Ship-board determination of whole-rock (ultra-)trace element concentrations by laser ablation-inductively coupled plasma mass spectrometry analysis of pressed powder pellets aboard the D/V Chikyu
Research Institute for Marine Geodynamics (IMG), Japan Agency for
Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka,
Kanagawa 237-0061, Japan
Géosciences Environnement Toulouse (GET), Observatoire
Midi-Pyrénées, Université de Toulouse, CNRS, IRD, 14 avenue E. Belin, 31400 Toulouse, France
Fatma Kourim
Institute of Earth Sciences, Academia Sinica, Academia Road, Nangang, Taipei 11529, Taiwan
Akihiro Tamura
Department of Sciences, College of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
Eiichi Takazawa
Department of Geology, Faculty of Science, Niigata University,
Niigata, Niigata 950-2181, Japan
Manolis Giampouras
Instituto Andaluz de Ciencias de la Tierra (IACT), Consejo Superior de Investigaciones Científicas-Universidad de Granada, Avd. Palmeras 4,
18100 Armilla, Granada, Spain
Sayantani Chatterjee
Department of Geology, Faculty of Science, Niigata University,
Niigata, Niigata 950-2181, Japan
Keisuke Ishii
Department of Geology, Faculty of Science, Niigata University,
Niigata, Niigata 950-2181, Japan
Matthew J. Cooper
School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, European Way, Southampton SO14-3ZH, UK
Marguerite Godard
Géosciences Montpellier, CNRS, Université Montpellier, Place E. Bataillon, 34095 Montpellier, France
Elliot Carter
Department of Geology, Trinity College Dublin, Dublin 2, Ireland
Natsue Abe
Mantle Drilling Promotion Office, Institute for Marine-Earth
Exploration and Engineering (MarE3), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 3173-25 Showa-machi, Kanazawa-ku, Yokohama, Kanagawa 236-0001, Japan
Kyaw Moe
Institute for Marine-Earth Exploration and Engineering (MarE3), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa 237-0061, Japan
Damon A. H. Teagle
School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, European Way, Southampton SO14-3ZH, UK
A full list of authors appears at the end of the paper.
Related authors
No articles found.
Thierry Decrausaz, Marguerite Godard, Manuel D. Menzel, Fleurice Parat, Emilien Oliot, Romain Lafay, and Fabrice Barou
Eur. J. Mineral., 35, 171–187, https://doi.org/10.5194/ejm-35-171-2023, https://doi.org/10.5194/ejm-35-171-2023, 2023
Short summary
Short summary
The carbonation of peridotites occurs during the fluxing of reactive CO2-bearing fluids, ultimately producing listvenites (magnesite and quartz assemblage). We studied the most extended outcrops of listvenites worldwide, found at the base of the Semail Ophiolite (Oman). Our study highlights the partitioning of iron during early pervasive carbonation revealed by chemical zoning in matrix magnesites, and we discuss the conditions favoring the formation of Fe-rich magnesite.
Manuel D. Menzel, Janos L. Urai, Estibalitz Ukar, Thierry Decrausaz, and Marguerite Godard
Solid Earth, 13, 1191–1218, https://doi.org/10.5194/se-13-1191-2022, https://doi.org/10.5194/se-13-1191-2022, 2022
Short summary
Short summary
Mantle rocks can bind large quantities of carbon by reaction with CO2, but this capacity requires fluid pathways not to be clogged by carbonate. We studied mantle rocks from Oman to understand the mechanisms allowing their transformation into carbonate and quartz. Using advanced imaging techniques, we show that abundant veins were essential fluid pathways driving the reaction. Our results show that tectonic stress was important for fracture opening and a key ingredient for carbon fixation.
