Articles | Volume 33, issue 2
https://doi.org/10.5194/sd-33-109-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/sd-33-109-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Paleozoic Equatorial Records of Melting Ice Ages (PERMIA): calibrating the pace of paleotropical environmental and ecological change during Earth's previous icehouse
Department of Earth & Environmental Sciences, University of Minnesota – Twin Cities, 116 Church Street SE, Minneapolis, MN 55455, USA
Institute for Rock Magnetism, University of Minnesota – Twin Cities, 116 Church Street SE, Minneapolis, MN 55455, USA
Joshua M. Feinberg
Department of Earth & Environmental Sciences, University of Minnesota – Twin Cities, 116 Church Street SE, Minneapolis, MN 55455, USA
Institute for Rock Magnetism, University of Minnesota – Twin Cities, 116 Church Street SE, Minneapolis, MN 55455, USA
Adam K. Huttenlocker
Department of Integrative Anatomical Sciences, University of Southern California, 1333 San Pablo Street, Los Angeles, CA 90033, USA
Randall B. Irmis
Natural History Museum of Utah, University of Utah, 301 Wakara Way, Salt Lake City, UT 84108-1214, USA
Department of Geology & Geophysics, University of Utah, 115 South 1460 East, Salt Lake City, UT 84112, USA
Declan Ramirez
Department of Earth & Environmental Sciences, University of Minnesota – Twin Cities, 116 Church Street SE, Minneapolis, MN 55455, USA
Institute for Rock Magnetism, University of Minnesota – Twin Cities, 116 Church Street SE, Minneapolis, MN 55455, USA
Rashida Doctor
Department of Earth & Environmental Sciences, University of Minnesota – Twin Cities, 116 Church Street SE, Minneapolis, MN 55455, USA
Institute for Rock Magnetism, University of Minnesota – Twin Cities, 116 Church Street SE, Minneapolis, MN 55455, USA
John McDaris
Department of Earth & Environmental Sciences, University of Minnesota – Twin Cities, 116 Church Street SE, Minneapolis, MN 55455, USA
Institute for Rock Magnetism, University of Minnesota – Twin Cities, 116 Church Street SE, Minneapolis, MN 55455, USA
Charles M. Henderson
Department of Earth, Energy and Environment, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
Michael T. Read
Department of Earth Sciences and Geologic Resources, Stephen F. Austin State University, 1901 N. Raguet St, Nacogdoches, TX 75962, USA
Kristina Brady Shannon
Department of Earth & Environmental Sciences, University of Minnesota – Twin Cities, 116 Church Street SE, Minneapolis, MN 55455, USA
Continental Scientific Drilling Facility, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455, USA
Anders Noren
Department of Earth & Environmental Sciences, University of Minnesota – Twin Cities, 116 Church Street SE, Minneapolis, MN 55455, USA
Continental Scientific Drilling Facility, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455, USA
Ryan O'Grady
Department of Earth & Environmental Sciences, University of Minnesota – Twin Cities, 116 Church Street SE, Minneapolis, MN 55455, USA
Continental Scientific Drilling Facility, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455, USA
Ayva Sloo
Geology Department, Occidental College, 1600 Campus Road, Los Angeles, CA 90041, USA
Patrick Steury
Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Jordan Hall, 2800 Faucette Dr, Raleigh, NC 27607, USA
Diego P. Fernandez
Department of Geology & Geophysics, University of Utah, 115 South 1460 East, Salt Lake City, UT 84112, USA
Amy C. Henrici
Carnegie Museum of Natural History, 4400 Forbes Avenue, Pittsburgh, PA 15213, USA
Neil J. Tabor
Roy M. Huffington Department of Earth Sciences, Southern Methodist University, 3225 Daniel Ave Suite 207, Dallas, TX 75205, USA
Related authors
No articles found.
Biagio Giaccio, Bernd Wagner, Giovanni Zanchetta, Adele Bertini, Gian Paolo Cavinato, Roberto de Franco, Fabio Florindo, David A. Hodell, Thomas A. Neubauer, Sebastien Nomade, Alison Pereira, Laura Sadori, Sara Satolli, Polychronis C. Tzedakis, Paul Albert, Paolo Boncio, Cindy De Jonge, Alexander Francke, Christine Heim, Alessia Masi, Marta Marchegiano, Helen M. Roberts, Anders Noren, and the MEME team
Sci. Dril., 33, 249–266, https://doi.org/10.5194/sd-33-249-2024, https://doi.org/10.5194/sd-33-249-2024, 2024
Short summary
Short summary
A total of 42 Earth scientists from 14 countries met in Gioia dei Marsi, central Italy, on 23 to 27 October 2023 to explore the potential for deep drilling of the thick lake sediment sequence of the Fucino Basin. The aim was to reconstruct the history of climate, ecosystem, and biodiversity changes and of the explosive volcanism and tectonics in central Italy over the last 3.5 million years, constrained by a detailed radiometric chronology.
Catherine C. Beck, Melissa Berke, Craig S. Feibel, Verena Foerster, Lydia Olaka, Helen M. Roberts, Christopher A. Scholz, Kat Cantner, Anders Noren, Geoffery Mibei Kiptoo, James Muirhead, and the Deep Drilling in the Turkana Basin (DDTB) project team
Sci. Dril., 33, 93–108, https://doi.org/10.5194/sd-33-93-2024, https://doi.org/10.5194/sd-33-93-2024, 2024
Short summary
Short summary
The Deep Drilling in the Turkana Basin project seeks to determine the relative impacts of tectonics and climate on eastern African ecosystems. To organize goals for coring, we hosted a workshop in Nairobi, Kenya, which focused on how a 4 Myr sedimentary core from Turkana will uniquely address research objectives related to basin evolution, past climates and environments, and modern resources. We concluded that a Pliocene to modern record is best accomplished through a two-phase drilling project.
Jonathan Obrist-Farner, Andreas Eckert, Peter M. J. Douglas, Liseth Perez, Alex Correa-Metrio, Bronwen L. Konecky, Thorsten Bauersachs, Susan Zimmerman, Stephanie Scheidt, Mark Brenner, Steffen Kutterolf, Jeremy Maurer, Omar Flores, Caroline M. Burberry, Anders Noren, Amy Myrbo, Matthew Lachniet, Nigel Wattrus, Derek Gibson, and the LIBRE scientific team
Sci. Dril., 32, 85–100, https://doi.org/10.5194/sd-32-85-2023, https://doi.org/10.5194/sd-32-85-2023, 2023
Short summary
Short summary
In August 2022, 65 scientists from 13 countries gathered in Antigua, Guatemala, for a workshop, co-funded by the US National Science Foundation and the International Continental Scientific Drilling Program. This workshop considered the potential of establishing a continental scientific drilling program in the Lake Izabal Basin, eastern Guatemala, with the goals of establishing a borehole observatory and investigating one of the longest continental records from the northern Neotropics.
Beth A. Fisher, Kyungsoo Yoo, Anthony K. Aufdenkampe, Edward A. Nater, Joshua M. Feinberg, and Jonathan E. Nyquist
Earth Surf. Dynam., 11, 51–69, https://doi.org/10.5194/esurf-11-51-2023, https://doi.org/10.5194/esurf-11-51-2023, 2023
Short summary
Short summary
We measured the surface area of minerals in two 21 m cores from soil to bedrock to test hypotheses on the formation of the surface area of weathered rock. A sharp increase in high-surface-area secondary minerals extended from 3 m to the ground surface. Half the total surface area was from corroded iron minerals, which form in the presence of oxygen, even though corroded iron comprised less than 0.1 % of the rock. Element removal by rock dissolution started at 7 m but did not form new minerals.
George Gehrels, Dominique Giesler, Paul Olsen, Dennis Kent, Adam Marsh, William Parker, Cornelia Rasmussen, Roland Mundil, Randall Irmis, John Geissman, and Christopher Lepre
Geochronology, 2, 257–282, https://doi.org/10.5194/gchron-2-257-2020, https://doi.org/10.5194/gchron-2-257-2020, 2020
Short summary
Short summary
U–Pb ages of zircon crystals are used to determine the provenance and depositional age of strata of the Triassic Chinle and Moenkopi formations and the Permian Coconino Sandstone of northern Arizona. Primary source regions include the Ouachita orogen, local Precambrian basement rocks, and Permian–Triassic magmatic arcs to the south and west. Ages from fine-grained strata provide reliable depositional ages, whereas ages from sandstones are compromised by zircon grains recycled from older strata.
James M. Russell, Philip Barker, Andrew Cohen, Sarah Ivory, Ishmael Kimirei, Christine Lane, Melanie Leng, Neema Maganza, Michael McGlue, Emma Msaky, Anders Noren, Lisa Park Boush, Walter Salzburger, Christopher Scholz, Ralph Tiedemann, Shaidu Nuru, and the Lake Tanganyika Scientific Drilling Project (TSDP) Consortium
Sci. Dril., 27, 53–60, https://doi.org/10.5194/sd-27-53-2020, https://doi.org/10.5194/sd-27-53-2020, 2020
Short summary
Short summary
Our planet experienced enormous environmental changes in the last 10 million years. Lake Tanganyika is the oldest lake in Africa and its sediments comprise the most continuous terrestrial environmental record for this time period in the tropics. This workshop report identifies key research objectives in rift processes, evolutionary biology, geomicrobiology, paleoclimatology, paleoecology, paleoanthropology, and geochronology that could be addressed by drilling this globally important site.
