New geophysical memory-logging system for highly unstable and inclined scientific exploration drilling
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473
Potsdam, Germany
Marco Groh
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473
Potsdam, Germany
Martin Töpfer
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473
Potsdam, Germany
Andreas Jurczyk
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473
Potsdam, Germany
Ulrich Harms
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473
Potsdam, Germany
Related authors
Marcel Ortler, Achim Brauer, Stefano C. Fabbri, Jean Nicolas Haas, Irka Hajdas, Kerstin Kowarik, Jochem Kueck, Hans Reschreiter, and Michael Strasser
Sci. Dril., 33, 1–19, https://doi.org/10.5194/sd-33-1-2024, https://doi.org/10.5194/sd-33-1-2024, 2024
Short summary
Short summary
The lake drilling project at Lake Hallstatt (Austria) successfully cored 51 m of lake sediments. This was achieved through the novel drilling platform Hipercorig. A core-log seismic correlation was created for the first time of an inner Alpine lake of the Eastern Alps. The sediments cover over 12 000 years before present with 10 (up to 5.1 m thick) instantaneous deposits. Lake Hallstatt is located within an UNESCO World Heritage area which has a rich history of human salt mining.
Henning Lorenz, Jan-Erik Rosberg, Christopher Juhlin, Iwona Klonowska, Rodolphe Lescoutre, George Westmeijer, Bjarne S. G. Almqvist, Mark Anderson, Stefan Bertilsson, Mark Dopson, Jens Kallmeyer, Jochem Kück, Oliver Lehnert, Luca Menegon, Christophe Pascal, Simon Rejkjær, and Nick N. W. Roberts
Sci. Dril., 30, 43–57, https://doi.org/10.5194/sd-30-43-2022, https://doi.org/10.5194/sd-30-43-2022, 2022
Short summary
Short summary
The Collisional Orogeny in the Scandinavian Caledonides project provides insights into the deep structure and bedrock of a ca. 400 Ma old major orogen to study deformation processes that are hidden at depth from direct access in modern mountain belts. This paper describes the successful operations at the second site. It provides an overview of the retrieved geological section that differs from the expected and summarises the scientific potential of the accomplished data sets and drill core.
Felix Kästner, Simona Pierdominici, Judith Elger, Alba Zappone, Jochem Kück, and Christian Berndt
Solid Earth, 11, 607–626, https://doi.org/10.5194/se-11-607-2020, https://doi.org/10.5194/se-11-607-2020, 2020
Short summary
Short summary
Knowledge about physical properties at depth is crucial to image and understand structures linked with orogenic processes. We examined seismic velocities from core and downhole data from the COSC-1 borehole, Sweden, and calibrated our results with laboratory measurements on core samples. Despite a strong mismatch between the core and downhole velocities due to microcracks, mafic units are resolved at all scales, while at sample scale, strong seismic anisotropy correlates with the rock foliation.
Marie D. Jackson, Magnús T. Gudmundsson, Tobias B. Weisenberger, J. Michael Rhodes, Andri Stefánsson, Barbara I. Kleine, Peter C. Lippert, Joshua M. Marquardt, Hannah I. Reynolds, Jochem Kück, Viggó T. Marteinsson, Pauline Vannier, Wolfgang Bach, Amel Barich, Pauline Bergsten, Julia G. Bryce, Piergiulio Cappelletti, Samantha Couper, M. Florencia Fahnestock, Carolyn F. Gorny, Carla Grimaldi, Marco Groh, Ágúst Gudmundsson, Ágúst T. Gunnlaugsson, Cédric Hamlin, Thórdís Högnadóttir, Kristján Jónasson, Sigurdur S. Jónsson, Steffen L. Jørgensen, Alexandra M. Klonowski, Beau Marshall, Erica Massey, Jocelyn McPhie, James G. Moore, Einar S. Ólafsson, Solveig L. Onstad, Velveth Perez, Simon Prause, Snorri P. Snorrason, Andreas Türke, James D. L. White, and Bernd Zimanowski
Sci. Dril., 25, 35–46, https://doi.org/10.5194/sd-25-35-2019, https://doi.org/10.5194/sd-25-35-2019, 2019
Short summary
Short summary
Three new cored boreholes through Surtsey volcano, an isolated island in southeastern Iceland, provide fresh insights into understanding how explosive submarine volcanism and the earliest alteration of basaltic deposits proceed in a pristine oceanic environment. The still-hot volcano was first sampled through a drill core in 1979. The time-lapse drill cores record the changing geochemical, mineralogical, microbiological, and material properties of the basalt 50 years after eruptions terminated.
