A synthesis of monsoon exploration in the Asian marginal seas
Department of Geology and Geophysics, Louisiana State University,
Baton Rouge, LA 70803, USA
Christian Betzler
Institute for Geology, German Research Fleet Coordination Center,
University of Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany
Steven C. Clemens
Department of Earth, Environmental and Planetary Sciences, Box 1846, Brown University, Providence, RI 02912-1846, USA
Beth Christensen
Department of Environmental Science, Rowan University, 201 Mullica
Hill Road, Glassboro, NJ 08028, USA
Gregor P. Eberli
CSL – Center for Carbonate Research, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA
Christian France-Lanord
Centre de Recherches Pétrographiques et Géochimiques,
Université de Nancy, CNRS UMR 7358, 54500, Vandoeuvre-lès-Nancy,
France
Stephen Gallagher
School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, Victoria, 3010, Australia
Ann Holbourn
Institute of Geosciences, Christian-Albrecht University,
Olshausenstrasse 40, 24118 Kiel, Germany
Wolfgang Kuhnt
Institute of Geosciences, Christian-Albrecht University,
Olshausenstrasse 40, 24118 Kiel, Germany
Richard W. Murray
Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
Yair Rosenthal
School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, 71 Dudley Road, New Brunswick, NJ 08901-8520, USA
Ryuji Tada
Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
Shiming Wan
Key Laboratory of Marine Geology and Environment, Institute of
Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, Shandong
Province, 266071, China
Related authors
Peter D. Clift, Peng Zhou, Daniel F. Stockli, and Jerzy Blusztajn
Solid Earth, 10, 647–661, https://doi.org/10.5194/se-10-647-2019, https://doi.org/10.5194/se-10-647-2019, 2019
Short summary
Short summary
Surface processes driven by climate have been linked to the tectonic evolution of mountain belts, with the Himalaya and Asian monsoon being classic examples. Sediments from the Arabian Sea show an increase in erosion from the Karakoram between 17 and 9.5 Ma, followed by an increase in the relative flux from the Himalaya after 5.7 Ma and especially from the Lesser Himalaya after 1.9 Ma. Lack of correlation with climate histories suggests that tectonic forces dominate control over erosion.
Liviu Giosan, William D. Orsi, Marco Coolen, Cornelia Wuchter, Ann G. Dunlea, Kaustubh Thirumalai, Samuel E. Munoz, Peter D. Clift, Jeffrey P. Donnelly, Valier Galy, and Dorian Q. Fuller
Clim. Past, 14, 1669–1686, https://doi.org/10.5194/cp-14-1669-2018, https://doi.org/10.5194/cp-14-1669-2018, 2018
Short summary
Short summary
Climate reorganization during the early neoglacial anomaly (ENA) may explain the Harappan civilization metamorphosis from an urban, expansive culture to a rural, geographically-confined one. Landcover change is a candidate for causing this climate instability. During ENA agriculture along the flood-deficient floodplains of the Indus became too risky, which pushed people out. In the same time the Himalayan piedmont received augmented winter rain and steady summer precipitation, pulling people in.
Liviu Giosan, Thet Naing, Myo Min Tun, Peter D. Clift, Florin Filip, Stefan Constantinescu, Nitesh Khonde, Jerzy Blusztajn, Jan-Pieter Buylaert, Thomas Stevens, and Swe Thwin
Earth Surf. Dynam., 6, 451–466, https://doi.org/10.5194/esurf-6-451-2018, https://doi.org/10.5194/esurf-6-451-2018, 2018
Short summary
Short summary
Here we provide the first results on the evolution of the Ayeyarwady delta, the last unstudied megadelta of Asia. In addition to its intrinsic value as a founding study on the Holocene development of this region, we advance new ideas on the climate control of monsoonal deltas as well as describe for the first time a feedback mechanism between tectonics and tidal hydrodynamics that can explain the peculiarities of the Ayeyarwady delta.
Montserrat Alonso-Garcia, Jesus Reolid, Francisco J. Jimenez-Espejo, Or M. Bialik, Carlos A. Alvarez Zarikian, Juan Carlos Laya, Igor Carrasquiera, Luigi Jovane, John J. G. Reijmer, Gregor P. Eberli, and Christian Betzler
Clim. Past, 20, 547–571, https://doi.org/10.5194/cp-20-547-2024, https://doi.org/10.5194/cp-20-547-2024, 2024
Short summary
Short summary
The Maldives Inner Sea (northern Indian Ocean) offers an excellent study site to explore the impact of climate and sea-level changes on carbonate platforms. The sediments from International Ocean Discovery Program (IODP) Site U1467 have been studied to determine the drivers of carbonate production in the atolls over the last 1.3 million years. Even though sea level is important, the intensity of the summer monsoon and the Indian Ocean dipole probably modulated the production at the atolls.
Fei Guo, Steven Clemens, Yuming Liu, Ting Wang, Huimin Fan, Xingxing Liu, and Youbin Sun
Clim. Past, 18, 1675–1684, https://doi.org/10.5194/cp-18-1675-2022, https://doi.org/10.5194/cp-18-1675-2022, 2022
Short summary
Short summary
Our high-resolution loess Ca/Ti record displays millennial monsoon oscillations that persist over the last 650 kyr. Wavelet results indicate the ice volume and GHG co-modulation at the 100 kyr band and GHG and local insolation forcing at the precession band for the magnitude of millennial monsoon variability of loess Ca/Ti. The inferred mechanism calls on dynamic linkages to variability in AMOC. At the precession band, combined effects of GHG and insolation lead to increased extreme rainfall.
Clara T. Bolton, Emmeline Gray, Wolfgang Kuhnt, Ann E. Holbourn, Julia Lübbers, Katharine Grant, Kazuyo Tachikawa, Gianluca Marino, Eelco J. Rohling, Anta-Clarisse Sarr, and Nils Andersen
Clim. Past, 18, 713–738, https://doi.org/10.5194/cp-18-713-2022, https://doi.org/10.5194/cp-18-713-2022, 2022
Short summary
Short summary
The timing of the initiation and evolution of the South Asian monsoon in the geological past is a subject of debate. Here, we present a new age model spanning the late Miocene (9 to 5 million years ago) and high-resolution records of past open-ocean biological productivity from the equatorial Indian Ocean that we interpret to reflect monsoon wind strength. Our data show no long-term intensification; however, strong orbital periodicities suggest insolation forcing of monsoon wind strength.
Marlow Julius Cramwinckel, Lineke Woelders, Emiel P. Huurdeman, Francien Peterse, Stephen J. Gallagher, Jörg Pross, Catherine E. Burgess, Gert-Jan Reichart, Appy Sluijs, and Peter K. Bijl
Clim. Past, 16, 1667–1689, https://doi.org/10.5194/cp-16-1667-2020, https://doi.org/10.5194/cp-16-1667-2020, 2020
Short summary
Short summary
Phases of past transient warming can be used as a test bed to study the environmental response to climate change independent of tectonic change. Using fossil plankton and organic molecules, here we reconstruct surface ocean temperature and circulation in and around the Tasman Gateway during a warming phase 40 million years ago termed the Middle Eocene Climatic Optimum. We find that plankton assemblages track ocean circulation patterns, with superimposed variability being related to temperature.
Peter D. Clift, Peng Zhou, Daniel F. Stockli, and Jerzy Blusztajn
Solid Earth, 10, 647–661, https://doi.org/10.5194/se-10-647-2019, https://doi.org/10.5194/se-10-647-2019, 2019
Short summary
Short summary
Surface processes driven by climate have been linked to the tectonic evolution of mountain belts, with the Himalaya and Asian monsoon being classic examples. Sediments from the Arabian Sea show an increase in erosion from the Karakoram between 17 and 9.5 Ma, followed by an increase in the relative flux from the Himalaya after 5.7 Ma and especially from the Lesser Himalaya after 1.9 Ma. Lack of correlation with climate histories suggests that tectonic forces dominate control over erosion.
Liviu Giosan, William D. Orsi, Marco Coolen, Cornelia Wuchter, Ann G. Dunlea, Kaustubh Thirumalai, Samuel E. Munoz, Peter D. Clift, Jeffrey P. Donnelly, Valier Galy, and Dorian Q. Fuller
Clim. Past, 14, 1669–1686, https://doi.org/10.5194/cp-14-1669-2018, https://doi.org/10.5194/cp-14-1669-2018, 2018
Short summary
Short summary
Climate reorganization during the early neoglacial anomaly (ENA) may explain the Harappan civilization metamorphosis from an urban, expansive culture to a rural, geographically-confined one. Landcover change is a candidate for causing this climate instability. During ENA agriculture along the flood-deficient floodplains of the Indus became too risky, which pushed people out. In the same time the Himalayan piedmont received augmented winter rain and steady summer precipitation, pulling people in.
Pinxian Wang, Ryuji Tada, and Steven Clemens
Sci. Dril., 24, 87–91, https://doi.org/10.5194/sd-24-87-2018, https://doi.org/10.5194/sd-24-87-2018, 2018
Short summary
Short summary
This brief paper reports on a workshop held last September in Shanghai to promote global monsoon research in the paleoclimate community. In the framework of the international ocean drilling program, seven expeditions have been completed within the last years to recover long-term records of the global monsoon, and forty-eight scientists from 12 countries exchanged scientific findings based on the expeditions. The workshop came up with four recommendations for the future ocean drillings.
Liviu Giosan, Thet Naing, Myo Min Tun, Peter D. Clift, Florin Filip, Stefan Constantinescu, Nitesh Khonde, Jerzy Blusztajn, Jan-Pieter Buylaert, Thomas Stevens, and Swe Thwin
Earth Surf. Dynam., 6, 451–466, https://doi.org/10.5194/esurf-6-451-2018, https://doi.org/10.5194/esurf-6-451-2018, 2018
Short summary
Short summary
Here we provide the first results on the evolution of the Ayeyarwady delta, the last unstudied megadelta of Asia. In addition to its intrinsic value as a founding study on the Holocene development of this region, we advance new ideas on the climate control of monsoonal deltas as well as describe for the first time a feedback mechanism between tectonics and tidal hydrodynamics that can explain the peculiarities of the Ayeyarwady delta.
Joost Frieling, Emiel P. Huurdeman, Charlotte C. M. Rem, Timme H. Donders, Jörg Pross, Steven M. Bohaty, Guy R. Holdgate, Stephen J. Gallagher, Brian McGowran, and Peter K. Bijl
J. Micropalaeontol., 37, 317–339, https://doi.org/10.5194/jm-37-317-2018, https://doi.org/10.5194/jm-37-317-2018, 2018
Short summary
Short summary
The hothouse climate of the early Paleogene and the associated violent carbon cycle perturbations are of particular interest to understanding current and future global climate change. Using dinoflagellate cysts and stable carbon isotope analyses, we identify several significant events, e.g., the Paleocene–Eocene Thermal Maximum in sedimentary deposits from the Otway Basin, SE Australia. We anticipate that this study will facilitate detailed climate reconstructions west of the Tasmanian Gateway.