Erik T. Brown, Margarita Caballero, Enrique Cabral Cano, Peter J. Fawcett, Socorro Lozano-García, Beatriz Ortega, Liseth Pérez, Antje Schwalb, Victoria Smith, Byron A. Steinman, Mona Stockhecke, Blas Valero-Garcés, Sebastian Watt, Nigel J. Wattrus, Josef P. Werne, Thomas Wonik, Amy E. Myrbo, Anders J. Noren, Ryan O'Grady, Douglas Schnurrenberger, and the MexiDrill Team
Sci. Dril., 26, 1–15, https://doi.org/10.5194/sd-26-1-2019, https://doi.org/10.5194/sd-26-1-2019, 2019
Short summary
Short summary
MexiDrill, the Basin of Mexico Drilling Program, recovered a continuous, high-resolution 400 000 year record of tropical North American environmental change. The field location, in the densely populated, water-stressed, Mexico City region, gives this record particular societal relevance. The record also contains a rich record of volcanic activity; knowledge of the history of the area's explosive volcanic eruptions will improve capacity for risk assessment of future activity.
Paul E. Olsen, John W. Geissman, Dennis V. Kent, George E. Gehrels, Roland Mundil, Randall B. Irmis, Christopher Lepre, Cornelia Rasmussen, Dominique Giesler, William G. Parker, Natalia Zakharova, Wolfram M. Kürschner, Charlotte Miller, Viktoria Baranyi, Morgan F. Schaller, Jessica H. Whiteside, Douglas Schnurrenberger, Anders Noren, Kristina Brady Shannon, Ryan O'Grady, Matthew W. Colbert, Jessie Maisano, David Edey, Sean T. Kinney, Roberto Molina-Garza, Gerhard H. Bachman, Jingeng Sha, and the CPCD team
Sci. Dril., 24, 15–40, https://doi.org/10.5194/sd-24-15-2018, https://doi.org/10.5194/sd-24-15-2018, 2018
Short summary
Short summary
The Colorado Plateau Coring Project-1 recovered ~ 850 m of core in three holes at two sites in the Triassic fluvial strata of Petrified Forest National Park, AZ, USA. The cores have abundant zircon, U-Pb dateable layers (210–241 Ma) that along with magnetic polarity stratigraphy, validate the eastern US-based Newark-Hartford astrochronology and timescale, while also providing temporal and environmental context for the vast geological archives of the Triassic of western North America.
James M. Russell, Satria Bijaksana, Hendrik Vogel, Martin Melles, Jens Kallmeyer, Daniel Ariztegui, Sean Crowe, Silvia Fajar, Abdul Hafidz, Doug Haffner, Ascelina Hasberg, Sarah Ivory, Christopher Kelly, John King, Kartika Kirana, Marina Morlock, Anders Noren, Ryan O'Grady, Luis Ordonez, Janelle Stevenson, Thomas von Rintelen, Aurele Vuillemin, Ian Watkinson, Nigel Wattrus, Satrio Wicaksono, Thomas Wonik, Kohen Bauer, Alan Deino, André Friese, Cynthia Henny, Imran, Ristiyanti Marwoto, La Ode Ngkoimani, Sulung Nomosatryo, La Ode Safiuddin, Rachel Simister, and Gerald Tamuntuan
Sci. Dril., 21, 29–40, https://doi.org/10.5194/sd-21-29-2016, https://doi.org/10.5194/sd-21-29-2016, 2016
Short summary
Short summary
The Towuti Drilling Project seeks to understand the long-term environmental and climatic history of the tropical western Pacific and to discover the unique microbes that live in metal-rich sediments. To accomplish these goals, in 2015 we carried out a scientific drilling project on Lake Towuti, located in central Indonesia. We recovered over 1000 m of core, and our deepest core extended 175 m below the lake floor and gives us a complete record of the lake.
A. Cohen, C. Campisano, R. Arrowsmith, A. Asrat, A. K. Behrensmeyer, A. Deino, C. Feibel, A. Hill, R. Johnson, J. Kingston, H. Lamb, T. Lowenstein, A. Noren, D. Olago, R. B. Owen, R. Potts, K. Reed, R. Renaut, F. Schäbitz, J.-J. Tiercelin, M. H. Trauth, J. Wynn, S. Ivory, K. Brady, R. O'Grady, J. Rodysill, J. Githiri, J. Russell, V. Foerster, R. Dommain, S. Rucina, D. Deocampo, J. Russell, A. Billingsley, C. Beck, G. Dorenbeck, L. Dullo, D. Feary, D. Garello, R. Gromig, T. Johnson, A. Junginger, M. Karanja, E. Kimburi, A. Mbuthia, T. McCartney, E. McNulty, V. Muiruri, E. Nambiro, E. W. Negash, D. Njagi, J. N. Wilson, N. Rabideaux, T. Raub, M. J. Sier, P. Smith, J. Urban, M. Warren, M. Yadeta, C. Yost, and B. Zinaye
Sci. Dril., 21, 1–16, https://doi.org/10.5194/sd-21-1-2016, https://doi.org/10.5194/sd-21-1-2016, 2016
Short summary
Short summary
An initial description of the scientific rationale, drilling and core handling, and initial core description activities of the Hominin Sites and Paleolakes Drilling Project (HSPDP). HSPDP is a large international consortium whose objective is to collect cores from lakebeds in proximity to important fossil early human fossil sites in eastern Africa, to better understand the environmental and climatic context of human evolution.
P. A. Baker, S. C. Fritz, C. G. Silva, C. A. Rigsby, M. L. Absy, R. P. Almeida, M. Caputo, C. M. Chiessi, F. W. Cruz, C. W. Dick, S. J. Feakins, J. Figueiredo, K. H. Freeman, C. Hoorn, C. Jaramillo, A. K. Kern, E. M. Latrubesse, M. P. Ledru, A. Marzoli, A. Myrbo, A. Noren, W. E. Piller, M. I. F. Ramos, C. C. Ribas, R. Trnadade, A. J. West, I. Wahnfried, and D. A. Willard
Sci. Dril., 20, 41–49, https://doi.org/10.5194/sd-20-41-2015, https://doi.org/10.5194/sd-20-41-2015, 2015
Short summary
Short summary
We report on a planned Trans-Amazon Drilling Project (TADP) that will continuously sample Late Cretaceous to modern sediment in a transect along the equatorial Amazon of Brazil, from the Andean foreland to the Atlantic Ocean. The TADP will document the evolution of the Neotropical forest and will link biotic diversification to changes in the physical environment, including climate, tectonism, and landscape. We will also sample the ca. 200Ma basaltic sills that underlie much of the Amazon.
W. C. Clyde, P. D. Gingerich, S. L. Wing, U. Röhl, T. Westerhold, G. Bowen, K. Johnson, A. A. Baczynski, A. Diefendorf, F. McInerney, D. Schnurrenberger, A. Noren, K. Brady, and the BBCP Science Team
Sci. Dril., 16, 21–31, https://doi.org/10.5194/sd-16-21-2013, https://doi.org/10.5194/sd-16-21-2013, 2013
Related subject area
Location/Setting: Continental | Subject: Geology | Geoprocesses: Global climate change
BASE (Barberton Archean Surface Environments) – drilling Paleoarchean coastal strata of the Barberton Greenstone Belt
ICDP workshop on the Deep Drilling in the Turkana Basin project: exploring the link between environmental factors and hominin evolution over the past 4 Myr
Paleogene Earth perturbations in the US Atlantic Coastal Plain (PEP-US): coring transects of hyperthermals to understand past carbon injections and ecosystem responses
Drilling into a deep buried valley (ICDP DOVE): a 252 m long sediment succession from a glacial overdeepening in northwestern Switzerland
Workshop report: PlioWest – drilling Pliocene lakes in western North America
Deep-time Arctic climate archives: high-resolution coring of Svalbard's sedimentary record – SVALCLIME, a workshop report
Drilling Overdeepened Alpine Valleys (ICDP-DOVE): quantifying the age, extent, and environmental impact of Alpine glaciations
From glacial erosion to basin overfill: a 240 m-thick overdeepening–fill sequence in Bern, Switzerland
Sensitivity of the West Antarctic Ice Sheet to +2 °C (SWAIS 2C)
Scientific drilling workshop on the Weihe Basin Drilling Project (WBDP): Cenozoic tectonic–monsoon interactions
Report on ICDP Deep Dust workshops: probing continental climate of the late Paleozoic icehouse–greenhouse transition and beyond
The Bouse Formation, a controversial Neogene archive of the evolving Colorado River: a scientific drilling workshop report (28 February–3 March 2019 – BlueWater Resort & Casino, Parker, AZ, USA)
Colorado Plateau Coring Project, Phase I (CPCP-I): a continuously cored, globally exportable chronology of Triassic continental environmental change from western North America
Report on ICDP workshop CONOSC (COring the NOrth Sea Cenozoic)
A key continental archive for the last 2 Ma of climatic history of the central Mediterranean region: A pilot drilling in the Fucino Basin, central Italy
Trans-Amazon Drilling Project (TADP): origins and evolution of the forests, climate, and hydrology of the South American tropics
Accelerating Neoproterozoic research through scientific drilling
A way forward to discover Antarctica's past
Christoph Heubeck, Nic Beukes, Michiel de Kock, Martin Homann, Emmanuelle J. Javaux, Takeshi Kakegawa, Stefan Lalonde, Paul Mason, Phumelele Mashele, Dora Paprika, Chris Rippon, Mike Tice, Rodney Tucker, Ryan Tucker, Victor Ndazamo, Astrid Christianson, and Cindy Kunkel
Sci. Dril., 33, 129–172, https://doi.org/10.5194/sd-33-129-2024, https://doi.org/10.5194/sd-33-129-2024, 2024
Short summary
Short summary
What was Earth like when young? Under what conditions did bacteria spread? We studied some of the best-preserved, oldest rocks in South Africa. Layers there are about vertical; we drilled sideways. Sedimentary strata from eight boreholes showed that they had been deposited in rivers, sandy shorelines, tidal flats, estuaries, and the ocean. Some have well-preserved remnants of microbes. We will learn how life was established on a planet which would appear very inhospitable to us nowadays.