Valentin Basch, Martyn R. Drury, Oliver Plumper, Eric Hellebrand, Laura Crispini, Fabrice Barou, Marguerite Godard, and Elisabetta Rampone
Eur. J. Mineral., 33, 463–477, https://doi.org/10.5194/ejm-33-463-2021, https://doi.org/10.5194/ejm-33-463-2021, 2021
Short summary
Short summary
This paper investigates the possibility for melts to migrate within extensively deformed crystals and assesses the impact of this intracrystalline melt percolation on the chemical composition of the deformed crystal. We here document that the presence of melt within a crystal greatly enhances chemical diffusive re-equilibration between the percolating melt and the mineral and that such a process occurring at crystal scale can impact the large-scale composition of the oceanic lithosphere.
Susumu Umino, Gregory F. Moore, Brian Boston, Rosalind Coggon, Laura Crispini, Steven D'Hondt, Michael O. Garcia, Takeshi Hanyu, Frieder Klein, Nobukazu Seama, Damon A. H. Teagle, Masako Tominaga, Mikiya Yamashita, Michelle Harris, Benoit Ildefonse, Ikuo Katayama, Yuki Kusano, Yohey Suzuki, Elizabeth Trembath-Reichert, Yasuhiro Yamada, Natsue Abe, Nan Xiao, and Fumio Inagaki
Sci. Dril., 29, 69–82, https://doi.org/10.5194/sd-29-69-2021, https://doi.org/10.5194/sd-29-69-2021, 2021
Christian Berndt, Sverre Planke, Damon Teagle, Ritske Huismans, Trond Torsvik, Joost Frieling, Morgan T. Jones, Dougal A. Jerram, Christian Tegner, Jan Inge Faleide, Helen Coxall, and Wei-Li Hong
Sci. Dril., 26, 69–85, https://doi.org/10.5194/sd-26-69-2019, https://doi.org/10.5194/sd-26-69-2019, 2019
Short summary
Short summary
The northeast Atlantic encompasses archetypal examples of volcanic rifted margins. Twenty-five years after the last ODP leg on these volcanic margins, the reasons for excess melting are still disputed with at least three competing hypotheses being discussed. We are proposing a new drilling campaign that will constrain the timing, rates of volcanism, and vertical movements of rifted margins.
Elmar Albers, Wolfgang Bach, Frieder Klein, Catriona D. Menzies, Friedrich Lucassen, and Damon A. H. Teagle
Solid Earth, 10, 907–930, https://doi.org/10.5194/se-10-907-2019, https://doi.org/10.5194/se-10-907-2019, 2019
Short summary
Short summary
To understand the fate of carbon in subducted oceanic sediments and crust, we studied carbonate phases in rocks from the Mariana subduction zone. These show that carbon is liberated from the downgoing plate at depths less than 20 km. Some of the carbon is subsequently trapped in minerals and likely subducts to greater depths, whereas fluids carry the other part back into the ocean. Our findings imply that shallow subduction zone processes may play an important role in the deep carbon cycle.
Robert McKay, Neville Exon, Dietmar Müller, Karsten Gohl, Michael Gurnis, Amelia Shevenell, Stuart Henrys, Fumio Inagaki, Dhananjai Pandey, Jessica Whiteside, Tina van de Flierdt, Tim Naish, Verena Heuer, Yuki Morono, Millard Coffin, Marguerite Godard, Laura Wallace, Shuichi Kodaira, Peter Bijl, Julien Collot, Gerald Dickens, Brandon Dugan, Ann G. Dunlea, Ron Hackney, Minoru Ikehara, Martin Jutzeler, Lisa McNeill, Sushant Naik, Taryn Noble, Bradley Opdyke, Ingo Pecher, Lowell Stott, Gabriele Uenzelmann-Neben, Yatheesh Vadakkeykath, and Ulrich G. Wortmann
Sci. Dril., 24, 61–70, https://doi.org/10.5194/sd-24-61-2018, https://doi.org/10.5194/sd-24-61-2018, 2018
Related subject area
Location/Setting: Instrumentation and observatories | Subject: Geochemistry | Geoprocesses: Earth science methods
An innovative optical and chemical drill core scanner
A. S. L. Sjöqvist, M. Arthursson, A. Lundström, E. Calderón Estrada, A. Inerfeldt, and H. Lorenz
Sci. Dril., 19, 13–16, https://doi.org/10.5194/sd-19-13-2015, https://doi.org/10.5194/sd-19-13-2015, 2015
Cited articles
Akizawa, N., Ishikawa, A., and Kogiso, T.: A simple determination of
whole-rock major- And trace-element composition for peridotite by micro-XRF
spectrometer and ICP-MS using fused-glass bead, Geochem. J., 54(2), 81–90,
https://doi.org/10.2343/geochemj.2.0587, 2020.
