, F., and
Lubritto, C.: The Neapolitan Yellow Tuff caldera offshore the Campi Flegrei:
Stratal architecture and kinematic reconstruction during the last 15 kyr,
Mar. Geol., 354, 15–33, 2014.
Sandri, L., Costa, A., Selva, J., Tonini, R., Macedonio, G., Folch, A., and
Sulpizio, R.: Beyond eruptive scenarios: assessing tephra fallout hazard
from Neapolitan volcanoes, Sci. Rep., 6, 24271, https://doi.org/10.1038/srep24271, 2016.
Sandri, L., Tierz, P., Costa, A., and Marzocchi, W.: Probabilistic hazard
from pyroclastic density currents in the Neapolitan area (Southern Italy),
J. Geophys. Res.-Sol. Ea., 123, 3474–3500, 2018.
Sawolo, N., Sutriono, E., Istadi, B. P., and Darmoyo, A. B.: The LUSI mud volcano
triggering controversy: Was it caused by drilling?, Marine and Petroleum
Geology, 26, 1766–1784, https://doi.org/10.1016/j.marpetgeo.2009.04.002, 2009.
Scarpati, C., Cole, P., and Perrotta, A.: The Neapolitan Yellow Tuff – A
large volume multiphase eruption from Campi Flegrei, Southern Italy, B.
Volcanol., 55, 343–356, 1993.
Somma, R., Iuliano, S., Matano, F., Molisso, F., Passaro, S., Sacchi, M.,
Troise, C., and De Natale, G.: High-resolution morpho-bathymetry of Pozzuoli
Bay, southern Italy, J. Maps, 12, 222–230, https://doi.org/10.1080/17445647.2014.1001800, 2016.
Steinmann, L., Spiess, V., and Sacchi, M.: The Campi Flegrei caldera
(Italy): Formation and evolution in interplay with sea-level variations
since the Campanian Ignimbrite eruption at 39 ka, J. Volcanol. Geoth. Res., 327, 361–374, 2016.
Steinmann, L., Spiess, V., and Sacchi, M.: Post-collapse evolution of a
coastal caldera system: Insights from a 3D multichannel seismic survey from
the Campi Flegrei caldera (Italy), J. Volcanol. Geoth. Res., 349, 83–98, 2018.
Sulpizio, R., Zanchetta, G., Caron, B., Dellino, P., Mele, D., Giaccio, B.,
Insinga, D., Paterne, M., Siani, G., Costa, A., Macedonio, G., and
Santacroce, R.: Volcanic ash hazard in the Central Mediterranean assessed
from geological data, B. Volcanol., 76, 866, https://doi.org/10.1007/s00445-014-0866-y, 2014.
Tonini, R., Sandri, L., Costa, A., and Selva, J.: Brief Communication: The effect of submerged vents on probabilistic hazard assessment for tephra fallout, Nat. Hazards Earth Syst. Sci., 15, 409–415, https://doi.org/10.5194/nhess-15-409-2015, 2015.
Troiano, A., Di Giuseppe, M. G., Petrillo, Z., Troise, C., and De Natale, G.:
Ground deformation at calderas driven by fluid injection: Modelling unrest
episodes at Campi Flegrei (Italy), Geophys J. Int., 187, 833–847, 2011.
Troise, C., De Natale, G., Pingue, F., Obrizzo, F., De Martino, P., Tammaro,
U., and Boschi, E.: Renewed ground uplift at Campi Flegrei caldera (Italy):
new insight on magmatic processes and forecast, Geophys. Res. Lett.,
34, L03301, https://doi.org/10.1016/j.earscirev.2018.11.007, 2007.
Troise, C., De Natale, G., Schiavone, R., Somma, R., and Moretti, R.: The Campi
Flegrei caldera unrest: Discriminating magma intrusions from hydrothermal
effects and implications for possible evolution, Earth Sci.
Rev, 188, 108–122, 2019.
Short summary
A MagellanPlus workshop was held in Naples, Italy (25–28 February 2017), to explore the potential of the Campi Flegrei caldera as a target for an Amphibious Drilling Proposal to be submitted to international drilling programs. Campi Flegrei is an ideal natural laboratory to analyze the mechanisms of caldera dynamics and the relationships between hydrothermal and magmatic processes. The results will significantly advance our understanding of the most complex forms of volcanic structures on Earth.
A MagellanPlus workshop was held in Naples, Italy (25–28 February 2017), to explore the...