Catherine C. Beck, Melissa Berke, Craig S. Feibel, Verena Foerster, Lydia Olaka, Helen M. Roberts, Christopher A. Scholz, Kat Cantner, Anders Noren, Geoffery Mibei Kiptoo, James Muirhead, and the Deep Drilling in the Turkana Basin (DDTB) project team
Sci. Dril., 33, 93–108, https://doi.org/10.5194/sd-33-93-2024, https://doi.org/10.5194/sd-33-93-2024, 2024
Short summary
Short summary
The Deep Drilling in the Turkana Basin project seeks to determine the relative impacts of tectonics and climate on eastern African ecosystems. To organize goals for coring, we hosted a workshop in Nairobi, Kenya, which focused on how a 4 Myr sedimentary core from Turkana will uniquely address research objectives related to basin evolution, past climates and environments, and modern resources. We concluded that a Pliocene to modern record is best accomplished through a two-phase drilling project.
Marci M. Robinson, Kenneth G. Miller, Tali L. Babila, Timothy J. Bralower, James V. Browning, Marlow J. Cramwinckel, Monika Doubrawa, Gavin L. Foster, Megan K. Fung, Sean Kinney, Maria Makarova, Peter P. McLaughlin, Paul N. Pearson, Ursula Röhl, Morgan F. Schaller, Jean M. Self-Trail, Appy Sluijs, Thomas Westerhold, James D. Wright, and James C. Zachos
Sci. Dril., 33, 47–65, https://doi.org/10.5194/sd-33-47-2024, https://doi.org/10.5194/sd-33-47-2024, 2024
Short summary
Short summary
The Paleocene–Eocene Thermal Maximum (PETM) is the closest geological analog to modern anthropogenic CO2 emissions, but its causes and the responses remain enigmatic. Coastal plain sediments can resolve this uncertainty, but their discontinuous nature requires numerous sites to constrain events. Workshop participants identified 10 drill sites that target the PETM and other interesting intervals. Our post-drilling research will provide valuable insights into Earth system responses.
Sebastian Schaller, Marius W. Buechi, Bennet Schuster, and Flavio S. Anselmetti
Sci. Dril., 32, 27–42, https://doi.org/10.5194/sd-32-27-2023, https://doi.org/10.5194/sd-32-27-2023, 2023
Short summary
Short summary
In the frame of the DOVE (Drilling Overdeepened Alpine Valleys) project and with the support of the International Continental Scientific Drilling Program (ICDP), we drilled and recovered a 252 m long sediment core from the Basadingen Through. The Basadingen Trough, once eroded by the Rhine glacier during several ice ages, reaches over 300 m under the modern landscape. The sedimentary filling represents a precious scientific archive for understanding and reconstructing past glaciations.
Alison J. Smith, Emi Ito, Natalie Burls, Leon Clarke, Timme Donders, Robert Hatfield, Stephen Kuehn, Andreas Koutsodendris, Tim Lowenstein, David McGee, Peter Molnar, Alexander Prokopenko, Katie Snell, Blas Valero Garcés, Josef Werne, Christian Zeeden, and the PlioWest Working Consortium
Sci. Dril., 32, 61–72, https://doi.org/10.5194/sd-32-61-2023, https://doi.org/10.5194/sd-32-61-2023, 2023
Short summary
Short summary
Western North American contains accessible and under-recognized paleolake records that hold the keys to understanding the drivers of wetter conditions in Pliocene Epoch subtropical drylands worldwide. In a 2021 ICDP workshop, we chose five paleolake basins to study that span 7° of latitude in a unique array able to capture a detailed record of hydroclimate during the Early Pliocene warm period and subsequent Pleistocene cooling. We propose new drill cores for three of these basins.
Kim Senger, Denise Kulhanek, Morgan T. Jones, Aleksandra Smyrak-Sikora, Sverre Planke, Valentin Zuchuat, William J. Foster, Sten-Andreas Grundvåg, Henning Lorenz, Micha Ruhl, Kasia K. Sliwinska, Madeleine L. Vickers, and Weimu Xu
Sci. Dril., 32, 113–135, https://doi.org/10.5194/sd-32-113-2023, https://doi.org/10.5194/sd-32-113-2023, 2023
Short summary
Short summary
Geologists can decipher the past climates and thus better understand how future climate change may affect the Earth's complex systems. In this paper, we report on a workshop held in Longyearbyen, Svalbard, to better understand how rocks in Svalbard (an Arctic archipelago) can be used to quantify major climatic shifts recorded in the past.
Flavio S. Anselmetti, Milos Bavec, Christian Crouzet, Markus Fiebig, Gerald Gabriel, Frank Preusser, Cesare Ravazzi, and DOVE scientific team
Sci. Dril., 31, 51–70, https://doi.org/10.5194/sd-31-51-2022, https://doi.org/10.5194/sd-31-51-2022, 2022
Short summary
Short summary
Previous glaciations eroded below the ice deep valleys in the Alpine foreland, which, with their sedimentary fillings, witness the timing and extent of these glacial advance–retreat cycles. Drilling such sedimentary sequences will thus provide well-needed evidence in order to reconstruct the (a)synchronicity of past ice advances in a trans-Alpine perspective. Eventually these data will document how the Alpine foreland was shaped and how the paleoclimate patterns varied along and across the Alps.
Michael A. Schwenk, Patrick Schläfli, Dimitri Bandou, Natacha Gribenski, Guilhem A. Douillet, and Fritz Schlunegger
Sci. Dril., 30, 17–42, https://doi.org/10.5194/sd-30-17-2022, https://doi.org/10.5194/sd-30-17-2022, 2022
Short summary
Short summary
A scientific drilling was conducted into a bedrock trough (overdeepening) in Bern-Bümpliz (Switzerland) in an effort to advance the knowledge of the Quaternary prior to 150 000 years ago. We encountered a 208.5 m-thick succession of loose sediments (gravel, sand and mud) in the retrieved core and identified two major sedimentary sequences (A: lower, B: upper). The sedimentary suite records two glacial advances and the subsequent filling of a lake sometime between 300 000 and 200 000 years ago.
Molly O. Patterson, Richard H. Levy, Denise K. Kulhanek, Tina van de Flierdt, Huw Horgan, Gavin B. Dunbar, Timothy R. Naish, Jeanine Ash, Alex Pyne, Darcy Mandeno, Paul Winberry, David M. Harwood, Fabio Florindo, Francisco J. Jimenez-Espejo, Andreas Läufer, Kyu-Cheul Yoo, Osamu Seki, Paolo Stocchi, Johann P. Klages, Jae Il Lee, Florence Colleoni, Yusuke Suganuma, Edward Gasson, Christian Ohneiser, José-Abel Flores, David Try, Rachel Kirkman, Daleen Koch, and the SWAIS 2C Science Team
Sci. Dril., 30, 101–112, https://doi.org/10.5194/sd-30-101-2022, https://doi.org/10.5194/sd-30-101-2022, 2022
Short summary
Short summary
How much of the West Antarctic Ice Sheet will melt and how quickly it will happen when average global temperatures exceed 2 °C is currently unknown. Given the far-reaching and international consequences of Antarctica’s future contribution to global sea level rise, the SWAIS 2C Project was developed in order to better forecast the size and timing of future changes.
Zhisheng An, Peizhen Zhang, Hendrik Vogel, Yougui Song, John Dodson, Thomas Wiersberg, Xijie Feng, Huayu Lu, Li Ai, and Youbin Sun
Sci. Dril., 28, 63–73, https://doi.org/10.5194/sd-28-63-2020, https://doi.org/10.5194/sd-28-63-2020, 2020
Short summary
Short summary
Earth has experienced remarkable climate–environmental changes in the last 65 million years. The Weihe Basin with its 6000–8000 m infill of a continuous sedimentary sequence gives a unique continental archive for the study of the Cenozoic environment and exploration of deep biospheres. This workshop report concludes key objectives of the two-phase Weihe Basin Drilling Project and the global significance of reconstructing Cenozoic climate evolution and tectonic–monsoon interaction in East Asia.
Gerilyn S. Soreghan, Laurent Beccaletto, Kathleen C. Benison, Sylvie Bourquin, Georg Feulner, Natsuko Hamamura, Michael Hamilton, Nicholas G. Heavens, Linda Hinnov, Adam Huttenlocker, Cindy Looy, Lily S. Pfeifer, Stephane Pochat, Mehrdad Sardar Abadi, James Zambito, and the Deep Dust workshop participants
Sci. Dril., 28, 93–112, https://doi.org/10.5194/sd-28-93-2020, https://doi.org/10.5194/sd-28-93-2020, 2020
Short summary
Short summary
The events of the Permian — the orogenies, biospheric turnovers, icehouse and greenhouse antitheses, and Mars-analog lithofacies — boggle the imagination and present us with great opportunities to explore Earth system behavior. Here we outline results of workshops to propose continuous coring of continental Permian sections in western (Anadarko Basin) and eastern (Paris Basin) equatorial Pangaea to retrieve continental records spanning 50 Myr of Earth's history.
Andrew Cohen, Colleen Cassidy, Ryan Crow, Jordon Bright, Laura Crossey, Rebecca Dorsey, Brian Gootee, Kyle House, Keith Howard, Karl Karlstrom, and Philip Pearthree
Sci. Dril., 26, 59–67, https://doi.org/10.5194/sd-26-59-2019, https://doi.org/10.5194/sd-26-59-2019, 2019
Short summary
Short summary
This paper summarizes a workshop held in Parker, AZ, USA, to discuss planned scientific drilling in the Miocene(?) or early Pliocene Bouse Formation, a controversial deposit (of lacustrine, marine, or some hybrid origin) found in the lower Colorado River valley. The drilling project is intended to address this controversy as well as shed light on Pliocene climates of southwestern North America during an important period of past climate change.