Anonymous: Penrose Field Conference on ophiolites, Geotimes, 17, 24–25,
1972.
Arrowsmith, P.: Laser ablation of solids for elemental analysis by
inductively coupled plasma mass spectrometry, Anal. Chem., 59,
1437–1444, https://doi.org/10.1021/ac00137a014, 1987.
Barrat, J.-A., Keller, F., Amossé, J., Taylor, R. N., Nesbitt, R. W., and
Hirata, T.: Determination of Rare Earth Elements in Sixteen Silicate
Reference Samples by Icp-Ms After Tm Addition and Ion Exchange Separation,
Geostand. Newsl., 20, 133–139, https://doi.org/10.1111/j.1751-908X.1996.tb00177.x,
1996.
Barrat, J. A., Yamaguchi, A., Greenwood, R. C., Benoit, M., Cotten, J.,
Bohn, M., and Franchi, I. A.: Geochemistry of diogenites: Still more
diversity in their parental melts, Meteor. Planet. Sci., 43, 1759-1775,
https://doi.org/10.1111/j.1945-5100.2008.tb00641.x, 2008.
Barrat, J.-A., Zanda, B., Moynier, F., Bollinger, C., Liorzou, C., and Bayon,
G.: Geochemistry of CI chondrites: Major and trace elements, and Cu and Zn
Isotopes, Geochim. Cosmochim. Acta, 83, 79–92,
https://doi.org/10.1016/j.gca.2011.12.011, 2012.
Bayon, G., Barrat, J.-A., Etoubleau, J., Benoit, M., Bollinger, C., and
Révillon, S.: Determination of rare earth elements, Sc, Y, Zr, Ba, Hf
and Th in geological samples by ICP-MS after Tm addition and alkaline
fusion, Geostand. Geoanal. Res., 33, 51–62,
https://doi.org/10.1111/j.1751-908X.2008.00880.x, 2009.
Bizzarro, M., Baker, J. A., and Ulfbeck, D.: A new digestion and chemical
separation technique for rapid and highly reproducible determination of
Lu/Hf and Hf isotope ratios in geological materials by mc-ICP-MS, Geostand.
Newsl., 27, 133–145, https://doi.org/10.1111/j.1751-908X.2003.tb00641.x, 2003.
Boudier, F. and Nicolas, A.: Harzburgite and lherzolite subtypes in
ophiolitic and oceanic environments, Earth Planet. Sci. Lett., 76,
84–92, https://doi.org/10.1016/0012-821X(85)90150-5, 1985.
Coleman, R. G.: Plate tectonic emplacement of upper mantle peridotites along
continental edges, J. Geophys. Res., 76, 1212–1222,
https://doi.org/10.1029/JB076i005p01212, 1971.
Coleman, R. G.: Ophiolites: ancient oceanic lithosphere?, Springer-Verlag,
Berlin Heidelberg, Germany, https://doi.org/10.1007/978-3-642-66673-5, 1977.
Dilek, Y.: Ophiolite concept and its evolution, Spec. Pap.-Geol. Soc. Amer.,
373, 1–16, https://doi.org/10.1130/0-8137-2373-6.1, 2003.
Eggins, S. M.: Laser ablation ICP-MS analysis of geological materials
prepared as lithium borate glasses, Geostand. Newsl., 27, 147–162,
https://doi.org/10.1111/j.1751-908X.2003.tb00642.x, 2003.