Marcel Ortler, Achim Brauer, Stefano C. Fabbri, Jean Nicolas Haas, Irka Hajdas, Kerstin Kowarik, Jochem Kueck, Hans Reschreiter, and Michael Strasser
Sci. Dril., 33, 1–19, https://doi.org/10.5194/sd-33-1-2024, https://doi.org/10.5194/sd-33-1-2024, 2024
Short summary
Short summary
The lake drilling project at Lake Hallstatt (Austria) successfully cored 51 m of lake sediments. This was achieved through the novel drilling platform Hipercorig. A core-log seismic correlation was created for the first time of an inner Alpine lake of the Eastern Alps. The sediments cover over 12 000 years before present with 10 (up to 5.1 m thick) instantaneous deposits. Lake Hallstatt is located within an UNESCO World Heritage area which has a rich history of human salt mining.
Henning Lorenz, Jan-Erik Rosberg, Christopher Juhlin, Iwona Klonowska, Rodolphe Lescoutre, George Westmeijer, Bjarne S. G. Almqvist, Mark Anderson, Stefan Bertilsson, Mark Dopson, Jens Kallmeyer, Jochem Kück, Oliver Lehnert, Luca Menegon, Christophe Pascal, Simon Rejkjær, and Nick N. W. Roberts
Sci. Dril., 30, 43–57, https://doi.org/10.5194/sd-30-43-2022, https://doi.org/10.5194/sd-30-43-2022, 2022
Short summary
Short summary
The Collisional Orogeny in the Scandinavian Caledonides project provides insights into the deep structure and bedrock of a ca. 400 Ma old major orogen to study deformation processes that are hidden at depth from direct access in modern mountain belts. This paper describes the successful operations at the second site. It provides an overview of the retrieved geological section that differs from the expected and summarises the scientific potential of the accomplished data sets and drill core.
Teresa Jordan, Patrick Fulton, Jefferson Tester, David Bruhn, Hiroshi Asanuma, Ulrich Harms, Chaoyi Wang, Doug Schmitt, Philip J. Vardon, Hannes Hofmann, Tom Pasquini, Jared Smith, and the workshop participants
Sci. Dril., 28, 75–91, https://doi.org/10.5194/sd-28-75-2020, https://doi.org/10.5194/sd-28-75-2020, 2020
Short summary
Short summary
A scientific borehole planning workshop sponsored by the International Continental Scientific Drilling Program convened in early 2020 at Cornell University in the NE United States. Cornell plans drilling to test the potential to use geothermal heat from depths of 2700–4500 m and rock temperatures of 60 to 120 °C to heat its campus. The workshop focused on designing companion scientific projects to investigate the coupled thermal–chemical–hydrological–mechanical workings of continental crust.
Felix Kästner, Simona Pierdominici, Judith Elger, Alba Zappone, Jochem Kück, and Christian Berndt
Solid Earth, 11, 607–626, https://doi.org/10.5194/se-11-607-2020, https://doi.org/10.5194/se-11-607-2020, 2020
Short summary
Short summary
Knowledge about physical properties at depth is crucial to image and understand structures linked with orogenic processes. We examined seismic velocities from core and downhole data from the COSC-1 borehole, Sweden, and calibrated our results with laboratory measurements on core samples. Despite a strong mismatch between the core and downhole velocities due to microcracks, mafic units are resolved at all scales, while at sample scale, strong seismic anisotropy correlates with the rock foliation.
Marie D. Jackson, Magnús T. Gudmundsson, Tobias B. Weisenberger, J. Michael Rhodes, Andri Stefánsson, Barbara I. Kleine, Peter C. Lippert, Joshua M. Marquardt, Hannah I. Reynolds, Jochem Kück, Viggó T. Marteinsson, Pauline Vannier, Wolfgang Bach, Amel Barich, Pauline Bergsten, Julia G. Bryce, Piergiulio Cappelletti, Samantha Couper, M. Florencia Fahnestock, Carolyn F. Gorny, Carla Grimaldi, Marco Groh, Ágúst Gudmundsson, Ágúst T. Gunnlaugsson, Cédric Hamlin, Thórdís Högnadóttir, Kristján Jónasson, Sigurdur S. Jónsson, Steffen L. Jørgensen, Alexandra M. Klonowski, Beau Marshall, Erica Massey, Jocelyn McPhie, James G. Moore, Einar S. Ólafsson, Solveig L. Onstad, Velveth Perez, Simon Prause, Snorri P. Snorrason, Andreas Türke, James D. L. White, and Bernd Zimanowski
Sci. Dril., 25, 35–46, https://doi.org/10.5194/sd-25-35-2019, https://doi.org/10.5194/sd-25-35-2019, 2019
Short summary
Short summary
Three new cored boreholes through Surtsey volcano, an isolated island in southeastern Iceland, provide fresh insights into understanding how explosive submarine volcanism and the earliest alteration of basaltic deposits proceed in a pristine oceanic environment. The still-hot volcano was first sampled through a drill core in 1979. The time-lapse drill cores record the changing geochemical, mineralogical, microbiological, and material properties of the basalt 50 years after eruptions terminated.