Paul E. Olsen, John W. Geissman, Dennis V. Kent, George E. Gehrels, Roland Mundil, Randall B. Irmis, Christopher Lepre, Cornelia Rasmussen, Dominique Giesler, William G. Parker, Natalia Zakharova, Wolfram M. Kürschner, Charlotte Miller, Viktoria Baranyi, Morgan F. Schaller, Jessica H. Whiteside, Douglas Schnurrenberger, Anders Noren, Kristina Brady Shannon, Ryan O'Grady, Matthew W. Colbert, Jessie Maisano, David Edey, Sean T. Kinney, Roberto Molina-Garza, Gerhard H. Bachman, Jingeng Sha, and the CPCD team
Sci. Dril., 24, 15–40, https://doi.org/10.5194/sd-24-15-2018, https://doi.org/10.5194/sd-24-15-2018, 2018
Short summary
Short summary
The Colorado Plateau Coring Project-1 recovered ~ 850 m of core in three holes at two sites in the Triassic fluvial strata of Petrified Forest National Park, AZ, USA. The cores have abundant zircon, U-Pb dateable layers (210–241 Ma) that along with magnetic polarity stratigraphy, validate the eastern US-based Newark-Hartford astrochronology and timescale, while also providing temporal and environmental context for the vast geological archives of the Triassic of western North America.
Wim Westerhoff, Timme Donders, and Stefan Luthi
Sci. Dril., 21, 47–51, https://doi.org/10.5194/sd-21-47-2016, https://doi.org/10.5194/sd-21-47-2016, 2016
Short summary
Short summary
The CONOSC (COring the NOrth Sea Cenozoic) project brings scientists together that aim at scientific drilling of the north-western European marginal seas where in the last 65 million years the influence of sea and land was recorded continuously in the sediments. The subsiding area is ideally suited for detailed study of the relations between changing climate, biodiversity, and changing land masses. The report discusses the ICDP workshop outcome and overall project aims.
B. Giaccio, E. Regattieri, G. Zanchetta, B. Wagner, P. Galli, G. Mannella, E. Niespolo, E. Peronace, P. R. Renne, S. Nomade, G. P. Cavinato, P. Messina, A. Sposato, C. Boschi, F. Florindo, F. Marra, and L. Sadori
Sci. Dril., 20, 13–19, https://doi.org/10.5194/sd-20-13-2015, https://doi.org/10.5194/sd-20-13-2015, 2015
Short summary
Short summary
As a pilot study for a possible depth-drilling project, an 82m long sedimentary succession was retrieved from the Fucino Basin, central Apennines, which hosts ca. 900m of lacustrine sediments. The acquired paleoclimatic record, from the retrieved core, spans the last 180ka and reveals noticeable variations related to the last two glacial-interglacial cycles. In light of these results, the Fucino sediments are likely to provide one of the longest continuous record for the last 2Ma.
P. A. Baker, S. C. Fritz, C. G. Silva, C. A. Rigsby, M. L. Absy, R. P. Almeida, M. Caputo, C. M. Chiessi, F. W. Cruz, C. W. Dick, S. J. Feakins, J. Figueiredo, K. H. Freeman, C. Hoorn, C. Jaramillo, A. K. Kern, E. M. Latrubesse, M. P. Ledru, A. Marzoli, A. Myrbo, A. Noren, W. E. Piller, M. I. F. Ramos, C. C. Ribas, R. Trnadade, A. J. West, I. Wahnfried, and D. A. Willard
Sci. Dril., 20, 41–49, https://doi.org/10.5194/sd-20-41-2015, https://doi.org/10.5194/sd-20-41-2015, 2015
Short summary
Short summary
We report on a planned Trans-Amazon Drilling Project (TADP) that will continuously sample Late Cretaceous to modern sediment in a transect along the equatorial Amazon of Brazil, from the Andean foreland to the Atlantic Ocean. The TADP will document the evolution of the Neotropical forest and will link biotic diversification to changes in the physical environment, including climate, tectonism, and landscape. We will also sample the ca. 200Ma basaltic sills that underlie much of the Amazon.
D. J. Condon, P. Boggiani, D. Fike, G. P. Halverson, S. Kasemann, A. H. Knoll, F. A. Macdonald, A. R. Prave, and M. Zhu
Sci. Dril., 19, 17–25, https://doi.org/10.5194/sd-19-17-2015, https://doi.org/10.5194/sd-19-17-2015, 2015
Short summary
Short summary
This workshop report outlines the background, topics discussed and major conclusions/future directions arising form an ICDP- and ECORD-sponsored workshop convened to discuss the utility of scientific drilling for accelerating Neoproterozoic research.
J. S. Wellner
Sci. Dril., 18, 11–11, https://doi.org/10.5194/sd-18-11-2014, https://doi.org/10.5194/sd-18-11-2014, 2014
Cited articles
Ahn, J. and Apted, M. J.: Geological repository systems for safe disposal of spent nuclear fuels and radioactive waste, Woodhead Publishing, 792 pp., First Edition, https://doi.org/10.1533/9781845699789, 2010.
Atchley, S. C.: Influence of lowstand eolian erosional processes on stratigraphic completeness: sequence stratigraphy of the upper member of the Hermosa Formation (Upper Pennsylvanian), Paradox Basin, southeast Utah, Dissertation, University of Nebraska, Lincoln, Nebraska, 1–135 pp., ISBN 979-8-207-75988-3, 1990.
Atchley, S. C. and Loope, D. B.: Low-stand aeolian influence on stratigraphic completeness: upper member of the Hermosa Formation (latest Carboniferous), southeast Utah, USA, Special Publications of the International Association of Sedimentologists, 16, 127–149, https://doi.org/10.1002/9781444303971.ch9, 1993.
Baars, D. L.: Permian System of Colorado Plateau, Am. Assoc. Pet. Geol. Bull., 46, 149–218, https://doi.org/10.1306/BC74376F-16BE-11D7-8645000102C1865D, 1962.
Baars, D. L. and Stevenson, G. M.: Tectonic evolution of the Paradox Basin, Utah & Colorado, in: Rocky Mountains Association of Geologists, edited by: Wiegand, D. L., Geology of the Paradox Basin, 23–31 pp., ISSN 01675648, 1981.
Baker, A. A.: Geology of the Monument Valley- Navajo Mountain region, San Juan County, Utah, U.S. Geological Survey Bulletin, 865, 1–106, https://doi.org/10.3133/b865, 1936.
Baker, A. A. and Reeside Jr., J. B.: Correlation of the Permian of southern Utah, northern Arizona, northwestern New Mexico, and southwestern Colorado, Am. Assoc. Pet. Geol. Bull., 13, 1413–1448, https://doi.org/10.1306/3D932893-16B1-11D7-8645000102C1865D, 1929.
Beauchamp, B., Henderson, C. M., Dehari, E., Waldbott von Bassenheim, D., Elliot, S., and González, D. C.: Carbonate sedimentology and conodont biostratigraphy of late Pennsylvanian-early Permian stratigraphic sequences, Carlin Canyon Nevada: new insights into the tectonic and oceanographic significance of an iconic succession of the Basin and Range, SEPM Spec. Pub., 113, 34–71, https://doi.org/10.2110/sepmsp.113.14, 2022.
Berner, R. A., VandenBrooks, J. M., and Ward, P. D.: Oxygen and evolution, Science, 316, 557–558, https://doi.org/10.1126/science.1140273, 2007.
Billingsley, G. H. and Huntoon, P. W.: Geologic map of Canyonlands National Park and vicinity, Utah, edited by: Breed, W. J., Canyonlands Natural History Association, 1982.
Blakey, R. C.: Pennsylvanian-Jurassic sedimentary basins of the Colorado Plateau and southern Rocky Mountains, in: The Sedimentary Basins of the United States and Canada, Elsevier, 315–367, https://doi.org/10.1016/B978-0-444-63895-3.00007-3, 2019.
Blanchard, B.: Dept of the Interior Comments on Environmental Assessments for the Davis Canyon Site, Washington D.C., 1–64 pp., https://www.nrc.gov/docs/ML0320/ML032050695.pdf (last access: 11 October 2023), 1985.
Boardman, D. R., Wardlaw, B. R., and Nestell, M. K.: Stratigraphy and conodont biostratigraphy of the uppermost Carboniferous and Lower Permian from the North American Midcontinent, Kansas Geological Survey Bulletin, 255, 1–146, 2009.
Boy, J. A. and Fichter, J.: Stratigraphy of the Saar-Nahe Rotliegendes (? Upper Carboniferous – Lower Permian; Germany), Z. Dtsch. Geol. Ges., 133, 607–642, https://doi.org/10.1127/ZDGG/133/1982/607, 1982.
Brocklehurst, N., Ruta, M., Müller, J., and Fröbisch, J.: Elevated extinction rates as a trigger for diversification rate shifts: early amniotes as a case study, Sci. Rep., 5, 17104, https://doi.org/10.1038/srep17104, 2015.
Carpenter, K. and Ottinger, L.: Permo-Pennsylvanian shark teeth from the lower Cutler beds near Moab, Utah, Geol. Intermount. West, 5, 105–116, https://doi.org/10.31711/giw.v5.pp105-116, 2018.
Chen, J., Montañez, I. P., Qi, Y., Shen, S., and Wang, X.: Strontium and carbon isotopic evidence for decoupling of pCO2 from continental weathering at the apex of the late Paleozoic glaciation, Geology, 46, 395–398, https://doi.org/10.1130/G40093.1, 2018.