Garbe-Schönberg, D. and Müller, S.: Nano-particulate pressed powder
tablets for LA-ICP-MS, J. Anal. At. Spectrom., 29, 990–1000,
https://doi.org/10.1039/c4ja00007b, 2014.
Gerbert-Gaillard, L.: Caractérisation Géochimique des
Péridotites de l'ophiolite d'Oman: Processus Magmatiques aux Limites
Lithosphère/Asthénosphère, PhD thesis Université Montpellier
II, France, 2002 (in French).
Glennie, K. W., Boeuf, M. G. A., Hughes Clarke, M. W., Moody-Stuart, M.,
Pilaar, W. F. H., and Reinhardt, B. M.: Geology of the Oman Mountains, Verhandling Koninkelijk Nederlands Geologisch Mijnboukundig Genootschap, 31, 423 pp., 1974.
Godard, M., Jousselin, D., and Bodinier, J.-L.: Relationships between
geochemistry and structure beneath a palaeo-spreading centre: A study of the
mantle section in the Oman ophiolite, Earth Planet. Sci. Lett., 180,
133–148, https://doi.org/10.1016/S0012-821X(00)00149-7, 2000.
Godard, M., Lagabrielle, Y., Alard, O., and Harvey, J.: Geochemistry of the
highly depleted peridotites drilled at ODP Sites 1272 and 1274
(Fifteen-Twenty Fracture Zone, Mid-Atlantic Ridge): Implications for mantle
dynamics beneath a slow spreading ridge, Earth Planet. Sci. Lett.,
267, 410–425, https://doi.org/10.1016/j.epsl.2007.11.058, 2008.
Gray, A. L.: Solid sample introduction by laser ablation for inductively
coupled plasma source mass spectrometry, Analyst, 110, 551–556,
https://doi.org/10.1039/AN9851000551, 1985.
Hanghøj, K., Kelemen, P. B., Hassler, D., and Godard, M.: Composition and
genesis of depleted mantle peridotites from the Wadi Tayin massif, Oman
ophiolite; Major and trace element geochemistry, and Os isotope and PGE
systematics, J. Petrol., 51, 201–227, https://doi.org/10.1093/petrology/egp077,
2010.
Hopson, C. A., Coleman, R. G., Gregory, R. T., Pallister, J. S., and Bailey,
E. H.: Geologic section through the Samail ophiolite and associated rocks
along a Muscat-Ibra transect, southeastern Oman Mountains, J. Geophys. Res.-Sol. Ea., 86, 2527–2544, https://doi.org/10.1029/JB086iB04p02527, 1981.
Imai, N.: Quantitative analysis of original and powdered rocks and mineral
inclusions by laser ablation inductively coupled plasma mass spectrometry,
Anal. Chim. Acta, 235, 381–391, https://doi.org/10.1016/S0003-2670(00)82097-8, 1990.
Imai, N., Terashima, S., Itoh, S., and Ando, A.: 1994 compilation values for
GSJ reference samples, “Igneous rock series”, Geochem. J., 29, 91–95,
https://doi.org/10.2343/geochemj.29.91, 1995.
Imai, N., Terashima, S., Itoh, S., and Ando, A.: 1998 compilation of
analytical data for five GSJ geochemical reference samples: The
“instrumental analysis series”, Geostand. Newsl., 23, 223–250,
https://doi.org/10.1111/j.1751-908X.1999.tb00576.x, 1999.
Ionov, D. A., Savoyant, L., and Dupuy, C.: Application of the ICP-MS
technique to trace element analysis of peridotites and their minerals,
Geostand. Newsl., 16, 311–315, https://doi.org/10.1111/j.1751-908X.1992.tb00494.x,
1992.