Dorothea Bunzel, Gerhard Schmiedl, Sebastian Lindhorst, Andreas Mackensen, Jesús Reolid, Sarah Romahn, and Christian Betzler
Clim. Past, 13, 1791–1813, https://doi.org/10.5194/cp-13-1791-2017, https://doi.org/10.5194/cp-13-1791-2017, 2017
Short summary
Short summary
We investigated a sediment core from the Maldives to unravel the interaction between equatorial climate and ocean variability of the past 200 000 years. The sedimentological, geochemical and foraminiferal data records reveal enhanced dust, which was transported by intensified winter monsoon winds during glacial conditions. Precessional fluctuations of bottom water oxygen suggests an expansion of the Arabian Sea OMZ and a varying inflow of Antarctic Intermediate Water.
Maarten Lupker, Jérôme Lavé, Christian France-Lanord, Marcus Christl, Didier Bourlès, Julien Carcaillet, Colin Maden, Rainer Wieler, Mustafizur Rahman, Devojit Bezbaruah, and Liu Xiaohan
Earth Surf. Dynam., 5, 429–449, https://doi.org/10.5194/esurf-5-429-2017, https://doi.org/10.5194/esurf-5-429-2017, 2017
Short summary
Short summary
We use geochemical approaches (10Be) on river sediments to quantify the erosion rates across the Tsangpo-Brahmaputra (TB) catchment in the eastern Himalayas. Our approach confirms the high erosion rates in the eastern Himalayan syntaxis region and we suggest that the abrasion of landslide material in the syntaxis is a key process in explaining how erosion signals are transferred to the sediment load.
Maarten Lupker, Christian France-Lanord, and Bruno Lartiges
Earth Surf. Dynam., 4, 675–684, https://doi.org/10.5194/esurf-4-675-2016, https://doi.org/10.5194/esurf-4-675-2016, 2016
Short summary
Short summary
Rivers export the products of continental weathering to the oceans. It is important to accurately constrain these fluxes to better understand global biogeochemical cycles. The riverine export of major cation species in particular contributes to regulate the long-term carbon cycle. In this work we quantify some additional fluxes to the ocean that may occur when solid sediments react with seawater in estuaries. These fluxes have been only poorly constrained so far.
J. Schönfeld, W. Kuhnt, Z. Erdem, S. Flögel, N. Glock, M. Aquit, M. Frank, and A. Holbourn
Biogeosciences, 12, 1169–1189, https://doi.org/10.5194/bg-12-1169-2015, https://doi.org/10.5194/bg-12-1169-2015, 2015
Short summary
Short summary
Today’s oceans show distinct mid-depth oxygen minima while whole oceanic basins became transiently anoxic in the Mesozoic. To constrain past bottom-water oxygenation, we compared sediments from the Peruvian OMZ with the Cenomanian OAE 2 from Morocco. Corg accumulation rates in laminated OAE 2 sections match Holocene rates off Peru. Laminated deposits are found at oxygen levels of < 7µmol kg-1; crab burrows appear at 10µmol kg-1 today, both defining threshold values for palaeoreconstructions.
D. Hebbeln, C. Wienberg, P. Wintersteller, A. Freiwald, M. Becker, L. Beuck, C. Dullo, G. P. Eberli, S. Glogowski, L. Matos, N. Forster, H. Reyes-Bonilla, and M. Taviani
Biogeosciences, 11, 1799–1815, https://doi.org/10.5194/bg-11-1799-2014, https://doi.org/10.5194/bg-11-1799-2014, 2014
Related subject area
Location/Setting: Deep sea | Subject: Geology | Geoprocesses: Global climate change
Mediterranean–Black Sea gateway exchange: scientific drilling workshop on the BlackGate project
Late Miocene wood recovered in Bengal–Nicobar submarine fan sediments by IODP Expedition 362
Coring the sedimentary expression of the early Toarcian Oceanic Anoxic Event: new stratigraphic records from the Tethys Ocean
Global monsoon and ocean drilling
IODP expedition 347: Baltic Sea basin paleoenvironment and biosphere
Exploring new drilling prospects in the southwest Pacific
Wout Krijgsman, Iuliana Vasiliev, Anouk Beniest, Timothy Lyons, Johanna Lofi, Gabor Tari, Caroline P. Slomp, Namik Cagatay, Maria Triantaphyllou, Rachel Flecker, Dan Palcu, Cecilia McHugh, Helge Arz, Pierre Henry, Karen Lloyd, Gunay Cifci, Özgür Sipahioglu, Dimitris Sakellariou, and the BlackGate workshop participants
Sci. Dril., 31, 93–110, https://doi.org/10.5194/sd-31-93-2022, https://doi.org/10.5194/sd-31-93-2022, 2022
Short summary
Short summary
BlackGate seeks to MSP drill a transect to study the impact of dramatic hydrologic change in Mediterranean–Black Sea connectivity by recovering the Messinian to Holocene (~ 7 Myr) sedimentary sequence in the North Aegean, Marmara, and Black seas. These archives will reveal hydrographic, biotic, and climatic transitions studied by a broad scientific community spanning the stratigraphic, tectonic, biogeochemical, and microbiological evolution of Earth’s most recent saline and anoxic giant.
Lisa McNeill, Brandon Dugan, Katerina Petronotis, Kitty Milliken, Jane Francis, and the Expedition 362 Scientists
Sci. Dril., 27, 49–52, https://doi.org/10.5194/sd-27-49-2020, https://doi.org/10.5194/sd-27-49-2020, 2020
Short summary
Short summary
The IODP scientific ocean drilling program drilled into the sediments of the Bengal–Nicobar submarine fan system west of Sumatra, Indonesia. Within the cores, a large piece of fossilized wood was discovered, 9 million years in age and buried beneath 800 m of sediment; it is thought to be the largest wood fragment found in scientific ocean drilling boreholes. The wood is believed to be a species of flowering plant and may have originated from the north, east, or even as a result of a tsunami.
Elisabetta Erba, Gabriele Gambacorta, Stefano Visentin, Liyenne Cavalheiro, Dario Reolon, Giulia Faucher, and Matteo Pegoraro
Sci. Dril., 26, 17–27, https://doi.org/10.5194/sd-26-17-2019, https://doi.org/10.5194/sd-26-17-2019, 2019
Short summary
Short summary
The Toarcian Oceanic Anoxic Event (T-OAE) was cored at Colle di Sogno and Gajum in the Lombardy Basin (northern Italy), where pelagic successions guarantee a continuous record of this paleoenvironmental perturbation. The Sogno and Gajum cores recovered high-quality sediments deposited prior to, during, and after the T-OAE. Ongoing research is devoted to reconstructing the marine ecosystem dynamics and resilience under short- and long-term perturbations analogous to current global changes.
Pinxian Wang, Ryuji Tada, and Steven Clemens
Sci. Dril., 24, 87–91, https://doi.org/10.5194/sd-24-87-2018, https://doi.org/10.5194/sd-24-87-2018, 2018
Short summary
Short summary
This brief paper reports on a workshop held last September in Shanghai to promote global monsoon research in the paleoclimate community. In the framework of the international ocean drilling program, seven expeditions have been completed within the last years to recover long-term records of the global monsoon, and forty-eight scientists from 12 countries exchanged scientific findings based on the expeditions. The workshop came up with four recommendations for the future ocean drillings.
T. Andrén, B. Barker Jørgensen, C. Cotterill, S. Green, and the IODP expedition 347 scientific party
Sci. Dril., 20, 1–12, https://doi.org/10.5194/sd-20-1-2015, https://doi.org/10.5194/sd-20-1-2015, 2015
S. J. Gallagher, N. Exon, M. Seton, M. Ikehara, C. J. Hollis, R. Arculus, S. D'Hondt, C. Foster, M. Gurnis, J. P. Kennett, R. McKay, A. Malakoff, J. Mori, K. Takai, and L. Wallace
Sci. Dril., 17, 45–50, https://doi.org/10.5194/sd-17-45-2014, https://doi.org/10.5194/sd-17-45-2014, 2014
Cited articles
Abram, N. J., Hargreaves, J. A., Wright, N. M., Thirumalai, K., Ummenhofer, C. C., and England, M. H.: Palaeoclimate perspectives on the Indian Ocean Dipole, Quaternary Sci. Rev., 237, 106302, https://doi.org/10.1016/j.quascirev.2020.106302, 2020.
Acosta, R. P. and Huber, M.: Competing Topographic Mechanisms for the Summer
Indo-Asian Monsoon, Geophys. Res. Lett., 47, e2019GL085112,
https://doi.org/10.1029/2019GL085112, 2020.
Adhikari, S. K., Sakai, T., and Yoshida, K.: Data report: grain size
analysis of Bengal Fan sediments at Sites U1450 and U1451, IODP Expedition 354, Proceedings of the International Ocean Discovery Program, College Station, TX, 354, https://doi.org/10.14379/iodp.proc.354.202.2018, 2018.
Ali, S., Hathorne, E. C., and Frank, M.: Persistent Provenance of South
Asian Monsoon-Induced Silicate Weathering Over the Past 27 Million Years,
Paleoceanography and Paleoclimatology, 36, e2020PA003909,
https://doi.org/10.1029/2020PA003909, 2021.
Allen, M. B. and Armstrong, H. A.: Reconciling the Intertropical Convergence
Zone, Himalayan/Tibetan tectonics, and the onset of the Asian monsoon
system, J. Asian Earth Sci., 44, 36–47, https://doi.org/10.1016/j.jseaes.2011.04.018,
2012.
Altabet, M. A., Francois, R., Murray, D. W., and Prell, W. L.:
Climate-related variations in denitrification in the Arabian Sea from
sediment 15N 14N ratios, Nature, 373, 506–509, 1995.
An, Z., Kutzbach, J. E., Prell, W. L., and Porter, S. C.: Evolution of Asian
monsoons and phased uplift of the Himalaya-Tibetan Plateau since late
Miocene times, Nature, 411, 62–66, https://doi.org/10.1038/35075035, 2001.
Anderson, C. H., Murray, R. W., Dunlea, A. G., Giosan, L., Kinsley, C. W.,
McGee, D., and Tada, R.: Aeolian delivery to Ulleung Basin, Korea (Japan
Sea), during development of the East Asian Monsoon through the last 12 Ma,
Geol. Mag., 157, 806–817, https://doi.org/10.1017/S001675681900013X, 2020.
Ashcroft, L., Gergis, J., and Karoly, D. J.: Long-term stationarity of El
Niño–Southern Oscillation teleconnections in southeastern Australia,
Clim. Dynam., 46, 2991–3006, https://doi.org/10.1007/s00382-015-2746-3, 2016.
Auer, G., De Vleeschouwer, D., Smith, R. A., Bogus, K., Groeneveld, J.,
Grunert, P., Castañeda, I. S., Petrick, B., Christensen, B., Fulthorpe,
C., Gallagher, S. J., and Henderiks, J.: Timing and Pacing of Indonesian
Throughflow Restriction and Its Connection to Late Pliocene Climate Shifts,
Paleoceanography and Paleoclimatology, 34, 635–657,
https://doi.org/10.1029/2018PA003512, 2019.