Chernykh, V. V. and Ritter, S. M.: Streptognathodus (Conodonta) succession at the proposed Carboniferous-Permian boundary stratotype section, Aidaralash Creek, northern Kazakhstan, J. Paleontol., 71, 459–474, https://doi.org/10.1017/S0022336000039470, 1997.
Chernykh, V. V., Ritter, S. M., and Wardlaw, B. R.: Streptognathodus isolatus new species (Conodonta): proposed index for the Carboniferous-Permian boundary, J. Paleontol., 71, 162–164, https://doi.org/10.1017/S0022336000039068, 1997.
Cleal, C. J. and Thomas, B. A.: Palaeozoic tropical rainforests and their effect on global climates: is the past the key to the present?, Geobiology, 3, 13–31, https://doi.org/10.1111/j.1472-4669.2005.00043.x, 2005.
Cleal, C. L. and Thomas, B. A.: Tectonics, tropical forest destruction and global warming in the late Palaeozoic, Acta Palaeobotanica, Supplement, 39, 17–19, 1999.
Clyde, W. C., Gingerich, P. D., Wing, S. L., Röhl, U., Westerhold, T., Bowen, G., Johnson, K., Baczynski, A. A., Diefendorf, A., McInerney, F., Schnurrenberger, D., Noren, A., Brady, K., and the BBCP Science Team: Bighorn Basin Coring Project (BBCP): a continental perspective on early Paleogene hyperthermals, Sci. Dril., 16, 21–31, https://doi.org/10.5194/sd-16-21-2013, 2013.
Cohen, A., Campisano, C., Arrowsmith, R., Asrat, A., Behrensmeyer, A. K., Deino, A., Feibel, C., Hill, A., Johnson, R., Kingston, J., Lamb, H., Lowenstein, T., Noren, A., Olago, D., Owen, R. B., Potts, R., Reed, K., Renaut, R., Schäbitz, F., Tiercelin, J.-J., Trauth, M. H., Wynn, J., Ivory, S., Brady, K., O'Grady, R., Rodysill, J., Githiri, J., Russell, J., Foerster, V., Dommain, R., Rucina, S., Deocampo, D., Russell, J., Billingsley, A., Beck, C., Dorenbeck, G., Dullo, L., Feary, D., Garello, D., Gromig, R., Johnson, T., Junginger, A., Karanja, M., Kimburi, E., Mbuthia, A., McCartney, T., McNulty, E., Muiruri, V., Nambiro, E., Negash, E. W., Njagi, D., Wilson, J. N., Rabideaux, N., Raub, T., Sier, M. J., Smith, P., Urban, J., Warren, M., Yadeta, M., Yost, C., and Zinaye, B.: The Hominin Sites and Paleolakes Drilling Project: inferring the environmental context of human evolution from eastern African rift lake deposits, Sci. Dril., 21, 1–16, https://doi.org/10.5194/sd-21-1-2016, 2016.
Condon, S. M.: Geology of the Pennsylvanian and Permian Cutler Group and Permian Kaibab Limestone in the Paradox Basin, southeastern Utah and southwestern Colorado, U.S. Geological Survey Bulletin, 2000-P, 1–59, https://doi.org/10.3133/b00P, 1997.
Craddock, K. W., Hook, R. W., Cummins, W. F., Sternberg, C. H., and Olson, E. C.: An overview of vertebrate collecting in the Permian System of north-central Texas, in: Permo-Carboniforous Vertebrate Paleontology, Lithostratigraphy, and Depositional Environments of North-Central Texas, 40–46, Society of Vertebrate Paleontology, 1989.
Cross, W. and Spencer, A. C.: Geology of the Rico Mountains, Colorado, 21st Annual Report of the United States Geological Survey to the Secretary of the Interior, 1899–1900: Part II – General Geology, Economic Geology, Alaska, Government Printing Office, Washington, D.C, 1900.
DiMichele, W. A., Cecil, C. B., Chaney, D. S., Elrick, S. D., and Nelson, W. J.: Fossil floras from the Pennsylvanian-Permian Cutler Group of southeastern Utah, in: Geology of Utah's Far South: Utah Geological Association Publication, Vol. 43, 491–504, 2014.
Doelling, H. H.: Geologic map of the Fisher Towers 7.5' quadrangle, Grand County, Utah, Utah Geological Survey Map, 183, 1–26, https://doi.org/10.34191/m-183, 2002.
Doelling, H. H., Ross, M. L., and Mulvey, W. E.: Geologic map of the Moab 7.5' quadrangle, Grand County, Utah, Utah Geological Survey Map, 181, 1–38, https://doi.org/10.34191/m-181, 2002.
Dubiel, R. F., Huntoon, J. E., Condon, S. M., and Stanesco, J. D.: Permian deposystems, paleogeography, and paleoclimate of the Paradox Basin and vicinity, in: Paleozoic Systems of the Rocky Mountain Region. Society of Economic Paleontologists and Mineralogists, Rocky Mountain Section, edited by: Longman, M. W. and Sonnenfeld, M. D., Denver, 427–443 pp., 1996.
Dubiel, R. F., Huntoon, J. E., Stanesco, J. D., and Condon, S. M.: Cutler Group alluvial, eolian, and marine deposystems: Permian facies relations and climatic variability in the Paradox Basin, Rocky Mountain Association of Geologists, Denver, The Paradox Basin Revisited, 265–308, edited by: Houston, W. S., Wray, L. L., and Moreland, P. G., 2009.
Eberth, D. A., Berman, D. S., Sumida, S. S., and Hopf, H.: Lower Permian terrestrial paleoenvironments and vertebrate paleoecology of the Tambach Basin (Thuringia, central Germany): the upland holy grail, Palaios, 15, 293–313, https://doi.org/10.1669/0883-1351(2000)015<0293:LPTPAV>2.0.CO;2, 2000.
European Commission: Geological Disposal of Radioactive Wastes Produced by Nuclear Power. From Concept to Implementation, Belgium, 43 pp., ISBN 9789289480901, 2004.
Evans, M. and Heller, F.: Environmental Magnetism: Principles and Applications of Enviromagnetics, 1st ed., Elsevier Science, San Diego, CA, 1–299 pp., ISBN 9780080505787, 2003.
Expedition 337 Scientists: in: Methods, edited by: Inagaki, F., Hinrichs, K.-U., Kubo, Y., and the Expedition 337 Scientists, Proc. IODP, 337: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). https://doi.org/10.2204/iodp.proc.337.102.2013, 2013.
Fielding, C. R., Frank, T. D., and Isbell, J. L.: The late Paleozoic ice age – a review of current understanding and synthesis of global climate patterns, Geol. Soc. Am. Spec. Paper, 441, 343–354, https://doi.org/10.1130/2008.2441(24), 2008.
Frederiksen, N. O.: The rise of the mesophytic flora, Geosci. Man, 4, 17–28, https://doi.org/10.2307/3687204, 1972.
Gastaldo, R. A., DiMichele, W. A., and Pfefferkorn, H. W.: Out of the icehouse into the greenhouse: a late Paleozoic analog for modern global vegetational change, GSA Today, 6, 1–7, 1996.
Gay, R. J., Huttenlocker, A. K., Irmis, R. B., Stegner, M. A., and Uglesich, J.: Paleontology of Bears Ears National Monument (Utah, USA): history of exploration, study, and designation, Geol. Intermount. West, 7, 205–241, https://doi.org/10.31711/giw.v7, 2020.
GEO Drilling Fluids, Inc.: About us, https://geodf.com/about-us/ (last access: 22 September 2023), 2023.
Golab, J. A.: The use of ichnofossils in geological and petrophysical characterizations of aquifers and reservoirs: examples from south-central Texas and southeast Utah, Dissertation, University of Kansas, Lawrence, Kansas, 1–195 pp., http://hdl.handle.net/1808/25778 (last access: 10 November 2023), 2016.
Golab, J. A., Smith, J. J., and Hasiotis, S. T.: Paleoenvironmental and paleogeographic implications of paleosols and ichnofossils in the Upper Pennsylvanian Halgaito Formation, southeastern Utah, Palaios, 33, 296–311, https://doi.org/10.2110/palo.2017.074, 2018.
Goldhammer, R. K., Oswald, E. J., and Dunn, P. A.: Hierarchy of stratigraphic forcing: example from Middle Pennsylvanian shelf carbonates of the Paradox Basin, Kansas Geological Survey Bulletin, 233, 361–413, 1991.
Gose, W. A. and Helsley, C. E.: Paleomagnetic and rock-magnetic studies of the Permian Cutler and Elephant Canyon formations in Utah, J. Geophys. Res., 77, 1534–1548, https://doi.org/10.1029/JB077i008p01534, 1972.
Gregory, H. E.: The San Juan country: a geographic and geologic reconnaissance of southeastern Utah, U.S. Geological Survey Professional Paper 188, 1–123, 1938.
Guthrie, J. M. and Bohacs, K. M.: Spatial variability of source rocks: a critical element for defining the petroleum system of Pennsylvanian carbonate reservoirs of the Paradox Basin, SE Utah, RMAG Special Publication, Denver, edited by: Houston, W. S., Wray, L. L., and Moreland, P. G., 2009.
Hansen, F. D. and Leigh, C. D.: Salt Disposal of Heat-Generating Nuclear Waste, Albuquerque, New Mexico, U.S. Department of Energy Office of Scientific and Technical Information Technical Report, 1–110 pp., https://doi.org/10.2172/1005078, 2011.
Henderson, C. M.: Permian conodont biostratigraphy, Geological Society of London Special Publications, 450, 119–142, https://doi.org/10.1144/SP450.9, 2018.
Henderson, C. M., Pinard, S., and Beauchamp, B.: Biostratigraphic and sequence stratigraphic relationships of Upper Carboniferous conodont and foraminifer distribution, Canadian Arctic Archipelago, Bull. Can. Petrol. Geol., 43, 226–246, https://doi.org/10.35767/GSCPGBULL.43.2.226, 1995.