Jochum, K. P., Seufert, H. M., and Thirlwall, M. F.: High-sensitivity Nb
analysis by spark-source mass spectrometry (SSMS) and calibration of XRF Nb
and Zr, Chem. Geol., 81, 1–16, https://doi.org/10.1016/0009-2541(90)90035-6,
1990.
Jochum, K. P., Willbold, M., Raczek, I., Stoll, B., and Herwig, K.: Chemical
characterisation of the USGS reference glasses GSA-1G, GSC-1G, GSD-1G,
GSE-1G, BCR-2G, BHVO-2G and BIR-1G using EPMA, ID-TIMS, ID-ICP-MS and
LA-ICP-MS, Geostand. Geoanal. Res., 29, 285–302,
https://doi.org/10.1111/j.1751-908x.2005.tb00901.x, 2005.
Jochum, K. P., Weis, U., Stoll, B., Kuzmin, D., Yang, Q., Raczek, I., Jacob,
D. E., Stracke, A., Birbaum, K., Frick, D. A., Günther, D., and
Enzweiler, J.: Determination of reference values for NIST SRM 610-617
glasses following ISO guidelines, Geostand. Geoanal. Res., 35,
397–429, https://doi.org/10.1111/j.1751-908X.2011.00120.x, 2011.
Kelemen, P., Al Rajhi, A., Godard, M., Ildefonse, B., Köpke, J., MacLeod, C., Manning, C., Michibayashi, K., Nasir, S., Shock, E., Takazawa, E., and Teagle, D.: Scientific Drilling and Related Research in the Samail Ophiolite, Sultanate of Oman, Sci. Dril., 15, 64–71, https://doi.org/10.2204/iodp.sd.15.10.2013, 2013.
Kelemen, P. B., Matter, J. M., Teagle, D. A. H., Coggon, J. A., and the Oman
Drilling Project Science Team (Eds.): Methods and explanatory notes, in: Proceedings of the Oman Drilling Project: College Station, TX (International Ocean Discovery Program), https://doi.org/10.14379/OmanDP.proc.2020, 2020.
Kelemen, P. B., Matter, J. M., Teagle, D. A. H., Coggon, J. A., and the Oman
Drilling Project Science Team (Eds.): Site CM1: layered gabbros, crustal ultramafic rocks, and mantle harzburgite, in: Proceedings of the Oman Drilling Project: College Station, TX (International Ocean Discovery Program), https://doi.org/10.14379/OmanDP.proc.2020, 2021a.
Kelemen, P. B., Matter, J. M., Teagle, D. A. H., Coggon, J. A., and the Oman
Drilling Project Science Team (Eds.): Site CM2: crust-mantle transition zone and into upper mantle, in: Proceedings of the Oman Drilling Project: College Station, TX (International Ocean Discovery Program), https://doi.org/10.14379/OmanDP.proc.2020,
2021b.
Kelemen, P. B., Matter, J. M., Teagle, D. A. H., Coggon, J. A., and the Oman
Drilling Project Science Team (Eds.): Oman Drilling Project Phase 1 and 2 Summary, in: Proceedings of the Oman Drilling Project: College Station, TX (International Ocean Discovery Program), https://doi.org/10.14379/OmanDP.proc.2020, in press, 2021c.
Kon, Y. and Hirata, T.: Determination of 10 major and 34 trace elements in
34 GSJ geochemical reference samples using femtosecond laser ablation
ICP-MS, Geochem. J., 49, 351–375, https://doi.org/10.2343/geochemj.2.0362, 2015.
Kon, Y., Murakami, H., Takagi, T., and Watanabe, Y.: The development of whole
rock analysis of major and trace elements in XRF glass beads by fsLA-ICPMS
in GSJ geochemical reference samples, Geochem. J., 45, 387–416,
https://doi.org/10.2343/geochemj.1.0133, 2011.
Le Mée, L., Girardeau, J., and Monnier, C.: Mantle segmentation along the
Oman ophiolite fossil mid-ocean ridge, Nature, 432, 167–172,
https://doi.org/10.1038/nature03075, 2004.