Barnet, J. S. K., Harper, D. T., LeVay, L. J., Edgar, K. M., Henehan, M. J.,
Babila, T. L., Ullmann, C. V., Leng, M. J., Kroon, D., Zachos, J. C., and
Littler, K.: Coupled evolution of temperature and carbonate chemistry during
the Paleocene–Eocene; new trace element records from the low latitude
Indian Ocean, Earth Planet. Sci. Lett., 545, 116414,
https://doi.org/10.1016/j.epsl.2020.116414, 2020.
Beasley, C., Kender, S., Giosan, L., Bolton, C. T., Anand, P., Leng, M. J.,
Nilsson-Kerr, K., Ullmann, C. V., Hesselbo, S. P., and Littler, K.: Evidence
of a South Asian Proto-Monsoon During the Oligocene-Miocene Transition,
Paleoceanography and Paleoclimatology, 36, e2021PA004278,
https://doi.org/10.1029/2021PA004278, 2021.
Bergmann, F., Schwenk, T., Spiess, V., and France-Lanord, C.: Middle to Late
Pleistocene Architecture and Stratigraphy of the Lower Bengal
Fan—Integrating Multichannel Seismic Data and IODP Expedition 354 Results,
Geochem. Geophy. Geosy., 21, e2019GC008702,
https://doi.org/10.1029/2019GC008702, 2020.
Betzler, C. and Eberli, G. P.: Miocene start of modern carbonate platforms,
Geology, 47, 771–775, https://doi.org/10.1130/g45994.1, 2019.
Betzler, C., Eberli, G. P., Kroon, D., Wright, J. D., Swart, P. K., Nath, B.
N., Alvarez-Zarikian, C. A., Alonso-García, M., Bialik, O. M.,
Blättler, C. L., Guo, J. A., Haffen, S., Horozai, S., Inoue, M., Jovane,
L., Lanci, L., Laya, J. C., Mee, A. L. H., Lüdmann, T., Nakakuni, M.,
Niino, K., Petruny, L. M., Pratiwi, S. D., Reijmer, J. J. G., Reolid, J.,
Slagle, A. L., Sloss, C. R., Su, X., Yao, Z., and Young, J. R.: The abrupt
onset of the modern South Asian Monsoon winds, Sci. Rep., 6, 29838,
https://doi.org/10.1038/srep29838, 2016.
Betzler, C., Eberli, G. P., Alvarez Zarikian, C. A., and Expedition 359
Scientists: Maldives Monsoon and Sea Level, International Ocean Discovery
Program, College Station, TX, https://doi.org/10.14379/iodp.proc.359.2017, 2017.
Betzler, C., Eberli, G. P., Lüdmann, T., Reolid, J., Kroon, D., Reijmer,
J. J. G., Swart, P. K., Wright, J., Young, J. R., Alvarez-Zarikian, C.,
Alonso-García, M., Bialik, O. M., Blättler, C. L., Guo, J. A.,
Haffen, S., Horozal, S., Inoue, M., Jovane, L., Lanci, L., Laya, J. C., Hui
Mee, A. L., Nakakuni, M., Nath, B. N., Niino, K., Petruny, L. M., Pratiwi,
S. D., Slagle, A. L., Sloss, C. R., Su, X., and Yao, Z.: Refinement of
Miocene sea level and monsoon events from the sedimentary archive of the
Maldives (Indian Ocean), Prog. Earth Planet. Sci., 5, 5,
https://doi.org/10.1186/s40645-018-0165-x, 2018.
Blum, M., Rogers, K., Gleason, J., Najman, Y., Cruz, J., and Fox, L.:
Allogenic and Autogenic Signals in the Stratigraphic Record of the Deep-Sea
Bengal Fan, Sci. Repts., 8, 7973, https://doi.org/10.1038/s41598-018-25819-5, 2018.
Bolton, C. T., Gray, E., Kuhnt, W., Holbourn, A. E., Lübbers, J., Grant, K., Tachikawa, K., Marino, G., Rohling, E. J., Sarr, A.-C., and Andersen, N.: Secular and orbital-scale variability of equatorial Indian Ocean summer monsoon winds during the late Miocene, Clim. Past, 18, 713–738, https://doi.org/10.5194/cp-18-713-2022, 2022.
Boos, W. R. and Kuang, Z.: Dominant control of the South Asian monsoon by
orographic insulation versus plateau heating, Nature, 463, 218–222,
https://doi.org/10.1038/nature08707, 2010.
Bordoni, S. and Schneider, T.: Monsoons as eddy-mediated regime transitions
of the tropical overturning circulations, Nat. Geosci., 1, 515–519, 2008.
Bretschneider, L., Hathorne, E. C., Huang, H., Lübbers, J., Kochhann, K.
G. D., Holbourn, A., Kuhnt, W., Thiede, R., Gebregiorgis, D., Giosan, L.,
and Frank, M.: Provenance and Weathering of Clays Delivered to the Bay of
Bengal During the Middle Miocene: Linkages to Tectonics and Monsoonal
Climate, Paleoceanography and Paleoclimatology, 36, e2020PA003917,
https://doi.org/10.1029/2020PA003917, 2021.
Cai, M., Xu, Z., Clift, P. D., Khim, B.-K., Lim, D., Yu, Z., Kulhanek, D.
K., and Li, T.: Long-term history of sediment inputs to the eastern Arabian
Sea and its implications for the evolution of the Indian summer monsoon
since 3.7 Ma, Geol. Mag., 157, 908–919, https://doi.org/10.1017/S0016756818000857, 2020.
Cai, W., Cowan, T., Briggs, P., and Raupach, M.: Rising temperature depletes
soil moisture and exacerbates severe drought conditions across southeast
Australia, Geophys. Res. Lett., 36, L21709, https://doi.org/10.1029/2009GL040334, 2009.
Chang, Z. and Zhou, L.: Evidence for provenance change in deep sea sediments
of the Bengal Fan: A 7 million year record from IODP U1444A, J. Asian Earth
Sci., 186, 104008, https://doi.org/10.1016/j.jseaes.2019.104008, 2019.
Cheng, H., Edwards, R. L., Sinha, A., Spötl, C., Yi, L., Chen, S.,
Kelly, M., Kathayat, G., Wang, X., Li, X., Kong, X., Wang, Y., Ning, Y., and
Zhang, H.: The Asian monsoon over the past 640 000 years and ice age
terminations, Nature, 534, 640–646, https://doi.org/10.1038/nature18591, 2016.
Christensen, B. A., Renema, W., Henderiks, J., De Vleeschouwer, D.,
Groeneveld, J., Castañeda, I. S., Reuning, L., Bogus, K., Auer, G.,
Ishiwa, T., McHugh, C. M., Gallagher, S. J., and Fulthorpe, C. S.:
Indonesian Throughflow drove Australian climate from humid Pliocene to arid
Pleistocene, Geophys. Res. Lett., 44, 6914–6925, https://doi.org/10.1002/2017GL072977,
2017.
Clemens, S. C., Kuhnt, W., LeVay, L. J., and Expedition 353 Scientists:
Indian Monsoon Rainfall, International Ocean Discovery Program, College
Station, TX, https://doi.org/10.14379/iodp.proc.353.2016, 2016.
Clemens, S. C., Holbourn, A., Kubota, Y., Lee, K. E., Liu, Z., Chen, G.,
Nelson, A., and Fox-Kemper, B.: Precession-band variance missing from East
Asian monsoon runoff, Nat. Commun., 9, 3364, https://doi.org/10.1038/s41467-018-05814-0,
2018.
Clemens, S. C., Yamamoto, M., Thirumalai, K., Giosan, L., Richey, J. N.,
Nilsson-Kerr, K., Rosenthal, Y., Anand, P., and McGrath, S. M.: Remote and
local drivers of Pleistocene South Asian summer monsoon precipitation: A
test for future predictions, Sci. Adv., 7, eabg3848,
https://doi.org/10.1126/sciadv.abg3848, 2021.
Clift, P., Lee, J. I., Clark, M. K., and Blusztajn, J.: Erosional response
of south China to arc rifting and monsoonal strengthening; a record from the
South China Sea, Mar. Geol., 184, 207–226,
https://doi.org/10.1016/S0025-3227(01)00301-2, 2002.
Clift, P. D. and d'Alpoim Guedes, J.: Monsoon Rains, Great Rivers and the
Development of Farming Civilisations in Asia, Cambridge University Press,
Cambridge, 339 pp., https://doi.org/10.1017/9781139342889, 2021.
Clift, P. D. and Jonell, T. N.: Monsoon controls on sediment generation and
transport: Mass budget and provenance constraints from the Indus River
catchment, delta and submarine fan over tectonic and multi-millennial
timescales, Earth-Sci. Rev., 220, 103682, https://doi.org/10.1016/j.earscirev.2021.103682, 2021a.
Clift, P. D. and Jonell, T. N.: Himalayan-Tibetan Erosion is not the Cause
of Neogene Global Cooling, Geophys. Res. Lett., 48, e2020GL087742,
https://doi.org/10.1029/2020GL087742, 2021b.
Clift, P. D. and Webb, A. G.: A history of the Asian monsoon and its
interactions with solid Earth tectonics in Cenozoic South Asia, in:
Himalayan Tectonics: A Modern Synthesis, edited by: Searle, M. P., and
Treloar, P. J., Special Publications, Geological Society, London, 631–652,
https://doi.org/10.1144/SP483.1, 2019.
Clift, P. D., Hodges, K., Heslop, D., Hannigan, R., Hoang, L. V., and
Calves, G.: Greater Himalayan exhumation triggered by Early Miocene monsoon
intensification, Nat. Geosci., 1, 875–880, https://doi.org/10.1038/ngeo351, 2008.
Clift, P. D., Wan, S., and Blusztajn, J.: Reconstructing Chemical
Weathering, Physical Erosion and Monsoon Intensity since 25 Ma in the
northern South China Sea: A review of competing proxies, Earth-Sci. Rev.,
130, 86–102, https://doi.org/10.1016/j.earscirev.2014.01.002, 2014.
Clift, P. D., Kulhanek, D. K., Zhou, P., Bowen, M. G., Vincent, S. M., Lyle,
M., and Hahn, A.: Chemical weathering and erosion responses to changing
monsoon climate in the Late Miocene of Southwest Asia, Geol. Mag., 157,
939–955, https://doi.org/10.1017/S0016756819000608, 2020.
Cruz, J. W., Wise, S., and Parker, W. C.: Miocene to Recent calcareous
nannofossil biostratigraphy in the eastern Bengal Fan (Indian Ocean):
Linking turbidites to tectonic activity during the evolution of the
Himalayas, Journal of Nannoplankton Research, 39, 15–28, 2021.
Curry, W. B., Ostermann, D. R., Guptha, M. V. S., and Itekkot, V.:
Foraminiferal production and monsoonal upwelling in the Arabian Sea;
evidence from sediment traps, in: Upwelling systems; evolution since the
early Miocene, edited by: Summerhayes, C. P., Prell, W. L., and Emeis, K.