Hintze, L. F., Willis, G. C., Laes, D. Y. M., Sprinkel, D. A., and Brown, K. D.: Digital geologic map of Utah, Utah Geological Survey, 2000.
Hite, R. J. and Buckner, D. H.: Stratigraphic correlations, facies concepts, and cyclicity in Pennsylvanian rocks of the Paradox Basin, in: Rocky Mountain Association of Geologists, Geology of the Paradox Basin, edited by: Wiegand, D. L., 147–159, 1981.
Horton, D. E., Poulsen, C. J., Montañez, I. P., and DiMichele, W. A.: Eccentricity-paced late Paleozoic climate change, Palaeogeogr. Palaeoclimatol. Palaeoecol., 331–332, https://doi.org/10.1016/j.palaeo.2012.03.014, 2012.
Hounslow, M. W. and Balabanov, Y. P.: A geomagnetic polarity timescale for the Permian, calibrated to stage boundaries, Geological Society of London Special Publications, 450, 63–103, https://doi.org/10.1144/SP450.8, 2016.
Huttenlocker, A. K., Henrici, A., Nelson, W. J., Elrick, S., Berman, D. S., Schlotterbeck, T., and Sumida, S. S.: A multitaxic bonebed near the Carboniferous–Permian boundary (Halgaito Formation, Cutler Group) in Valley of the Gods, Utah, USA: vertebrate paleontology and taphonomy, Palaeogeogr. Palaeoclimatol. Palaeoecol., 499, 72–92, https://doi.org/10.1016/j.palaeo.2018.03.017, 2018.
Huttenlocker, A. K., Henderson, C. M., Berman, D. S., Elrick, S. D., Henrici, A. C., and Nelson, W. J.: Carboniferous–Permian conodonts and the age of the lower Cutler Group in the Bears Ears National Monument and vicinity, Utah, USA, Lethaia, 54, 330–340, https://doi.org/10.1111/let.12405, 2021.
Interagency Review Group on Nuclear Waste Management: Report to the President by the Interagency Review Group on Nuclear Waste Management, Washington, DC (USA), 90 pp., 1978.
Isbell, J. L., Henry, L. C., Gulbranson, E. L., Limarino, C. O., Fraiser, M. L., Koch, Z. J., Ciccioli, P. L., and Dineen, A. A.: Glacial paradoxes during the late Paleozoic ice age: evaluating the equilibrium line altitude as a control on glaciation, Gondwana Research, 22, 1–19, https://doi.org/10.1016/j.gr.2011.11.005, 2012.
Ito, E., Higgins, S., Jenkins, C., Leigh, J., Johnson, A., and Grivna, B.: Corelyzer. v2.2.2, Continental Scientific Drilling Facility, Minneapolis, https://github.com/corewall/corelyzer (last access: 15 January 2024), 2023
Jordan, O. D. and Mountney, N. P.: Styles of interaction between aeolian, fluvial and shallow marine environments in the Pennsylvanian to Permian lower Cutler beds, south-east Utah, USA, Sedimentology, 57, 1357–1385, https://doi.org/10.1111/j.1365-3091.2010.01148.x, 2010.
Jordan, O. D. and Mountney, N. P.: Sequence stratigraphic evolution and cyclicity of an ancient coastal desert system: the Pennsylvanian-Permian lower Cutler beds, Paradox Basin, Utah, U.S.A., J. Sediment. Res., 82, 755–780, https://doi.org/10.2110/jsr.2012.54, 2012.
Keeney, R. L.: An analysis of the portfolio of sites to characterize for selecting a nuclear repository, Risk Anal., 7, 195–218, https://doi.org/10.1111/j.1539-6924.1987.tb00982.x, 1987.
Kent, D. V. and Muttoni, G.: Pangea B and the Late Paleozoic Ice Age, Palaeogeogr. Palaeoclimatol. Palaeoecol., 553, 109753, https://doi.org/10.1016/j.palaeo.2020.109753, 2020.
Kent, D. V., Olsen, P. E., and Muttoni, G.: Astrochronostratigraphic polarity time scale (APTS) for the Late Triassic and Early Jurassic from continental sediments and correlation with standard marine stages, Earth Sci. Rev., 166, 153–180, https://doi.org/10.1016/j.earscirev.2016.12.014, 2017.
Kent, D. V., Olsen, P. E., Rasmussen, C., Lepre, C., Mundil, R., Irmis, R. B., Gehrels, G. E., Giesler, D., Geissman, J. W., and Parkerh, W. G.: Empirical evidence for stability of the 405-kiloyear Jupiter-Venus eccentricity cycle over hundreds of millions of years, P. Natl. Acad. Sci. USA, 115, 6153–6158, https://doi.org/10.1073/pnas.1800891115, 2018.
Korte, C. and Ullmann, C. V.: Permian strontium isotope stratigraphy, Geological Society of London Special Publications, 450, 105–118, https://doi.org/10.1144/SP450.5, 2018.
Korte, C., Jasper, T., Kozur, H. W., and Veizer, J.: record of Permian seawater, Palaeogeogr. Palaeoclimatol. Palaeoecol., 240, 89–107, https://doi.org/10.1016/j.palaeo.2006.03.047, 2006.
Langford, R. and Chan, M. A.: Flood surfaces and deflation surfaces within the Cutler Formation and Cedar Mesa Sandstone (Permian), southeastern Utah, Bull. Geol. Soc. Am., 100, 1541–1549, https://doi.org/10.1130/0016-7606(1988)100<1541:FSADSW>2.3.CO;2, 1988.
Langford, R. P. and Salsman, A.: Facies geometries and climatic influence on stratigraphy in the eolian-sabkha transition in the Permian Cedar Mesa Sandstone, SE Utah, Utah Geological Association Publication 43, 275–294, 2014.
Lantink, M. L., Davies, J. H. F. L., Mason, P. R. D., Schaltegger, U., and Hilgen, F. J.: Climate control on banded iron formations linked to orbital eccentricity, Nat. Geosci., 12, 369–374, https://doi.org/10.1038/s41561-019-0332-8, 2019.
Lewis, R. Q., Campbell, R. H., Thaden, R. E., Krummel, W. J. Jr., Willis, G. C., and Matyjasik B.: Geologic map of Elk Ridge and vicinity, San Juan County, Utah (modified from U.S. Geological Survey Professional Paper 474-B), Utah Geological Survey Miscellaneous Publication, 11–1DM, 1–13, https://doi.org/10.34191/mp-11-1dm, 2011.
Liu, Q., Roberts, A. P., Larrasoaa, J. C., Banerjee, S. K., Guyodo, Y., Tauxe, L., and Oldfield, F.: Environmental magnetism: principles and applications, Rev. Geophys., 50, RG4002, https://doi.org/10.1029/2012RG000393, 2012.
Loope, D. B.: Eolian origin of Upper Paleozoic sandstones, southeastern Utah, J. Sediment. Petrol., 54, 563–580, https://doi.org/10.1306/212F846D-2B24-11D7-8648000102C1865D, 1984.
Loope, D. B. and Watkins, D. K.: Pennsylvanian fossils replaced by red chert: early oxidation of pyritic precursors, J. Sediment. Petrol., 59, 375–386, https://doi.org/10.1306/212F8F99-2B24-11D7-8648000102C1865D, 1989.
Loope, D. B., Sanderson, G. A., and Verville, G. J.: Abandonment of the name “Elephant Canyon Formation” in southeastern Utah: physical and temporal implications, Mountain Geologist, 27, 119–130, 1990.
McArthur, J. M., Howarth, R. J., Shields, G. A., and Zhou, Y.: Strontium isotope stratigraphy, in: Geologic Time Scale 2020, edited by: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M., 211–238, Elsevier, Amsterdam, 2020.
McCleary, J.: Characterization of the Davis Canyon site, San Juan County, Utah, as a potential repository for the disposal of high level nuclear waste and spent fuel, Utah Geologic Association: Geology and Hydrology of Hazardous-Waste, Mining-Waste, Water-Waste, and Repository Sites in Utah, 209–222, https://doi.org/10.1016/0148-9062(91)91093-7, 1989.
Merkhofer, M. W. and Keeney, R. L.: A multiattribute utility analysis of alternative sites for the disposal of nuclear waste, Risk Anal., 7, 173–194, https://doi.org/10.1111/j.1539-6924.1987.tb00981.x, 1987.
Michel, L. A., Tabor, N. J., Montañez, I. P., Schmitz, M. D., and Davydov, V. I.: Chronostratigraphy and paleoclimatology of the Lodève Basin, France: evidence for a pan-tropical aridification event across the Carboniferous–Permian boundary, Palaeogeogr. Palaeoclimatol. Palaeoecol., 430, 118–131, https://doi.org/10.1016/J.PALAEO.2015.03.020, 2015.
Montañez, I. and Soreghan, G. S.: Earth's fickle climate: lessons learned from deep-time ice ages, Geotimes, 51, 24–27, http://www.geotimes.org/mar06/feature_deeptimeiceages.html (last access: 10 November 2023), 2006.
Montañez, I. P.: A Late Paleozoic climate window of opportunity, P. Natl. Acad. Sci. USA, 113, 2334–2336, https://doi.org/10.1073/pnas.1600236113, 2016.
Montañez, I. P. and Poulsen, C. J.: The late Paleozoic ice age: an evolving paradigm, Annu. Rev. Earth Planet Sci., 41, 629–656, https://doi.org/10.1146/annurev.earth.031208.100118, 2013.
Moore, K. D., Soreghan, G. S., and Sweet, D. E.: Stratigraphic and structural relations in the proximal Cutler Formation of the Paradox Basin: implications for timing of movement on the Uncompahgre Front, Mountain Geologist, 45, 49–68, 2008.