Lippard, S. J., Shelton, A. W., and Gass, I. G.: The ophiolite of the
Northern Oman, Geol. Soc. London, Mem., 11, 1–16,
https://doi.org/10.1144/GSL.MEM.1986.011.01.01, 1986.
Longerich, H. P., Jackson, S. E., and Gunther, D.: Laser ablation
inductively coupled plasma mass spectrometric transient signal data
acquisition and analyte concentration calculation, J. Anal. At. Spectrom.,
11, 899–904, https://doi.org/10.1039/JA9961100899, 1996.
Makishima, A. and Nakamura, E.: Suppression of matrix effects in ICP-MS by
high power operation of ICP: Application to precise determination of Rb, Sr,
Y, Cs, Ba, REE, Pb, Th and U at ng g-1 levels in milligram silicate samples,
Geostand. Newsl., 21, 307–319, https://doi.org/10.1111/j.1751-908X.1997.tb00678.x,
1997.
Makishima, A. and Nakamura, E.: Determination of major/minor and trace
elements in silicate samples by ICP-QMS and ICP-SFMS applying isotope
dilution-internal standardisation (ID-IS) and multi-stage internal
standardisation, Geostand. Geoanal. Res., 30, 245–271,
https://doi.org/10.1111/j.1751-908X.2006.tb01066.x, 2006.
Michibayashi, K., Tominaga, M., Ildefonse, B., and Teagle, D.: What Lies
Beneath: The Formation and Evolution of Oceanic Lithosphere, Oceanography,
32, 138–149, https://doi.org/10.5670/oceanog.2019.136, 2019.
Monnier, C., Girardeau, J., Le Mée, L., and Polvé, M.: Along-ridge
petrological segmentation of the mantle in the Oman ophiolite, Geochem.
Geophy. Geosy., 7, Q11008, https://doi.org/10.1029/2006GC001320, 2006.
Morishita, T., Umino, S., Kimura, J.-I., Yamashita, M., Ono, S., Michibayashi, K., Tominaga, M., Klein, F., and Garcia, M. O.: Workshop report on hard-rock drilling into mid-Cretaceous Pacific oceanic crust on the Hawaiian North Arch, Sci. Dril., 26, 47–58, https://doi.org/10.5194/sd-26-47-2019, 2019.
Mukherjee, P. K., Khanna, P. P., and Saini, N. K.: Rapid determination of
trace and ultra trace level elements in diverse silicate rocks in pressed
powder pellet targets by LA-ICP-MS using a matrix-independent protocol,
Geostand. Geoanal. Res., 38, 363–379,
https://doi.org/10.1111/j.1751-908X.2013.00260.x, 2014.
Nakamura, K. and Chang, Q.: Precise determination of ultra-low (sub-ng g-1)
level rare earth elements in ultramafic rocks by quadrupole ICP-MS,
Geostand. Geoanal. Res., 31, 185–197,
https://doi.org/10.1111/j.1751-908X.2007.00859.x, 2007.
Peters, D. and Pettke, T.: Evaluation of Major to Ultra Trace Element Bulk
Rock Chemical Analysis of Nanoparticulate Pressed Powder Pellets by
LA-ICP-MS, Geostand. Geoanal. Res., 41, 5–28,
https://doi.org/10.1111/ggr.12125, 2017.
Qi, L., Zhou, M.-F., Malpas, J., and Sun, M.: Determination of Rare Earth
Elements and Y in Ultramafic Rocks by ICP-MS After Preconcentration Using
Fe(OH)3 and Mg(OH)2 Coprecipitation, Geostand. Geoanal. Res., 29,
131–141, https://doi.org/10.1111/j.1751-908X.2005.tb00660.x, 2005.
Rospabé, M.: Etude pétrologique, géochimique et structurale de
la zone de transition dunitique dans l'ophiolite d'Oman: Identification des
processus pétrogénétiques à l'interface manteau/croûte,
PhD thesis Université Paul Sabatier, Toulouse III, France, 2018 (in French).