C., Special Publication, Geological Society, London, 93–106,
https://doi.org/10.1144/GSL.SP.1992.064.01.06, 1992.
Dailey, S. K., Clift, P. D., Kulhanek, D. K., Blusztajn, J., Routledge, C.
M., Calvès, G., O'Sullivan, P., Jonell, T. N., Pandey, D. K., Andò,
S., Coletti, G., Zhou, P., Li, Y., Neubeck, N. E., Bendle, J. A. P.,
Bratenkov, S., Griffith, E. M., Gurumurthy, G. P., Hahn, A., Iwai, M., Khim,
B.-K., Kumar, A., Kumar, A. G., Liddy, H. M., Lu, H., Lyle, M. W., Mishra,
R., Radhakrishna, T., Saraswat, R., Saxena, R., Scardia, G., Sharma, G. K.,
Singh, A. D., Steinke, S., Suzuki, K., Tauxe, L., Tiwari, M., Xu, Z., and
Yu, Z.: Large-scale Mass Wasting on the Miocene Continental Margin of
Western India, Geol. Soc. Amer. Bull., 132, 85–112, https://doi.org/10.1130/B35158.1, 2019.
De Vleeschouwer, D., Auer, G., Smith, R., Bogus, K., Christensen, B.,
Groeneveld, J., Petrick, B., Henderiks, J., Castañeda, I. S., O'Brien,
E., Ellinghausen, M., Gallagher, S. J., Fulthorpe, C. S., and Pälike,
H.: The amplifying effect of Indonesian Throughflow heat transport on Late
Pliocene Southern Hemisphere climate cooling, Earth Planet. Sci. Lett., 500,
15–27, https://doi.org/10.1016/j.epsl.2018.07.035, 2018.
Ding, Z. L., Xiong, S. F., Sun, J. M., Yang, S. L., Gu, Z. Y., and Liu, T.
S.: Pedostratigraphy and paleomagnetism of a ∼ 7.0 Ma eolian
loess–red clay sequence at Lingtai, Loess Plateau, north-central China and
the implications for paleomonsoon evolution, Palaeogeogr. Palaeocl., 152, 49–66, https://doi.org/10.1016/S0031-0182(99)00034-6, 1999.
Dunlea, A. G., Giosan, L., and Huang, Y.: Pliocene expansion of C4 vegetation in the Core Monsoon Zone on the Indian Peninsula, Clim. Past, 16, 2533–2546, https://doi.org/10.5194/cp-16-2533-2020, 2020.
Farnsworth, A., Lunt, D. J., Robinson, S. A., Valdes, P. J., Roberts, W. H.
G., Clift, P. D., Markwick, P., Su, T., Wrobel, N., Bragg, F., Kelland,
S.-J., and Pancost, R. D.: Past East Asian monsoon evolution controlled by
paleogeography, not CO2, Sci. Adv., 5, eaax1697, https://doi.org/10.1126/sciadv.aax1697, 2019.
Fasullo, J.: A mechanism for land–ocean contrasts in global monsoon trends
in a warming climate, Clim. Dynam., 39, 1137–1147,
https://doi.org/10.1007/s00382-011-1270-3, 2012.
Feakins, S. J., Liddy, H. M., Tauxe, L., Galy, V., Feng, X., Tierney, J. E.,
Miao, Y., and Warny, S.: Miocene C4 Grassland Expansion as Recorded by the Indus Fan, Paleoceanography and Paleoclimatology, 35, e2020PA003856,
https://doi.org/10.1029/2020PA003856, 2020.
France-Lanord, C., Spiess, V., Klaus, A., Schwenk, T., and Expedition 354
Scientists: Bengal Fan, International Ocean Discovery Program, College
Station, TX, https://doi.org/10.14379/iodp.proc.354.2016, 2016.
Gai, C., Liu, Q., Roberts, A. P., Chou, Y., Zhao, X., Jiang, Z., and Liu,
J.: East Asian monsoon evolution since the late Miocene from the South China
Sea, Earth Planet. Sci. Lett., 530, 115960, https://doi.org/10.1016/j.epsl.2019.115960,
2020.
Gallagher, S. J. and deMenocal, P. B.: Finding dry spells in Ocean
Sediments, Oceanography, 32, 38–41, https://doi.org/10.5670/oceanog.2019.120, 2019.
Gallagher, S. J., Fulthorpe, C. S., Bogus, K., and Expedition 356
Scientists: Indonesian Throughflow, International Ocean Discovery Program,
College Station, TX, https://doi.org/10.14379/iodp.proc.356.2017, 2017.
Gallagher, S. J., Reuning, L., Himmler, T., Henderiks, J., De Vleeschouwer,
D., Groeneveld, J., Rastegar Lari, A., Fulthorpe, C. S., Bogus, K., Renema,
W., McGregor, H. V., Kominz, M. A., Auer, G., Baranwal, S., Castañeda,
S., Christensen, B. A., Franco, D. R., Gurnis, M., Haller, C., He, Y.,
Ishiwa, T., Iwatani, H., Jatiningrum, R. S., Korpanty, C. A., Lee, E. Y.,
Levin, E., Mamo, B. L., McHugh, C. M., Petrick, B. F., Potts, D. C.,
Takayanagi, H., and Zhang, W.: The enigma of rare Quaternary oolites in the
Indian and Pacific Oceans: A result of global oceanographic physicochemical
conditions or a sampling bias?, Quaternary Sci. Rev., 200, 114–122,
https://doi.org/10.1016/j.quascirev.2018.09.028, 2018.
Galy, V., France-Lanord, C., Beyssac, O., Faure, P., Kudrass, H.-R., and
Palhol, F.: Efficient organic carbon burial in the Bengal fan sustained by
the Himalayan erosional system, Nature, 450, 407–411,
https://doi.org/10.1038/nature06273, 2007.
Galy, V., France-Lanord, C., and Lartiges, B.: Loading and fate of
particulate organic carbon from the Himalaya to the Ganga–Brahmaputra
delta, Geochim. Cosmochim. Acta, 72, 1767–1787,
https://doi.org/10.1016/j.gca.2008.01.027, 2008.
Galy, V., France-Lanord, C., Peucker-Ehrenbrink, B., and Huyghe, P.:
Sr–Nd–Os evidence for a stable erosion regime in the Himalaya during the
past 12 Myr, Earth Planet. Sci. Lett., 290, 474–480,
https://doi.org/10.1016/j.epsl.2010.01.004, 2010.
Gebregiorgis, D., Hathorne, E. C., Giosan, L., Clemens, S., Nürnberg,
D., and Frank, M.: Southern Hemisphere forcing of South Asian monsoon
precipitation over the past ∼ 1 million years, Nat. Commun.,
9, 4702, https://doi.org/10.1038/s41467-018-07076-2, 2018.
Gentilli, J.: Australian climate patterns, Thomas Nelson, Melbourne, ISBN 0170049048, 1972.
Godin, L., Grujic, D., Law, R. D., and Searle, M. P.: Channel flow, ductile
extrusion and exhumation in continental collision zones; an introduction,
in: Channel Flow, Ductile Extrusion, and Exhumation of Lower-Middle Crust in
Continental Collision Zones, edited by: Law, R. D., Searle, M. P., and
Godin, L., Special Publication, Geological Society, London, 1–23, https://doi.org/10.1144/GSL.SP.2006.268.01.01, 2006.
Gordon, A. L.: Oceanography of the Indonesian seas and their throughflow,
Oceanography, 18, 14–27, https://doi.org/10.5670/oceanog, 2005.
Groeneveld, J., Henderiks, J., Renema, W., McHugh, C. M., Vleeschouwer, D.
D., Christensen, B. A., Fulthorpe, C. S., Reuning, L., Gallagher, S. J.,
Bogus, K., Auer, G., and Ishiwa, T.: Australian shelf sediments reveal
shifts in Miocene Southern Hemisphere westerlies, Sci. Adv., 3,
e1602567, https://doi.org/10.1126/sciadv.1602567, 2017.
Gülyüz, E., Durak, H., Özkaptan, M., and Krijgsman, W.:
Paleomagnetic constraints on the early Miocene closure of the southern
Neo-Tethys (Van region; East Anatolia): Inferences for the timing of
Eurasia-Arabia collision, Glob. Planet. Change, 185, 103089,
https://doi.org/10.1016/j.gloplacha.2019.103089, 2020.
Gupta, A. K., Yuvaraja, A., Prakasam, M., Clemens, S. C., and Velu, A.:
Evolution of the South Asian monsoon wind system since the late Middle
Miocene, Palaeogeogr. Palaeocl., 438, 160–167,
https://doi.org/10.1016/j.palaeo.2015.08.006, 2015.
Harrison, T. M., Copeland, P., Kidd, W. S. F., and Yin, A.: Raising Tibet,
Science, 255, 1663–1670, https://doi.org/10.1126/science.255.5052.1663, 1992.
Hein, C. J., Galy, V., Galy, A., France-Lanord, C., Kudrass, H., and
Schwenk, T.: Post-glacial climate forcing of surface processes in the
Ganges–Brahmaputra river basin and implications for carbon sequestration,
Earth Planet. Sci. Lett., 478, 89–101, https://doi.org/10.1016/j.epsl.2017.08.013, 2017.
Herbert, T. D., Lawrence, K. T., Tzanova, A., Peterson, L. C.,
Caballero-Gill, R., and Kelly, C. S.: Late Miocene global cooling and the
rise of modern ecosystems, Nat. Geosci., 9, 843–847, https://doi.org/10.1038/ngeo2813,
2016.
Herold, N., Huber, M., Greenwood, D. R., Müller, R. D., and Seton, M.:
Early to Middle Miocene monsoon climate in Australia, Geology, 39, 3–6,
https://doi.org/10.1130/g31208.1, 2011.
Holbourn, A., Kuhnt, W., Clemens, S. C., and Heslop, D.: A ∼ 12 Myr Miocene Record of East Asian Monsoon Variability From the South China
Sea, Paleoceanography and Paleoclimatology, 36, e2021PA004267,
https://doi.org/10.1029/2021PA004267, 2021.
Holbourn, A. E., Kuhnt, W., Clemens, S. C., Kochhann, K. G. D., Jöhnck, J., Lübbers, J., and Andersen, N.: Late Miocene climate cooling and intensification of southeast Asian winter monsoon, Nat. Commun., 9, 1584, https://doi.org/10.1038/s41467-018-03950-1, 2018.
Hovan, S. A. and Rea, D. K.: The Cenozoic Record of Continental Mineral
Deposition on Broken and Ninetyeast Ridges, Indian Ocean: Southern African
Aridity and Sediment Delivery from the Himalayas, Paleoceanography, 7,
833–860, https://doi.org/10.1029/92PA02176, 1992.