Mountney, N. P.: Periodic accumulation and destruction of aeolian erg sequences in the Permian Cedar Mesa Sandstone, White Canyon, southern Utah, USA, Sedimentology 53, 789–823, 2006.
Mountney, N. P. and Jagger, A.: Stratigraphic evolution of an aeolian erg margin system: the Permian Cedar Mesa Sandstone, SE Utah, USA, Sedimentology, 51, 713–743, https://doi.org/10.1111/j.1365-3091.2004.00646.x, 2004.
Murphy, K.: Eolian origin of upper Paleozoic red siltstones at Mexican Hat and Dark Canyon, southeastern Utah, Master's Thesis, University of Nebraska-Lincoln, Lincoln, Nebraska, 1–138 pp., 1987.
Nail, R. S.: Middle-Late Pennsylvanian fusulinid faunas from midcontinent North America and the Paradox Basin, Utah and Colorado, Dissertation, Texas Tech University, Lubbock, Texas, 1–371 pp., ISBN 9798641029290, 1996.
Nail, R. S., Barrick, J. E., and Williams, M. R.: Fusulinid and conodont biostratigraphy of sedimentary cycles in the middle and upper Pennsylvanian Honaker Trail Formation, western Paradox Basin, GSA Abstracts with Programs, 26, 56, 1994
Nail, R. S., Barrick, J. E., and Ritter, S. M.: Preliminary fusulinid and condodont biostratigraphy of the Honaker Trail Formation (late Middle Pennslvanian-Late Pennsylvanian) in the Gibson Dome 1 and Elk Ridge 1 cores, Paradox Basin, Utah Geological Association Guidebook, 25, 303–312, https://archives.datapages.com/data/uga/data/067/067001/303_ugs670303.htm (last access: 10 November 2023), 1996.
Olivier, M., Bourquin, S., Desaubliaux, G., Ducassou, C., Rossignol, C., Daniau, G., and Chaney, D.: The Late Paleozoic Ice Age in western equatorial Pangea: context for complex interactions among aeolian, alluvial, and shoreface sedimentary environments during the Late Pennsylvanian – early Permian, Gondwana Res., 124, 305–338, 2023.
Olsen, P. E. and Kent, D. V.: Long-period Milankovitch cycles from the Late Triassic and Early Jurassic of eastern North America and their implications for the calibration of the Early Mesozoic time–scale and the long–term behaviour of the planets, Philos. Trans. Roy. Soc. London A, 357, 1761–1786, https://doi.org/10.1098/rsta.1999.0400, 1999.
Olsen, P. E., Geissman, J. W., Kent, D. V., Gehrels, G. E., Mundil, R., Irmis, R. B., Lepre, C., Rasmussen, C., Giesler, D., Parker, W. G., Zakharova, N., Kürschner, W. M., Miller, C., Baranyi, V., Schaller, M. F., Whiteside, J. H., Schnurrenberger, D., Noren, A., Brady Shannon, K., O'Grady, R., Colbert, M. W., Maisano, J., Edey, D., Kinney, S. T., Molina-Garza, R., Bachman, G. H., Sha, J., and the CPCP team: Colorado Plateau Coring Project, Phase I (CPCP-I): a continuously cored, globally exportable chronology of Triassic continental environmental change from western North America, Sci. Dril., 24, 15–40, https://doi.org/10.5194/sd-24-15-2018, 2018.
Olsen, P. E., Laskar, J., Kent, D. V., Kinney, S. T., Reynolds, D. J., Sha, J., and Whiteside, J. H.: Mapping Solar System chaos with the geological orrery, P. Natl. Acad. Sci. USA, 116, 10664–10673, 2019.
Olson, E. C. and Vaughn, P. P.: The changes of terrestrial vertebrates and climates during the Permian of North America, Forma et functio, 3, 113–138, 1970.
Orkild, P. P.: Photogeologic map of the Bluff-6 quadrangle, San Juan County, Utah, U.S. Geological Survey IMAP, 53, https://doi.org/10.3133/i53, 1955.
O'Sullivan, R. B.: Geology of the Cedar Mesa-Boundary Butte area, San Juan County, Utah, U.S. Geological Survey Bulletin, 1186, 1–128, https://doi.org/10.3133/b1186, 1965.
Pardo, J. D., Small, B. J., Milner, A. R., and Huttenlocker, A. K.: Carboniferous–Permian climate change constrained early land vertebrate radiations, Nat. Ecol. Evol., 3, 200–206, https://doi.org/10.1038/s41559-018-0776-z, 2019.
Parrish, W. C.: Paleoenvironmental analysis of a Lower Permian bonebed and adjacent sediments, Wichita County, Texas, Palaeogeogr. Palaeoclimatol. Palaeoecol., 24, 209–237, https://doi.org/10.1016/0031-0182(78)90043-3, 1978.
Pearson, M. R., Benson, R. B. J., Upchurch, P., Fröbisch, J., and Kammerer, C. F.: Reconstructing the diversity of early terrestrial herbivorous tetrapods, Palaeogeogr. Palaeoclimatol. Palaeoecol., 372, 42–49, https://doi.org/10.1016/j.palaeo.2012.11.008, 2013.
Peterson, J. A. and Hite, R. J.: Pennsylvanian evaporite-carbonate cycles and their relation to petroleum occurrence, southern Rocky Mountains, Am. Assoc. Pet. Geol. Bull., 53, 884–908, https://doi.org/10.1306/5d25c807-16c1-11d7-8645000102c1865d, 1969.
Petrychenko, O. Y., Williams-Stroud, S. C., and Peryt, T. M.: The relationship of brine chemistry of the Pennsylvanian Paradox evaporite basin (southwestern USA) to secular variation in seawater chemistry, Geological Quarterly, 56, 25–40, 2012.
Pettigrew, R. P., Priddy, C., Clarke, S. M., Warke, M. R., Stüeken, E. E., and Claire, M. W.: Sedimentology and isotope geochemistry of transitional evaporitic environments within arid continental settings: from erg to saline lakes, Sedimentology, 68, 907–942, https://doi.org/10.1111/sed.12816, 2021.
Pfeifer, L. S., Hinnov, L., Zeeden, C., Rolf, C., Laag, C., and Soreghan, G. S.: Rock magnetic cyclostratigraphy of Permian loess in eastern equatorial Pangea (Salagou Formation, south-central France), Front. Earth Sci., 8, 241, 1–13, https://doi.org/10.3389/feart.2020.00241, 2020.
Pierce, W. G. and Rich, E. I.: Summary of rock salt deposits in the United States as possible storage sites for radioactive waste materials, US Geological Survey Bulletin 1148, 1–91, 1962.
Rasmussen, D. L. and Rasmussen, L.: Regional cross sections of the Paradox Basin, in: Subsurface Cross Sections of Southern Rocky Mountains, edited by: Rasmussen, L., Payne, J., and Curnella, S. P., Rocky Mountain Association of Geologists, Denver, 24–27, 2018.
Raup, O. B. and Hite, R. J.: Bromine geochemistry of chloride rocks of the Middle Pennsylvanian Paradox Formation of the Hermosa Group, Paradox Basin, Utah and Colorado, US Geological Survey Bulletin, 2000 M, 1–117, https://doi.org/10.3133/b00M, 1996.
Reed, J. A., Cervato, C., and Fils, D.: PSICAT: a new open-source core description application, in: The Paleontological Stratigraphic Interval Construction and Analysis Tool, Iowa State University, Ames, Iowa, 15–22, 2007.
Reese, A.: The bones of Bears Ears, Science, 363, 218–220, https://doi.org/10.1126/science.363.6424.218, 2019.
Reisz, R. R. and Fröbisch, J.: The oldest caseid synapsid from the late Pennsylvanian of Kansas, and the evolution of herbivory in terrestrial vertebrates, PLoS One, 9, e94518, https://doi.org/10.1371/journal.pone.0094518, 2014.
Reisz, R. R. and Sues, H.-D.: Herbivory in late Paleozoic and Triassic terrestrial vertebrates, in: Evolution of Herbivory in Terrestrial Vertebrates, Cambridge University Press, edited by: Sues, H.-D., 9–41, https://doi.org/10.1017/cbo9780511549717.003, 2000.
Ritter, S. M.: Upper Missourian–lower Wolfcampian (upper Kasimovian–lower Asselian) conodont biostratigraphy of the midcontinent, U.S.A., J. Paleontol., 69, 1139–1154, https://doi.org/https://doi.org/10.1017/S0022336000038129, 1995.
Ritter, S. M., Barrick, J. E., and Skinner, M. R.: Conodont sequence biostratigraphy of the Hermosa Group (Pennsylvanian) at Honaker Trail, Paradox Basin, Utah, J. Paleontol., 76, 495–517, https://doi.org/10.1017/S0022336000037331, 2002.
Romer, A. S.: The late Carboniferous vertebrate fauna of Kounova (Bohemia) compared with that of the Texas redbeds, Am. J. Sci., 243, 417–442, https://doi.org/10.2475/AJS.243.8.417, 1945.
Rowley, D. B., Raymond, A., Parrish, J. T., Lottes, A. L., Scotese, C. R., and Ziegler, A. M.: Carboniferous paleogeographic, phytogeographic, and paleoclimatic reconstructions, Int. J. Coal. Geol., 5, 7–42, https://doi.org/10.1016/0166-5162(85)90009-6, 1985.
Sahney, S., Benton, M. J., and Falcon-Lang, H. J.: Rainforest collapse triggered Carboniferous tetrapod diversification in Euramerica, Geology, 38, 1079–1082, https://doi.org/10.1130/G31182.1, 2010.
Scott, G. R.: Paleomagnetism of Carboniferous and Triassic strata from cratonic North America, Dissertation, The University of Texas at Dallas, Dallas, 1–172 pp., ISBN 9781083468468, 1975.