Rospabé, M., Benoit, M., and Candaudap, F.: Determination of Trace
Element Mass Fractions in Ultramafic Rocks by HR-ICP-MS: A Combined Approach
Using a Direct Digestion/Dilution Method and Preconcentration by
Coprecipitation, Geostand. Geoanal. Res., 42, 115–129,
https://doi.org/10.1111/ggr.12181, 2018a.
Rospabé, M., Benoit, M., Ceuleneer, G., Hodel, F., and Kaczmarek, M.-A.:
Extreme geochemical variability through the dunitic transition zone of the
Oman ophiolite: Implications for melt/fluid-rock reactions at Moho level
beneath oceanic spreading centers, Geochim. Cosmochim. Acta, 234, 1–23,
https://doi.org/10.1016/j.gca.2018.05.012, 2018b.
Rospabé, M., Benoit, M., Ceuleneer, G., Kaczmarek, M.-A., and Hodel, F.:
Melt hybridization and metasomatism triggered by syn-magmatic faults within
the Oman ophiolite: A clue to understand the genesis of the dunitic
mantle-crust transition zone, Earth Planet. Sci. Lett., 516, 108–121,
https://doi.org/10.1016/j.epsl.2019.04.004, 2019.
Sato, T., Miyazaki, T., Tamura, Y., Gill, J. B., Jutzeler, M., Senda, R., and
Kimura, J. I.: The earliest stage of Izu rear-arc volcanism revealed by
drilling at Site U1437, International Ocean Discovery Program Expedition
350, Isl. Arc, 29, e12340, https://doi.org/10.1111/iar.12340, 2020.
Senda, R., Kimura, J. I., and Chang, Q.: Evaluation of a rapid, effective
sample digestion method for trace element analysis of granitoid samples
containing acid-resistant minerals: Alkali fusion after acid digestion,
Geochem. J., 48, 99–103, https://doi.org/10.2343/geochemj.2.0280, 2014.
Sharma, M. and Wasserburg, G. J.: The neodymium isotopic compositions and
rare earth patterns in highly depleted ultramafic rocks, Geochim. Cosmochim.
Acta, 60, 4537–4550, https://doi.org/10.1016/S0016-7037(96)00280-3, 1996.
Sharma, M., Wasserburg, G. J., Papanastassiou, D. A., Quick, J. E., Sharkov,
E. V., and Laz'ko, E. E.: High143Nd/144Nd in extremely depleted mantle rocks,
Earth Planet. Sci. Lett., 135, 101–114,
https://doi.org/10.1016/0012-821X(95)00150-B, 1995.
Takazawa, E., Okayasu, T., and Satoh, K.: Geochemistry and origin of the
basal lherzolites from the northern Oman ophiolite (northern Fizh block),
Geochem., Geophy. Geosy., 4, 1021, https://doi.org/10.1029/2001GC000232, 2003.
Tamura, A., Akizawa, N., Otsuka, R., Kanayama, K., Python, M., Morishita, T., and Arai, S.: Measurement of whole-rock trace-element composition by
flux-free fused glass and LA-ICP-MS: Evaluation of simple and rapid routine
work, Geochem. J., 49, 243–258, https://doi.org/10.2343/geochemj.2.0353, 2015.
Tanaka, E., Nakamura, K., Yasukawa, K., Mimura, K., Fujinaga, K., Ohta, J.,
Iijima, K., Nozaki, T., Machida, S., and Kato, Y.: Chemostratigraphic
correlations of deep-sea sediments in the western north pacific ocean: A new
constraint on the distribution of mud highly enriched in rare-earth
elements, Minerals, 10, 1–19, https://doi.org/10.3390/min10060575, 2020a.