Huang, Y., Clemens, S. C., Liu, W., Wang, Y., and Prell, W. L.: Large-scale
hydrological change drove the late Miocene C4 plant expansion in the
Himalayan foreland and Arabian Peninsula, Geology, 35, 531–534,
https://doi.org/10.1130/G23666A.1, 2007.
Huyghe, P., Bernet, M., Galy, A., Naylor, M., Cruz, J., Gyawali, B. R.,
Gemignani, L., and Mugnier, J. L.: Rapid exhumation since at least 13 Ma in
the Himalaya recorded by detrital apatite fission-track dating of Bengal fan
(IODP Expedition 354) and modern Himalayan river sediments, Earth Planet.
Sci. Lett., 534, 116078, https://doi.org/10.1016/j.epsl.2020.116078, 2020.
Irino, T., Tada, R., Ikehara, K., Sagawa, T., Karasuda, A., Kurokawa, S.,
Seki, A., and Lu, S.: Construction of perfectly continuous records of
physical properties for dark-light sediment sequences collected from the
Japan Sea during Integrated Ocean Drilling Program Expedition 346 and their
potential utilities as paleoceanographic studies, Prog. Earth Planet. Sci.,
5, 23, https://doi.org/10.1186/s40645-018-0176-7, 2018.
Ishiwa, T., Yokoyama, Y., Reuning, L., McHugh, C. M., De Vleeschouwer, D.,
and Gallagher, S. J.: Australian Summer Monsoon variability in the past
14 000 years revealed by IODP Expedition 356 sediments, Prog. Earth Planet.
Sci., 6, 17, https://doi.org/10.1186/s40645-019-0262-5, 2019.
Ji, J., Zhang, K., Clift, P. D., Zhuang, G., Song, B., Ke, X., and Xu, Y.:
High-resolution magnetostratigraphic study of the Paleogene-Neogene strata
in the Northern Qaidam Basin: Implications for the growth of the
Northeastern Tibetan Plateau, Gondwana Res., 46, 141–155,
https://doi.org/10.1016/j.gr.2017.02.015, 2017.
Jian, Z., Larsen, H. C., Alvarez Zarikian, C. A., and Expedition 368
Scientists: Expedition 368 Preliminary Report: South China Sea Rifted
Margin, International Ocean Discovery Program, College Station, TX,
https://doi.org/10.14379/iodp.pr.368.2018, 2018.
Jiang, D., Ding, Z., Drange, H., and Gao, Y.: Sensitivity of East Asian
climate to the progressive uplift and expansion of the Tibetan Plateau under
the mid-Pliocene boundary conditions, Adv. Atmos. Sci., 25, 709–722, https://doi.org/10.1007/s00376-008-0709-x, 2008.
Jiang, H. and Ding, Z.: A 20 Ma pollen record of East-Asian summer monsoon
evolution from Guyuan, Ningxia, China, Palaeogeogr. Palaeocl., 265, 30–38, https://doi.org/10.1016/j.palaeo.2008.04.016, 2008.
Jöhnck, J., Kuhnt, W., Holbourn, A., and Andersen, N.: Variability of
the Indian Monsoon in the Andaman Sea Across the Miocene-Pliocene
Transition, Paleoceanography and Paleoclimatology, 35, e2020PA003923,
https://doi.org/10.1029/2020PA003923, 2020.
Joussain, R., Liu, Z., Colin, C., Duchamp-Alphonse, S., Yu, Z., Moréno,
E., Fournier, L., Zaragosi, S., Dapoigny, A., Meynadier, L., and Bassinot,
F.: Link between Indian monsoon rainfall and physical erosion in the
Himalayan system during the Holocene, Geochem. Geophy., Geosy.,
18, 3452–3469, https://doi.org/10.1002/2016GC006762, 2017.
Kajtar, J. B., Santoso, A., England, M. H., and Cai, W.: Indo-Pacific
Climate Interactions in the Absence of an Indonesian Throughflow, J. Climate,
28, 5017–5029, https://doi.org/10.1175/jcli-d-14-00114.1, 2015.
Karatsolis, B. T., De Vleeschouwer, D., Groeneveld, J., Christensen, B., and
Henderiks, J.: The late Miocene to early Pliocene “Humid Interval” on the
NW Australian shelf: Disentangling climate forcing from regional basin
evolution, Paleoceanography and Paleoclimatology, 35, e2019PA003780,
https://doi.org/10.1029/2019PA003780, 2020.
Khim, B.-K., Lee, J., Ha, S., Park, J., Pandey, D. K., Clift, P. D.,
Kulhanek, D. K., Steinke, S., Griffith, E. M., Suzuki, K., and Xu, Z.:
Variations in δ13C values of sedimentary organic matter since late
Miocene time in the Indus Fan (IODP Site 1457) of the eastern Arabian Sea,
Geol. Mag., 157, 1012–1021, https://doi.org/10.1017/S0016756818000870, 2020.
Kim, J.-E., Khim, B.-K., Ikehara, M., and Lee, J.: Orbital-scale
denitrification changes in the Eastern Arabian Sea during the last 800 kyrs,
Sci. Repts., 8, 7027, https://doi.org/10.1038/s41598-018-25415-7, 2018.
Krebs, U., Park, W., and Schneider, B.: Pliocene aridification of Australia
caused by tectonically induced weakening of the Indonesian throughflow,
Palaeogeogr. Palaeocl., 309, 111–117, https://doi.org/10.1016/j.palaeo.2011.06.002, 2011.
Kroon, D., Steens, T., and Troelstra, S. R.: Onset of Monsoonal related
upwelling in the western Arabian Sea as revealed by planktonic foraminifers,
in: Proceedings of the Ocean Drilling Program, Scientific Results, edited
by: Prell, W., and Niitsuma, N., Ocean Drilling Program, College Station,
TX, 257–263, https://doi.org/10.2973/odp.proc.sr.117.126.1991, 1991.
Kubota, Y., Kimoto, K., Tada, R., Uchida, M., and Ikehara, K.:
Millennial-scale variability of East Asian summer monsoon inferred from sea
surface salinity in the northern East China Sea (ECS) and its impact on the
Japan Sea during Marine Isotope Stage (MIS) 3, Prog. Earth Planet. Sci., 6,
39, https://doi.org/10.1186/s40645-019-0283-0, 2019.
Kuhnt, W., Holbourn, A. E., Jöhnck, J., and Lübbers, J.: Miocene to
Pleistocene Palaeoceanography of the Andaman Region: Evolution of the Indian
Monsoon on a Warmer-Than-Present Earth, in: The Andaman Islands and
Adjoining Offshore: Geology, Tectonics and Palaeoclimate, edited by: Ray J.,
R. M., Society of Earth Scientists Series, Springer,
https://doi.org/10.1007/978-3-030-39843-9_13, 2020.
Kunkelova, T., Jung, S. J. A., de Leau, E. S., Odling, N., Thomas, A. L.,
Betzler, C., Eberli, G. P., Alvarez-Zarikian, C. A., Alonso-García, M.,
Bialik, O. M., Blättler, C. L., Guo, J. A., Haffen, S., Horozal, S.,
Mee, A. L. H., Inoue, M., Jovane, L., Lanci, L., Laya, J. C., Lüdmann,
T., Bejugam, N. N., Nakakuni, M., Niino, K., Petruny, L. M., Pratiwi, S. D.,
Reijmer, J. J. G., Reolid, J., Slagle, A. L., Sloss, C. R., Su, X., Swart,
P. K., Wright, J. D., Yao, Z., Young, J. R., Lindhorst, S., Stainbank, S.,
Rueggeberg, A., Spezzaferri, S., Carrasqueira, I., Yu, S., and Kroon, D.: A
two million year record of low-latitude aridity linked to continental
weathering from the Maldives, Prog. Earth Planet. Sci., 5, 86,
https://doi.org/10.1186/s40645-018-0238-x, 2018.
Kurokawa, S., Tada, R., Matsuzaki, K. M., Irino, T., and Johanna, L.:
Cyclostratigraphy of the Late Miocene to Pliocene sediments at IODP sites
U1425 and U1430 in the Japan Sea and paleoceanographic implications, Prog.
Earth Planet. Sci., 6, 2, https://doi.org/10.1186/s40645-018-0250-1, 2019.
LaRiviere, J. P., Ravelo, A. C., Crimmins, A., Dekens, P. S., Ford, H. L.,
Lyle, M., and Wara, M. W.: Late Miocene decoupling of oceanic warmth and
atmospheric carbon dioxide forcing, Nature, 486, 97–100,
https://doi.org/10.1038/nature11200, 2012.
Lau, N.-C. and Wang, B.: Interactions between the Asian monsoon and the El
Niño/Southern oscillation, in: The Asian Monsoon, Springer, 479–512, https://doi.org/10.1007/3-540-37722-0_12, 2006.
Lee, H., Galy, V., Feng, X., Ponton, C., Galy, A., France-Lanord, C., and
Feakins, S. J.: Sustained wood burial in the Bengal Fan over the last 19 My,
P. Natl. Acad. Sci. USA, 116, 22518–22525, https://doi.org/10.1073/pnas.1913714116, 2019.
Lee, J., Kim, S., and Khim, B.-K.: A paleoproductivity shift in the
northwestern Bay of Bengal (IODP Site U1445) across the Mid-Pleistocene
transition in response to weakening of the Indian summer monsoon,
Palaeogeogr. Palaeocl., 560, 110018,
https://doi.org/10.1016/j.palaeo.2020.110018, 2020a.
Lee, J., Kim, S., Lee, J. I., Cho, H. G., Phillips, S. C., and Khim, B.-K.:
Monsoon-influenced variation of clay mineral compositions and detrital Nd-Sr
isotopes in the western Andaman Sea (IODP Site U1447) since the late
Miocene, Palaeogeogr. Palaeocl., 538, 109339,
https://doi.org/10.1016/j.palaeo.2019.109339, 2020b.
Lenard, S., Cruz, J., France-Lanord, C., and Lavé, J.: Data report:
calcareous nannofossils and lithologic constraints on the age model of IODP
Site U1450, Expedition 354, Bengal Fan, Proceedings of the International Ocean Discovery Program, College Station, TX, 354, https://doi.org/10.14379/iodp.proc.354.203.2020, 2020a.
Lenard, S. J. P., Lavé, J., France-Lanord, C., Aumaître, G.,
Bourlès, D. L., and Keddadouche, K.: Steady erosion rates in the
Himalayas through late Cenozoic climatic changes, Nature Geosci., 13,
448–452, https://doi.org/10.1038/s41561-020-0585-2, 2020b.
Li, C.-F., Lin, J., Kulhanek, D. K., and Expedition 349 Scientists: South
China Sea Tectonics, International Ocean Discovery Program, College Station,
TX, https://doi.org/10.14379/iodp.proc.349.102.2015, 2015.
Li, S.-F., Valdes, P. J., Farnsworth, A., Davies-Barnard, T., Su, T., Lunt,
D. J., Spicer, R. A., Liu, J., Deng, W.-Y.-D., Huang, J., Tang, H.,
Ridgwell, A., Chen, L.-L., and Zhou, Z.-K.: Orographic evolution of northern
Tibet shaped vegetation and plant diversity in eastern Asia, Sci. Adv., 7, eabc7741, https://doi.org/10.1126/sciadv.abc7741, 2021.