Related subject area
Location/Setting: Instrumentation and observatories | Subject: Geophysics/Seismology | Geoprocesses: Earth science methods
Drilling-induced and logging-related features illustrated from IODP–ICDP Expedition 364 downhole logs and borehole imaging tools
Johanna Lofi, David Smith, Chris Delahunty, Erwan Le Ber, Laurent Brun, Gilles Henry, Jehanne Paris, Sonia Tikoo, William Zylberman, Philippe A. Pezard, Bernard Célérier, Douglas R. Schmitt, Chris Nixon, and Expedition 364 Science Party
Sci. Dril., 24, 1–13, https://doi.org/10.5194/sd-24-1-2018, https://doi.org/10.5194/sd-24-1-2018, 2018
Short summary
Short summary
In 2016 an international scientific expedition drilled a 1.3 km deep hole to explore the Chicxulub impact crater, buried below the surface of the Yucatán shelf (Mexico). This crater is linked to the End-Cretaceous mass extinction. Downhole logs have been acquired in the hole, providing several key parameters characterizing the geology of the crater. However, few of the data recorded may be artifacts and should not be misinterpreted as real geological features. They are discussed in this study.
Cited articles
Abbott, M. B. and Rodbell, D. T.: Stratigraphic correlation and splice
generation for sediments recovered from a large-lake drilling project: an
example from Lake Junín, Peru, J. Paleolimnol., 63, 83–100,
https://doi.org/10.1007/s10933-019-00098-w, 2020.
Aivalis, J., Meszaros, T., Porter, R., Reischman, R., Ridley, R.,Wells, P., Crouch, B. W., Reid, T. L., and Simpson, G. A.: Logging Through the Bit, Oilfield Review Summer 2012, 24, 44–53, 2012
Almqvist, B., Brander, L., Giese, R. Harms, U., Juhlin, C., Lindén, C., Lorenz, H., and Rosberg, J.: I-EDDA test center for core-drilling and downhole investigations, EGU General Assembly 2018, 8–13 April 2018, Vienna, Austria, Geophysical Research Abstracts, 20, EGU2018-14837, 2018.
Baumgarten, H. and Wonik, T.: Cyclostratigraphic studies of sediments from Lake Van (Turkey) based on their uranium contents obtained from downhole logging and paleoclimatic implications, Int. J. Earth Sci., 104, 1639–1654, https://doi.org/10.1007/s00531-014-1082-x, 2015.
Beal, J.: Tight oil vertical log analysis applied to horizontal Logging
While Tripping (LWT) data of Cretaceous-aged Viking formation, Saskatchewan,
Canada: a multi-disciplinary review of initial and extended findings, AAPG
Rocky Mountain Section Meeting, Cheyenne, WY, USA, 2019.
Freudenthal, T., Bohrmann, G., Gohl, K., Klages, J. P., Riedel, M., Wallmann,
K., and Wefer, G.: More than ten years of successful operation of the MARUM-MeBo sea bed drilling technology: Highlights of recent scientific drilling campaigns, EGU General Assembly, Online Conference, 4–8 May 2020, SSP1.4, 2020.
Gebhardt, A. C., Francke, A., Kück, J., Sauerbrey, M., Niessen, F., Wennrich, V., and Melles, M.: Petrophysical characterization of the lacustrine sediment succession drilled in Lake El'gygytgyn, Far East Russian Arctic, Clim. Past, 9, 1933–1947, https://doi.org/10.5194/cp-9-1933-2013, 2013.
Goldberg, D.: The Role of Downhole Measurements in Marine Geology and
Geophysics, Rev. Geophys., 35, 315–342, https://doi.org/10.1029/97RG00221,
1997.
Guerin, G. and Goldberg, D.: Heave compensation and formation strength
evaluation from downhole acceleration measurements while coring, Geo-Mar. Lett., 22, 133–141, https://doi.org/10.1007/s00367-002-0104-z,
2002.