Tanaka, E., Nakamura, K., Yasukawa, K., Mimura, K., Fujinaga, K., Iijima,
K., Nozaki, T., and Kato, Y.: Chemostratigraphy of deep-sea sediments in the
western North Pacific Ocean: Implications for genesis of mud highly enriched
in rare-earth elements and yttrium, Ore Geol. Rev., 119, 103392,
https://doi.org/10.1016/j.oregeorev.2020.103392, 2020b.
Teagle, D. and Ildefonse, B.: Journey to the mantle of the Earth, Nature,
471, 437–439, https://doi.org/10.1038/471437a, 2011.
Umino, S., Moore, G. F., Boston, B., Coggon, R., Crispini, L., D'Hondt, S., Garcia, M. O., Hanyu, T., Klein, F., Seama, N., Teagle, D. A. H., Tominaga, M., Yamashita, M., Harris, M., Ildefonse, B., Katayama, I., Kusano, Y., Suzuki, Y., Trembath-Reichert, E., Yamada, Y., Abe, N., Xiao, N., and Inagaki, F.: Workshop report: Exploring deep oceanic crust off Hawai`i, Sci. Dril., 29, 69–82, https://doi.org/10.5194/sd-29-69-2021, 2021.
Van Heuzen, A. A.: Analysis of solids by laser ablation–inductively
coupled plasma–mass spectrometry (LA-ICP-MS) – I. matching with a glass
matrix, Spectrochim. Acta Part B At. Spectrosc., 46, 1803–1817,
https://doi.org/10.1016/0584-8547(91)80207-J, 1991.
Weyer, S., Münker, C., Rehkämper, M., and Mezger, K.: Determination
of ultra-low Nb, Ta, Zr and Hf concentrations and the chondritic Zr/Hf and
Nb/Ta ratios by isotope dilution analyses with multiple collector ICP-MS,
Chem. Geol., 187, 295–313, https://doi.org/10.1016/S0009-2541(02)00129-8, 2002.
Yasukawa, K., Ohta, J., Mimura, K., Tanaka, E., Takaya, Y., Usui, Y.,
Fujinaga, K., Machida, S., Nozaki, T., Iijima, K., Nakamura, K., and Kato,
Y.: A new and prospective resource for scandium: Evidence from the
geochemistry of deep-sea sediment in the western North Pacific Ocean, Ore
Geol. Rev., 102, 260–267, https://doi.org/10.1016/j.oregeorev.2018.09.001, 2018.
Yasukawa, K., Kino, S., Azami, K., Tanaka, E., Mimura, K., Ohta, J.,
Fujinaga, K., Nakamura, K., and Kato, Y.: Geochemical features of Fe-Mn
micronodules in deep-sea sediments of the western North Pacific Ocean:
Potential for co-product metal extraction from REY-rich mud, Ore Geol. Rev.,
127, 103805, https://doi.org/10.1016/j.oregeorev.2020.103805, 2020.
Yokoyama, T., Makishima, A., and Nakamura, E.: Evaluation of the
coprecipitation of incompatible trace elements with fluoride during silicate
rock dissolution by acid digestion, Chem. Geol., 157, 175–187,
https://doi.org/10.1016/S0009-2541(98)00206-X, 1999.
Zhu, Y., Hioki, A., and Chiba, K.: Quantitative analysis of the elements in
powder samples by LA-ICP-MS with PMMA powder as the binder and Cs as the
internal standard, J. Anal. At. Spectrom., 28, 301–306,
https://doi.org/10.1039/c2ja30279a, 2013.
Short summary
During ChikyuOman2018 Leg3, we adapted a sample preparation and analytical procedure in order to analyse (ultra-)trace element concentrations using the D/V Chikyu on-board instrumentation. This dry (acid-free) and safe method has been developed for the determination of 37 elements (lowest reachable concentrations: 1–2 ppb) in igneous rocks from the oceanic lithosphere and could be adapted to other materials and/or chemicals of interest in the course of future ocean drilling operations.
During ChikyuOman2018 Leg3, we adapted a sample preparation and analytical procedure in order to...