Licht, A., Cappelle, M. v., Abels, H. A., Ladant, J.-B., Trabucho-Alexandre,
J., France-Lanord, C., Donnadieu, Y., Vandenberghe, J., Rigaudier, T.,
Lecuyer, C., Terry, D., Adriaens, R., Boura, A., Guo, Z., Soe, A. N., Quade,
J., Dupont-Nivet, G., and Jaeger, J.-J.: Asian monsoons in a late Eocene
greenhouse world, Nature, 513, 501–506, https://doi.org/10.1038/nature13704, 2014.
Lindhorst, S., Betzler, C., and Kroon, D.: Wind variability over the
northern Indian Ocean during the past 4 million years – Insights from
coarse aeolian dust (IODP exp. 359, site U1467, Maldives), Palaeogeogr.
Palaeocl., 536, 109371, https://doi.org/10.1016/j.palaeo.2019.109371, 2019.
Ling, A., Eberli, G. P., Swart, P. K., Reolid, J., Stainbank, S.,
Rüggeberg, A., and Betzler, C.: Middle Miocene platform drowning in the
Maldives associated with monsoon-related intensification of currents,
Palaeogeogr. Palaeocl., 567, 110275, https://doi.org/10.1016/j.palaeo.2021.110275, 2021.
Liu, C., Clift, P. D., Giosan, L., Miao, Y., Warny, S., and Wan, S.:
Paleoclimatic evolution of the SW and NE South China Sea and its
relationship with spectral reflectance data over various age scales,
Palaeogeogr. Palaeocl., 525, 25–43, https://doi.org/10.1016/j.palaeo.2019.02.019, 2019.
Lübbers, J., Kuhnt, W., Holbourn, A. E., Bolton, C. T., Gray, E., Usui,
Y., Kochhann, K. G. D., Beil, S., and Andersen, N.: The Middle to Late
Miocene “Carbonate Crash” in the Equatorial Indian Ocean, Paleoceanography
and Paleoclimatology, 34, 813–832, https://doi.org/10.1029/2018PA003482, 2019.
Lüdmann, T., Betzler, C., Eberli, G. P., Reolid, J., Reijmer, J. J. G.,
Sloss, C. R., Bialik, O. M., Alvarez-Zarikian, C. A., Alonso-García,
M., Blättler, C. L., Guo, J. A., Haffen, S., Horozal, S., Inoue, M.,
Jovane, L., Kroon, D., Lanci, L., Laya, J. C., Mee, A. L. H., Nakakuni, M.,
Nath, B. N., Niino, K., Petruny, L. M., Pratiwi, S. D., Slagle, A. L., Su,
X., Swart, P. K., Wright, J. D., Yao, Z., and Young, J. R.: Carbonate delta
drift: A new sediment drift type, Mar. Geol., 401, 98–111,
https://doi.org/10.1016/j.margeo.2018.04.011, 2018.
Lupker, M., France-Lanord, C., Galy, V., Lave, J., and Kudrass, H.:
Increasing chemical weathering in the Himalayan system since the Last
Glacial Maximum, Earth Planet. Sci. Lett., 365, 243–252,
https://doi.org/10.1016/j.epsl.2013.01.038, 2013.
Macdonald, F. A., Swanson-Hysell, N. L., Park, Y., Lisiecki, L., and
Jagoutz, O.: Arc-continent collisions in the tropics set Earth's climate
state, Science, 364, 181–184, https://doi.org/10.1126/science.aav5300, 2019.
Madella, M. and Fuller, D. Q.: Palaeoecology and the Harappan Civilisation
of South Asia: a reconsideration, Quaternary Sci. Rev., 25, 1283–1301,
https://doi.org/10.1016/j.quascirev.2005.10.012, 2006.
Manabe, S. and Terpstra, T. B.: The effects of mountains on the general
circulation of the atmosphere as identified by numerical experiments, J.
Atmos. Sci., 31, 3–42, https://doi.org/10.1175/1520-0469(1974)031<0003:TEOMOT>2.0.CO;2, 1974.
Matsuzaki, K. M., Suzuki, N., and Tada, R.: An intensified East Asian winter
monsoon in the Japan Sea between 7.9 and 6.6 Ma, Geology, 48, 919–923,
https://doi.org/10.1130/g47393.1, 2020.
McBride, J. L.: Tropical cyclones in the Southern Hemisphere summer monsoon,
Second International Conference on Southern Hemisphere Meteorology, 1–5 December 1986, Wellington, New Zealand, American Meteorological Society, Boston, 358–364, 1986.
McGrath, S. M., Clemens, S. C., Huang, Y., and Yamamoto, M.: Greenhouse Gas
and Ice Volume Drive Pleistocene Indian Summer Monsoon Precipitation Isotope
Variability, Geophys. Res. Lett., 48, e2020GL092249,
https://doi.org/10.1029/2020GL092249, 2021.
McNeill, L. C., Dugan, B., Backman, J., Pickering, K. T., Pouderoux, H. F.
A., Henstock, T. J., Petronotis, K. E., Carter, A., Chemale, F., Milliken,
K. L., Kutterolf, S., Mukoyoshi, H., Chen, W., Kachovich, S., Mitchison, F.
L., Bourlange, S., Colson, T. A., Frederik, M. C. G., Guèrin, G.,
Hamahashi, M., House, B. M., Hüpers, A., Jeppson, T. N., Kenigsberg, A.
R., Kuranaga, M., Nair, N., Owari, S., Shan, Y., Song, I., Torres, M. E.,
Vannucchi, P., Vrolijk, P. J., Yang, T., Zhao, X., and Thomas, E.:
Understanding Himalayan erosion and the significance of the Nicobar Fan,
Earth Planet. Sci. Lett., 475, 134–142, https://doi.org/10.1016/j.epsl.2017.07.019,
2017.
Meinicke, N., Reimi, M. A., Ravelo, A. C., and Meckler, A. N.: Coupled Mg Ca and Clumped Isotope Measurements Indicate Lack of Substantial Mixed Layer Cooling in the Western Pacific Warm Pool During the Last ∼ 5 Million Years, Paleoceanography and Paleoclimatology, 36, e2020PA004115, https://doi.org/10.1029/2020PA004115, 2021.
Miao, Y., Warny, S., Clift, P. D., Liu, C., and Gregory, M.: Evidence of
continuous Asian summer monsoon weakening as a response to global cooling
over the last 8 Ma, Gondwana Res., 52, 48–58, https://doi.org/10.1016/j.gr.2017.09.003,
2017.
Molnar, P., England, P., and Martinod, J.: Mantle Dynamics, Uplift of the
Tibetan Plateau, and the Indian Monsoon, Rev. Geophys., 31, 357–396,
https://doi.org/10.1029/93RG02030, 1993.
Molnar, P. H. and Rajagopalan, B.: Late Miocene upward and outward growth of
eastern Tibet and decreasing monsoon rainfall over the northwestern Indian
subcontinent since ∼ 10 Ma, Geophys. Res. Lett., 39, L09702,
https://doi.org/10.1029/2012GL051305, 2012.
Najman, Y., Appel, E., Boudagher-Fadel, M., Bown, P., Carter, A., Garzanti,
E., Godin, L., Han, J., Liebke, U., Oliver, G., Parrish, R., and Vezzoli,
G.: Timing of India-Asia collision: Geological, biostratigraphic, and
palaeomagnetic constraints, J. Geophys. Res., 115, B12416, https://doi.org/10.1029/2010JB007673, 2010.
Najman, Y., Mark, C., Barfod, D. N., Carter, A., Parrish, R., Chew, D., and
Gemignani, L.: Spatial and temporal trends in exhumation of the Eastern
Himalaya and syntaxis as determined from a multitechnique detrital
thermochronological study of the Bengal Fan, GSA Bulletin, 131, 1607–1622, https://doi.org/10.1130/b35031.1, 2019.
Neale, R. and Slingo, J.: The maritime continent and its role in the global
climate: A GCM study, J. Climate, 16, 834–848, 2003.
Nilsson-Kerr, K., Anand, P., Sexton, P. F., Leng, M. J., Misra, S., Clemens,
S. C., and Hammond, S. J.: Role of Asian summer monsoon subsystems in the
inter-hemispheric progression of deglaciation, Nat. Geosci., 12, 290–295,
https://doi.org/10.1038/s41561-019-0319-5, 2019.
Nilsson-Kerr, K., Anand, P., Holden, P. B., Clemens, S. C., and Leng, M. J.:
Dipole patterns in tropical precipitation were pervasive across landmasses
throughout Marine Isotope Stage 5, Communications Earth & Environment, 2,
64, https://doi.org/10.1038/s43247-021-00133-7, 2021.
Pandey, D. K., Clift, P. D., Kulhanek, D. K., and Expedition 355 Scientists:
Arabian Sea Monsoon, Proceedings of the International Ocean Discovery Program, College Station TX, 355, https://doi.org/10.14379/iodp.proc.355.2016, 2016.
Pei, R., Kuhnt, W., Holbourn, A., Hingst, J., Koppe, M., Schultz, J.,
Kopetz, P., Zhang, P., and Andersen, N.: Monitoring Australian Monsoon
variability over the past four glacial cycles, Palaeogeogr. Palaeocl., 568, 110280, https://doi.org/10.1016/j.palaeo.2021.110280, 2021.
Peketi, A., Mazumdar, A., Pillutla, S. P. K., Sawant, B., and Gupta, H.:
Climatic and Tectonic Control on the Bengal Fan Sedimentation Since the
Pliocene, Geochem. Geophy. Geosy., 22, e2020GC009448,
https://doi.org/10.1029/2020GC009448, 2021.
Prell, W. L. and Kutzbach, J. E.: Sensitivity of the Indian Monsoon to
forcing parameters and implications for its evolution, Nature, 360, 647–652,
https://doi.org/10.1038/360647a0, 1992.
Prell, W. L., Murray, D. W., Clemens, S. C., and Anderson, D. M.: Evolution
and variability of the Indian Ocean Summer Monsoon: evidence from the
western Arabian Sea drilling program, in: Synthesis of results from
scientific drilling in the Indian Ocean, edited by: Duncan, R. A., Rea, D.
K., Kidd, R. B., von Rad, U., and Weissel, J. K., Geophysical Monograph,
American Geophysical Union, Washington, DC, 447–469, https://doi.org/10.1029/GM070p0447, 1992.
Qiang, X., An, Z., Song, Y., Chang, H., Sun, Y., Liu, W., Ao, H., Dong, J.,
Fu, C., Wu, F., Lu, F., Cai, Y., Zhou, W., Cao, J., Xu, X., and Ai, L.: New
eolian red clay sequence on the western Chinese Loess Plateau linked to
onset of Asian desertification about 25 Ma ago, Science China Earth
Sciences, 54, 136–144, https://doi.org/10.1007/s11430-010-4126-5, 2011.