Hansen, R. R. and White, J.: Features of Logging-While-Drilling (LWD) in
Horizontal Wells, SPE/IADC Drilling Conference, 11–14 March 1991, Amsterdam, the Netherlands, 21989-MS, https://doi.org/10.2118/21989-MS, 1991.
Harms, U. and Kück, J.: KTB Depth Laboratory: A Window into the Upper
Crust, in: Encyclopedia of Solid Earth Geophysics,
Encyclopedia of Earth Sciences Series, edited by: Gupta, H. K.,
https://doi.org/10.1007/978-3-030-10475-7_242-1, 2020.
Hodell, D., Anselmetti, F., Brenner, M., Ariztegui, D., and the PISDP Scientific Party: The Lake Petén Itzá Scientific Drilling Project, Sci. Dril., 3, 25–29, https://doi.org/10.2204/iodp.sd.3.02.2006, 2006.
Jackson, M. D., Gudmundsson, M. T., Weisenberger, T. B., Rhodes, J. M., Stefánsson, A., Kleine, B. I., Lippert, P. C., Marquardt, J. M., Reynolds, H. I., Kück, J., Marteinsson, V. T., Vannier, P., Bach, W., Barich, A., Bergsten, P., Bryce, J. G., Cappelletti, P., Couper, S., Fahnestock, M. F., Gorny, C. F., Grimaldi, C., Groh, M., Gudmundsson, Á., Gunnlaugsson, Á. T., Hamlin, C., Högnadóttir, T., Jónasson, K., Jónsson, S. S., Jørgensen, S. L., Klonowski, A. M., Marshall, B., Massey, E., McPhie, J., Moore, J. G., Ólafsson, E. S., Onstad, S. L., Perez, V., Prause, S., Snorrason, S. P., Türke, A., White, J. D. L., and Zimanowski, B.: SUSTAIN drilling at Surtsey volcano, Iceland, tracks hydrothermal and microbiological interactions in basalt 50 years after eruption, Sci. Dril., 25, 35–46, https://doi.org/10.5194/sd-25-35-2019, 2019.
Jerram, D. A., Millett, J. M., Kück, J., Thomas, D., Planke, S., Haskins, E., Lautze, N., and Pierdominici, S.: Understanding volcanic facies in the subsurface: a combined core, wireline logging and image log data set from the PTA2 and KMA1 boreholes, Big Island, Hawai`i, Sci. Dril., 25, 15–33, https://doi.org/10.5194/sd-25-15-2019, 2019.
Koeberl, C., Milkereit, B., Overpeck, J. T., Scholz, C., Amoako, P. Y. O.,
Boamah, D., Danuor, S., Karp, T., Kück, J., Hecky, R. E., King, J. W., and
Peck, J. A.: An international and multidisciplinary drilling project into a
young complex impact structure: The 2004 ICDP Bosumtwi Crater Drilling
Project – An overview, Meteorit. Planet. Sci., 42, 483–511, 2007.
Matheson, R. and West, J.: Logging While Tripping – A New Alternative in
Formation Evaluation, J. Can. Petrol. Technol., 39, 38–43, https://doi.org/10.2118/00-07-02, 2000.
Moore, J. C.: Synthesis of results: logging while drilling, northern Barbados
accretionary prism, in: Proc. ODP, Sci. Results, 171A: College
Station, TX (Ocean Drilling Program), edited by: Moore, J. C. and Klaus, A.,
1–25, https://doi.org/10.2973/odp.proc.sr.171a.101.2000, 2000.
Singh, M., Al Benali, K., A., Sallam, Y., Sajeel, K., El Wazeer, F., Chaker,
H., and Propper, M.: A Case Study on Open-Hole Logging While Tripping LWT
Through Drill Pipes, as a New Technology for Risk Mitigation and Cost
Optimization in Abu Dhabi Onshore Fields, Society of Petroleum Engineers,
SPE-193315-MS, https://doi.org/10.2118/193315-MS, 2018.
Short summary
New cable-free borehole memory sondes allow measurements in boreholes with very unstable walls, which is common, e.g., in soft sediments below lakes. The drill-pipe-mounted memory sondes can pass through narrowed zones. While being pulled up by the drill pipes, they measure natural radioactivity, velocity of sound, electrical conductivity, magnetizability, and the temperature of the borehole rocks. We describe the memory sondes and appendant depth devices, both tested in thorough field tests.
New cable-free borehole memory sondes allow measurements in boreholes with very unstable walls,...