Scott, K. M.: Carboniferous–Permian boundary in the Halgaito Formation, Cutler Group, Valley of the Gods and surrounding area, southeastern Utah, in: The Carboniferous–Permian Transition, New Mexico Museum of Natural History and Science Bulletin, 60, 398–409, 2013.
Sears, J. D.: Geology of Comb Ridge and vicinity north of San Juan River, San Juan County, Utah, U.S. Geological Survey Bulletin, 1021-D, 167–207, https://doi.org/10.3133/b1021E, 1956.
Soreghan, M. J. and Soreghan, G. S. (Lynn): Whole-rock geochemistry of upper Paleozoic loessite, western Pangaea: implications for paleo-atmospheric circulation, Earth Planet Sci. Lett., 255, 117–132, https://doi.org/10.1016/j.epsl.2006.12.010, 2007.
Soreghan, G. S., Elmore, R. D., and Lewchuk, M. T.: Sedimentologic-magnetic record of western Pangean climate in upper Paleozoic loessite (lower Cutler beds, Utah), Geol. Soc. Am. Bull., 114, 1019–1035, 2002a.
Soreghan, M. J., Soreghan, G. S. (Lynn), and Hamilton, M. A.: Paleowinds inferred from detrital-zircon geochronology of upper Paleozoic loessite, western equatorial Pangea, Geology, 30, 695–698, https://doi.org/10.1130/0091-7613(2002)030<0695:PIFDZG>2.0.CO;2, 2002b.
Soreghan, G. S., Soreghan, M. J., and Hamilton, M. A.: Origin and significance of loess in late Paleozoic western Pangaea: a record of tropical cold?, Palaeogeogr. Palaeoclimatol. Palaeoecol., 268, 234–259, https://doi.org/10.1016/j.palaeo.2008.03.050, 2008.
Soreghan, G. S., Beccaletto, L., Benison, K. C., Bourquin, S., Feulner, G., Hamamura, N., Hamilton, M., Heavens, N. G., Hinnov, L., Huttenlocker, A., Looy, C., Pfeifer, L. S., Pochat, S., Sardar Abadi, M., Zambito, J., and the Deep Dust workshop participants: Report on ICDP Deep Dust workshops: probing continental climate of the late Paleozoic icehouse–greenhouse transition and beyond, Sci. Dril., 28, 93–112, https://doi.org/10.5194/sd-28-93-2020, 2020.
Soreghan, G. S., Heavens, N. G., Pfeifer, L. S., and Soreghan, M. J.: Dust and loess as archives and agents of climate and climate change in the late Paleozoic Earth system, Geological Society, London, Special Publications, 535, 195–223, https://doi.org/10.1144/sp535-2022-208, 2023.
Stanesco, J. D. and Campbell, J. A.: Eolian and noneolian facies of the Lower Permian Cedar Mesa Sandstone Member of the Cutler Formation, southeastern Utah, U.S. Geological Survey Bulletin, 1808-F, 1–13 https://doi.org/10.3133/b1808EF, 1989.
Stuckless, J. S. and Levich, R. A.: The road to Yucca Mountain – evolution of nuclear waste disposal in the United States, Environ. Eng. Geosci., 22, 1–25, https://doi.org/10.2113/gseegeosci.22.1.1, 2016.
Sues, H. D. and Reisz, R. R.: Origins and early evolution of herbivory in tetrapods, Trends in Ecology & Evolution, 13, 141–145, https://doi.org/10.1016/S0169-5347(97)01257-3, 1998.
Sweet, D. E., Brotherton, J. L., Chowdhury, N. U. M. K., and Ramsey, C. E.: Tectonic subsidence analysis of the Ancestral Rocky Mountains from the interior to the southern margin, Palaeogeogr. Palaeoclimatol. Palaeoecol., 576, 110508, https://doi.org/10.1016/j.palaeo.2021.110508, 2021.
Tabor, N. J. and Poulsen, C. J.: Palaeoclimate across the Late Pennsylvanian-Early Permian tropical palaeolatitudes: a review of climate indicators, their distribution, and relation to palaeophysiographic climate factors, Palaeogeogr. Palaeoclimatol. Palaeoecol., 268, 293–310, https://doi.org/10.1016/j.palaeo.2008.03.052, 2008.
Thackston, J. W., Preslo, L. M., Hoexter, D. E., and Donnelly, N.: Results of hydraulic tests at Gibson Dome No. 1, Elk Ridge No. 1, and E. J. Kubat boreholes, Paradox Basin, Utah, Office of Nuclear Waste Isolation Technical Report, Battelle Memorial Institute, Columbus, 1–99, 1984.
Tobey, D. E.: Water and Wind: The fluvial and eolian forces behind the Pennsylvanian-Permian Halgaito Formation, Utah, Dissertation, Dalhousie University, Halifax, Nova Scotia, 1–103 pp., http://hdl.handle.net/10222/79933 (last access: 10 November 2023), 2020.
Tromp, D. E.: Clays as indicators of depositional and diagenetic conditions in Pennsylvanian black shales, Paradox Basin, Utah and Colorado, Dissertation, Colorado School of Mines, Golden, Colorado, 1–168 pp., https://hdl.handle.net/11124/176268 (last access: 10 November 2023), 1995.
Tuttle, M. L., Klett, T. R., Richardson, M., and Breit, G. N.: Geochemistry of two interbeds in the Pennsylvanian Paradox Formation, Utah and Colorado – a record of deposition and diagenesis of repetitive cycles in a marine basin, US Geological Survey Bulletin, 2000-N, 1–86, https://doi.org/10.3133/b00N, 1996.
Uhl, D., Lausberg, S., Noll, R., and Stapf, K. R. G.: Wildfires in the late Palaeozoic of central Europe – an overview of the Rotliegend (Upper Carboniferous–Lower Permian) of the Saar–Nahe Basin (SW-Germany), Palaeogeogr. Palaeoclimatol. Palaeoecol., 207, 23–35, https://doi.org/10.1016/J.PALAEO.2004.01.019, 2004.
U.S. Department of Energy: Environmental Assessment Overview: Davis Canyon Site, Utah, Washington D.C., 38 pp., 1986.
van Hinsbergen, D. J. J., de Groot, L. V, van Schaik, S. J., Spakman, W., Bijl, P. K., Sluijs, A., Langereis, C. G., and Brinkhuis, H.: A paleolatitude calculator for paleoclimate studies, PLoS One, 10, e0126946, https://doi.org/10.1371/journal.pone.0126946, 2015.
Vaughn, P. P.: Comparison of the Early Permian vertebrate faunas of the Four Corners region and north-central Texas, Los Angeles County Museum Contributions in Science, 105, 1–13, https://doi.org/10.5962/p.241094, 1966.
Vaughn, P. P.: Lower Permian vertebrates of the Four Corners and the Midcontinent as indices of climatic differences, in: Proceedings of the North American Paleontological Congress, edited by: Yochelson, E. L., Vol. 1969, Allen Press, Lawrence, KS, USA, 388–408, 1970.
Veizer, J.: Strontium isotopes in seawater through time, Annu. Rev. Earth Planet Sci., 17, 141–167, https://doi.org/10.1146/annurev.ea.17.050189.001041, 1989.
Verosub, K. L. and Roberts, A. P.: Environmental magnetism: past, present, and future, J. Geophys. Res., 100, 2175–2192, https://doi.org/10.1029/94JB02713, 1995.
Wardlaw, B. R.: Age assignment of the Pennsylvanian-Early Permian succession of north central Texas, Permophiles, 46, 21–22, 2005.
Wardlaw, B. R. and Nestell, M. K.: The first appearance of Streptognathodus isolatus in the Permian of Texas, Permophiles, 59, 17–20, 2014.
Wengerd, S. A.: Pennsylvanian Stratigraphy, Southwest Shelf, Paradox Basin, Intermountain Association of Petroleum Geologists: Guidebook to the Geology of the Paradox Basin, 109–134, 1958.
Wengerd, S. A.: Stratigraphic section at Honaker Trail, San Juan Canyon, San Juan County, Utah, Four Corners Geological Society Guidebook, 4, 236–243, 1963.
Whidden, K. J., Lillis, P. G., Anna, L. O., Pearson, K. M., and Dubiel, R. F.: Geology and total petroleum systems of the Paradox Basin, Utah, Colorado, New Mexico, and Arizona, The Mountain Geologist, 51, 119–138, 2014.
Williams, M. R.: Stratigraphy of Upper Pennsylvanian cyclic carbonate and siliciclastic rocks, western Paradox Basin, Utah, in: The Paradox Basin Revisited – New Developments in Petroleum Systems and Basin Analysis, edited by: Houston, W. S., Wray, L. L., and Moreland, P. G., Rocky Mountain Association of Geologists, Denver, 381–435, 2009.
Woodward-Clyde Consultants: Completion report for Elk Ridge no. 1 borehole, Elk Ridge study area of the Paradox Basin region, San Juan County, Utah: Topical Report, San Francisco, California, 1–803 pp., 1982a.
Woodward-Clyde Consultants: Geologic Characterization Report for the Paradox Basin Study Region Utah Study Areas – Volume III: Elk Ridge, Woodward-Clyde Consultants, 1–172 pp., 1982b.
Short summary
We present initial results from the upper 450 m of ER-1, a legacy core collected from modern-day Bears Ears National Monument, Utah, USA. This section contains a relatively complete record of Upper Carboniferous to Early Permian sediments, providing a unique window on Earth's last icehouse–hothouse transition. Ongoing research will tie our results to important fossil sites, allowing us to better understand how this climate shift contributed to the evolution of terrestrial life.
We present initial results from the upper 450 m of ER-1, a legacy core collected from modern-day...