Quade, J., Cerling, T. E., and Bowman, J. R.: Development of Asian monsoon
revealed by marked ecological shift during the latest Miocene in northern
Pakistan, Nature, 342, 163–166, https://doi.org/10.1038/342163a0, 1989.
Ravelo, A. C., Lawrence, K. T., Fedorov, A., and Ford, H. L.: Comment on “A
12-million-year temperature history of the tropical Pacific Ocean”,
Science, 346, 1467, https://doi.org/10.1126/science.1257618, 2014.
Raymo, M. E. and Ruddiman, W. F.: Tectonic forcing of Late Cenozoic climate,
Nature, 359, 117–122, https://doi.org/10.1038/359117a0, 1992.
Reichart, G. J., Lourens, L. J., and Zachariasse, W. J.: Temporal
variability in the northern Arabian Sea oxygen minimum zone (OMZ) during the
last 225 000 years, Paleoceanography, 13, 607–621, https://doi.org/10.1029/98PA02203,
1998.
Reilly, B. T., Bergmann, F., Weber, M. E., Stoner, J. S., Selkin, P.,
Meynadier, L., Schwenk, T., Spiess, V., and France-Lanord, C.: Middle to
Late Pleistocene Evolution of the Bengal Fan: Integrating Core and Seismic
Observations for Chronostratigraphic Modeling of the IODP Expedition 354
8∘ North Transect, Geochem. Geophy. Geosy., 21,
e2019GC008878, https://doi.org/10.1029/2019GC008878, 2020.
Reolid, J., Betzler, C., and Lüdmann, T.: The record of Oligocene –
Middle Miocene paleoenvironmental changes in a carbonate platform (IODP Exp. 359, Maldives, Indian Ocean), Mar. Geol., 412, 199–216,
https://doi.org/10.1016/j.margeo.2019.03.011, 2019.
Reolid, J., Betzler, C., Braga, J. C., Lüdmann, T., Ling, A., and
Eberli, G. P.: Facies and geometry of drowning steps in a Miocene carbonate
platform (Maldives), Palaeogeogr. Palaeocl., 538, 109455,
https://doi.org/10.1016/j.palaeo.2019.109455, 2020.
Robinson, M., Bartol, M., Bolton, C., Ding, X., Gariboldi, K., Romero, O.,
and Scientific Party: Biostratigraphic summary, in: Proceedings of the
International Ocean Discovery Program edited by: Clemens, S. C., Kuhnt, W.,
and LeVay, L. J., International Ocean Discovery Program, College Station,
Texas, https://doi.org/10.14379/iodp.proc.353.109.2016, 2016.
Rosenthal, Y., Holbourn, A. E., Kulhanek, D. K., and Expedition 363
Scientists: Western Pacific Warm Pool, International Ocean Discovery
Program, College Station, TX, https://doi.org/10.14379/iodp.proc.363.2018, 2018.
Routledge, C. M., Kulhanek, D. K., Tauxe, L., Scardia, G., Singh, A. D.,
Steinke, S., Griffith, E. M., and Saraswat, R.: Revised geological timescale
for IODP Sites U1456 and U1457, Geol. Mag., 157, 961–978,
https://doi.org/10.1017/S0016756819000104, 2020.
Sarathchandraprasad, T., Tiwari, M., and Behera, P.: South Asian Summer
Monsoon precipitation variability during late Pliocene: Role of Indonesian
Throughflow, Palaeogeogr. Palaeocl., 574, 110447,
https://doi.org/10.1016/j.palaeo.2021.110447, 2021.
Sarr, A.-C., Donnadieu, Y., Bolton, C. T., Ladant, J.-B., Licht, A.,
Fluteau, F., Laugié, M., Tardif, D., and Dupont-Nivet, G.: Neogene South
Asian monsoon rainfall and wind histories diverged due to topographic
effects, Nat. Geosci., 15, 314–319, https://doi.org/10.1038/s41561-022-00919-0, 2022.
Schwenk, T. and Spieß, V.: Architecture and stratigraphy of the Bengal
Fan as response to tectonic and climate revealed from high-resolution
seismic data, External Controls on Deep-Water Depositional Systems, Special
Publication-SEPM (Society of Sedimentary Geologists), 92, 107–131, https://doi.org/10.2110/sepmsp.092.107, 2009.
Seki, A., Tada, R., Kurokawa, S., and Murayama, M.: High-resolution
Quaternary record of marine organic carbon content in the hemipelagic
sediments of the Japan Sea from bromine counts measured by XRF core scanner,
Prog. Earth Planet. Sci., 6, 1, https://doi.org/10.1186/s40645-018-0244-z, 2019.
Shen, X., Wan, S., Colin, C., Tada, R., Shi, X., Pei, W., Tan, Y., Jiang,
X., and Li, A.: Increased seasonality and aridity drove the C4 plant
expansion in Central Asia since the Miocene–Pliocene boundary, Earth
Planet. Sci. Lett., 502, 74–83, https://doi.org/10.1016/j.epsl.2018.08.056, 2018.
Smith, R. A., Castañeda, I. S., Groeneveld, J., De Vleeschouwer, D.,
Henderiks, J., Christensen, B. A., Renema, W., Auer, G., Bogus, K.,
Gallagher, S. J., and Fulthorpe, C. S.: Plio-Pleistocene Indonesian
Throughflow Variability Drove Eastern Indian Ocean Sea Surface Temperatures,
Paleoceanography and Paleoclimatology, 35, e2020PA003872,
https://doi.org/10.1029/2020PA003872, 2020.
Sorrel, P., Eymard, I., Leloup, P.-H., Maheo, G., Olivier, N., Sterb, M.,
Gourbet, L., Wang, G., Jing, W., Lu, H., Li, H., Yadong, X., Zhang, K., Cao,
K., Chevalier, M.-L., and Replumaz, A.: Wet tropical climate in SE Tibet
during the Late Eocene, Sci. Rep., 7, 7809, https://doi.org/10.1038/s41598-017-07766-9, 2017.
Sprintall, J., Gordon, A. L., Koch-Larrouy, A., Lee, T., Potemra, J. T.,
Pujiana, K., and Wijffels, S. E.: The Indonesian seas and their role in the
coupled ocean–climate system, Nat. Geosci., 7, 487–492,
https://doi.org/10.1038/ngeo2188, 2014.
Steinke, S., Groeneveld, J., Johnstone, H., and Rendle-Bühring, R.: East
Asian summer monsoon weakening after 7.5 Ma: Evidence from combined
planktonic foraminifera Mg Ca and δ18O (ODP Site 1146; northern
South China Sea), Palaeogeogr. Palaeocl., 289, 33–43,
https://doi.org/10.1016/j.palaeo.2010.02.007, 2010.
Sun, X. and Wang, P.: How old is the Asian monsoon system? Palaeobotanical
records from China, Palaeogeogr. Palaeocl., 222, 181–222,
https://doi.org/10.1016/j.palaeo.2005.03.005, 2005.
Sun, Z., Jian, Z., Stock, J. M., Larsen, H. C., Klaus, A., Alvarez Zarikian,
C. A., and Expedition 367/368 Scientists: South China Sea Rifted Margin,
International Ocean Discovery Program, College Station, TX
https://doi.org/10.14379/iodp.proc.367368.2018, 2018.
Suppiah, R.: The Australian summer monsoon: a review, Prog. Phys. Geog., 16, 283–318, https://doi.org/10.1177/030913339201600302, 1992.
Suzuki, K., Yamamoto, M., and Seki, O.: Late Miocene changes in C3, C4 and aquatic plant vegetation in the Indus River basin: evidence from leaf wax δ13C from Indus Fan sediments, Geol. Mag., 157, 979–988,
https://doi.org/10.1017/S0016756819001109, 2020.
Tada, R. and Murray, R. W.: Preface for the article collection “Land–Ocean
Linkages under the Influence of the Asian Monsoon”, Prog. Earth Planet.
Sci., 3, 24, https://doi.org/10.1186/s40645-016-0100-y, 2016.
Tada, R., Irino, T., and Koizumi, I.: Land-ocean linkages over orbital and
millennial timescales recorded in late Quaternary sediments of the Japan
Sea, Paleoceanography, 14, 236–247, 1999.
Tada, R., Murray, R. W., Alvarez Zarikian, C. A., and Expedition 346
Scientists: Asian Monsoon: onset and evolution of millennial-scale
variability of Asian Monsoon and its possible relation with Himalaya and
Tibetan plateau, Integrated Ocean Drilling Program, College Station, TX,
https://doi.org/10.2204/iodp.proc.346.2015, 2015.
Tada, R., Zheng, H., and Clift, P. D.: Evolution and variability of the
Asian monsoon and its potential linkage with uplift of the Himalaya and
Tibetan Plateau, Prog. Earth Planet. Sci., 3, 1–26, https://doi.org/10.1186/s40645-016-0080-y, 2016.
Tada, R., Irino, T., Ikehara, K., Karasuda, A., Sugisaki, S., Xuan, C.,
Sagawa, T., Itaki, T., Kubota, Y., Lu, S., Seki, A., Murray, R. W.,
Alvarez-Zarikian, C., Anderson, W. T., Bassetti, M.-A., Brace, B. J.,
Clemens, S. C., da Costa Gurgel, M. H., Dickens, G. R., Dunlea, A. G.,
Gallagher, S. J., Giosan, L., Henderson, A. C. G., Holbourn, A. E., Kinsley,
C. W., Lee, G. S., Lee, K. E., Lofi, J., Lopes, C. I. C. D.,
Saavedra-Pellitero, M., Peterson, L. C., Singh, R. K., Toucanne, S., Wan,
S., Zheng, H., and Ziegler, M.: High-resolution and high-precision
correlation of dark and light layers in the Quaternary hemipelagic sediments
of the Japan Sea recovered during IODP Expedition 346, Prog. Earth Planet.
Sci., 5, 19, https://doi.org/10.1186/s40645-018-0167-8, 2018.
Tagliaro, G., Fulthorpe, C. S., Gallagher, S. J., McHugh, C. M., Kominz, M.,
and Lavier, L. L.: Neogene siliciclastic deposition and climate variability
on a carbonate margin: Australian Northwest Shelf, Mar. Geol., 403, 285–300,
https://doi.org/10.1016/j.margeo.2018.06.007, 2018.
Thiry, M.: Palaeoclimatic interpretation of clay minerals in marine
deposits; an outlook from the continental origin, Earth-Sci. Rev., 49,
201–221, https://doi.org/10.1016/S0012-8252(99)00054-9, 2000.
Torfstein, A. and Steinberg, J.: The Oligo–Miocene closure of the Tethys
Ocean and evolution of the proto-Mediterranean Sea, Sci. Rep., 10, 13817,
https://doi.org/10.1038/s41598-020-70652-4, 2020.
Tripathi, S., Tiwari, M., Lee, J., Khim, B.-K., and IODP Expedition 355
Scientists: First evidence of denitrification visà-vis monsoon in the
Arabian Sea since Late Miocene, Sci. Rep., 7, 43056, https://doi.org/10.1038/srep43056, 2017.
Vail, P. R., Mitchum, R. M., Todd, R. G., Widmier, J. M., Thompson, S. I.,
Sangree, J. B., Bubb, J. N., and Hatlelid, W. G.: Seismic stratigraphy and
global changes of sea-level, in: Seismic Stratigraphy–Applications to
Hydrocarbon Exploration, edited by: Payton, C. E., Memoir, American
Association of Petroleum Geologists, Tulsa, OK, 49–212, https://doi.org/10.1306/M26490C3, 1977.
van Ufford, A. Q. and Cloos, M.: Cenozoic tectonics of New Guinea, AAPG
Bull., 89, 119–140, https://doi.org/10.1306/08300403073, 2005.
Vögeli, N., Najman, Y., van der Beek, P., Huyghe, P., Wynn, P. M.,
Govin, G., Veen, I. v. d., and Sachse, D.: Lateral variations in vegetation
in the Himalaya since the Miocene and implications for climate evolution,
Earth Planet. Sci. Lett., 471, 1–9, https://doi.org/10.1016/j.epsl.2017.04.037, 2017.
Wan, S., Li, A., Clift, P. D., and Stuut, J.-B. W.: Development of the East
Asian monsoon: Mineralogical and sedimentologic records in the northern
South China Sea since 20 Ma, Palaeogeogr. Palaeocl., 254,
561–582, https://doi.org/10.1016/j.palaeo.2007.07.009, 2007.
Wan, S., Clift, P. D., Li, A., Li, T., and Yin, X.: Geochemical records in
the South China Sea: implications for East Asian summer monsoon evolution
over the last 20 Ma, in: Monsoon Evolution and Tectonics–Climate Linkage in
Asia, edited by: Clift, P. D., Tada, R., and Zheng, H., Special Publication,
Geological Society, London, 245–263, https://doi.org/10.1144/SP342.14, 2010.
Wang, B. (Ed.): The Asian Monsoon, Springer-Verlag, Berlin, 795 pp., https://doi.org/10.1007/3-540-37722-0, 2006.
Wang, B., Liu, J., Kim, H.-J., Webster, P. J., Yim, S.-Y., and Xiang, B.:
Northern Hemisphere summer monsoon intensified by mega-El Niino/southern
oscillation and Atlantic multidecadal oscillation, P. Natl. Acad. Sci. USA,
110, 5347–5352, https://doi.org/10.1073/pnas.1219405110, 2013.
Wang, H. and Mehta, V. M.: Decadal variability of the Indo-Pacific warm pool
and its association with atmospheric and oceanic variability in the
NCEP-NCAR and SODA reanalyses, J. Climate, 21, 5545–5565, 2008.
Wang, P.: Cenozoic deformation and the history of sealand interactions in
Asia, in: Continent-Ocean Interactions in the East Asian Marginal Seas,
edited by: Clift, P., Wang, P., Kuhnt, W., and Hayes, D., American
Geophysical Union, Washington, DC, 1–22, https://doi.org/10.1029/149GM01, 2004.
Wang, P., Prell, W. L., Blum, P., Arnold, E. M., Buehring, C. J., Chen,
M.-P., Clemens, S. C., Clift, P. D., Colin, C. J. G., Farrell, J. W.,
Higginson, M. J., Jian, Z., Kuhnt, W., Laj, C. E., Lauer-Leredde, C.,
Leventhal, J. S., Li, A., Li, Q., Lin, J., McIntyre, K., Miranda, C. R.,
Nathan, S. A., Shyu, J.-P., Solheid, P. A., Su, X., Tamburini, F.,
Trentesaux, A., Wang, L., Wang, P., Prell, W. L., Blum, P., Arnold, E. M.,
Buehring, C. J., Chen, M.-P., Clemens, S. C., Clift, P. D., Colin, C. J. G.,
Farrell, J. W., Higginson, M. J., Jian, Z., Kuhunt, W., Laj, C. E.,
Lauer-Leredde, C., Leventhal, J. S., Li, A., Li, Q., Lin, J., McIntyre, K.,
Miranda, C. R., Nathan, S. A., Shyu, J.-P., Solheid, P. A., Su, X.,
Tamburini, F., Trentesaux, A., and Wang, L.: Leg 184, Ocean Drilling Program, College Station, TX, Proc. Ocean Drill. Prog., Pt A: Init. Rpt., 184, 1–77, https://doi.org/10.2973/odp.proc.ir.184.2000, 2000.
Wang, W., Zhang, P., Garzione, C. N., Liu, C., Zhang, Z., Pang, J., Wang,
Y., Zheng, D., Zheng, W., and Zhang, H.: Pulsed rise and growth of the
Tibetan Plateau to its northern margin since ca. 30 Ma, P. Natl. Acad.
Sci. USA, 119, e2120364119, https://doi.org/10.1073/pnas.2120364119, 2022.
Weber, M. E., Lantzsch, H., Dekens, P., Das, S. K., Reilly, B. T., Martos,
Y. M., Meyer-Jacob, C., Agrahari, S., Ekblad, A., Titschack, J., Holmes, B.,
and Wolfgramm, P.: 200 000 years of monsoonal history recorded on the lower
Bengal Fan - strong response to insolation forcing, Glob. Planet. Change,
166, 107–119, https://doi.org/10.1016/j.gloplacha.2018.04.003, 2018.
Webster, P. J., Magaña, V. O., Palmer, T. N., Shukla, J., Tomas, R. A.,
Yanai, M., and Yasunari, T.: Monsoons: Processes, predictability, and the
prospects for prediction, J. Geophys. Res., 103, 14451–14510,
https://doi.org/10.1029/97JC02719, 1998.
Wei, G., Li, X.-H., Liu, Y., Shao, L., and Liang, X.: Geochemical record of
chemical weathering and monsoon climate change since the early Miocene in
the South China Sea, Paleoceanography, 21, PA4214, https://doi.org/10.1029/2006PA001300,
2006.
Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C.,
Anagnostou, E., Barnet, J. S. K., Bohaty, S. M., De Vleeschouwer, D.,
Florindo, F., Frederichs, T., Hodell, D. A., Holbourn, A. E., Kroon, D.,
Lauretano, V., Littler, K., Lourens, L. J., Lyle, M., Pälike, H.,
Röhl, U., Tian, J., Wilkens, R. H., Wilson, P. A., and Zachos, J. C.: An
astronomically dated record of Earth's climate and its predictability over
the last 66 million years, Science, 369, 1383–1387,
https://doi.org/10.1126/science.aba6853, 2020.
Whipple, K. X.: The influence of climate on the tectonic evolution of
mountain belts, Nat. Geosci., 2, 1–8, https://doi.org/10.1038/ngeo413, 2009.
Yan, Y. Y.: Intertropical Convergence Zone (ITCZ), in: Encyclopedia of World
Climatology, edited by: Oliver, J. E., Springer Netherlands, Dordrecht,
429–432, https://doi.org/10.1007/1-4020-3266-8_110, 2005.
Yang, C., Dang, H., Zhou, X., Zhang, H., Wang, X., Wang, Y., Qiao, P.,
Jiang, X., and Jian, Z.: Upper ocean hydrographic changes in response to the
evolution of the East Asian monsoon in the northern South China Sea during
the middle to late Miocene, Glob. Planet. Change, 201, 103478,
https://doi.org/10.1016/j.gloplacha.2021.103478, 2021.
Yang, X., Groeneveld, J., Jian, Z., Steinke, S., and Giosan, L.: Middle
Miocene Intensification of South Asian Monsoonal Rainfall, Paleoceanography
and Paleoclimatology, 35, e2020PA003853, https://doi.org/10.1029/2020PA003853, 2020.
Yoshida, K., Nakajima, T., Matsumoto, Y., Osaki, A., Rai, L. K., Cruz, J.
W., and Sakai, H.: Miocene provenance change in Himalayan foreland basin and
Bengal Fan sediments, with special reference to detrital garnet chemistry,
Island Arc, 30, e12408, https://doi.org/10.1111/iar.12408, 2021.
Zachos, J. C., Dickens, G. R., and Zeebe, R. E.: An early Cenozoic
perspective on greenhouse warming and carbon-cycle dynamics, Nature, 451,
279–283, https://doi.org/10.1038/nature06588, 2008.
Zhang, P., Xu, J., Holbourn, A., Kuhnt, W., Beil, S., Li, T., Xiong, Z.,
Dang, H., Yan, H., Pei, R., Ran, Y., and Wu, H.: Indo-Pacific Hydroclimate
in Response to Changes of the Intertropical Convergence Zone: Discrepancy on
Precession and Obliquity Bands Over the Last 410 kyr, J. Geophys. Res.-Atmos., 125, e2019JD032125, https://doi.org/10.1029/2019JD032125, 2020.
Zhang, R., Jiang, D., Zhang, Z., and Zhang, C.: Effects of Tibetan Plateau
Growth, Paratethys Sea Retreat and Global Cooling on the East Asian Climate
by the Early Miocene, Geochem. Geophy. Geosy., 22, e2021GC009655, https://doi.org/10.1029/2021GC009655, 2021.
Zhang, Y. G., Pagani, M., and Liu, Z.: Response to Comment on “A
12-million-year temperature history of the tropical Pacific Ocean”,
Science, 346, 1467, https://doi.org/10.1126/science.1257930, 2014a.
Zhang, Y. G., Pagani, M., and Liu, Z.: A 12-Million-Year Temperature History
of the Tropical Pacific Ocean, Science, 344, 84–87, https://doi.org/10.1126/science.1246172, 2014b.
Zhao, H., Qiang, X., Xu, X., and Sun, Y.: Iron oxide characteristics of the
Chinese loess-red clay sequences and their implications for the evolution of
the East Asian summer monsoon since the Late Oligocene, Palaeogeogr. Palaeocl., 543, 109604, https://doi.org/10.1016/j.palaeo.2020.109604, 2020.
Zheng, H., Wei, X., Tada, R., Clift, P. D., Wang, B., Jourdan, F., Wang, P.,
and He, M.: Late Oligocene–early Miocene birth of the Taklimakan Desert,
P. Natl. Acad. Sci. USA, 112, 7662–7667, https://doi.org/10.1073/pnas.1424487112, 2015.
Zhou, P., Ireland, T., Murray, R. W., and Clift, P. D.: Marine Sedimentary
Records of Chemical Weathering Evolution in the Western Himalaya since 17 Ma, Geosphere, 17, 824–853, https://doi.org/10.1130/GES02211.1, 2021.
Short summary
An integrated campaign of drilling around Asia and Australia was conducted from 2013 to 2016 to reconstruct the monsoon climate. The results provide relatively continuous records spanning the last 24 myr. Asia has shown a steady drying since the late Miocene, while Australia has become wetter. The monsoons are affected by the tectonics of Asia and surrounding seas, as well as orbital forcing, resulting in diachronous evolution of continental climate, ocean currents, and the marine biosphere.
An integrated campaign of drilling around Asia and Australia was conducted from 2013 to 2016 to...