Articles | Volume 33, issue 2
https://doi.org/10.5194/sd-33-249-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/sd-33-249-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
International Continental Scientific Drilling Program (ICDP) workshop on the Fucino paleolake project: the longest continuous terrestrial archive in the MEditerranean recording the last 5 Million years of Earth system history (MEME)
Biagio Giaccio
CORRESPONDING AUTHOR
Istituto di Geologia Ambientale e Geoingegneria, IGAG-CNR, 00015 Monterotondo, Rome, Italy
Bernd Wagner
Institute of Geology and Mineralogy, University of Cologne, Cologne, Germany
Giovanni Zanchetta
Dipartimento di Scienze della Terra, University of Pisa, Pisa, Italy
Adele Bertini
Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Firenze, Italy
Gian Paolo Cavinato
Istituto di Geologia Ambientale e Geoingegneria, IGAG-CNR, 00015 Monterotondo, Rome, Italy
Roberto de Franco
Istituto di Geologia Ambientale e Geoingegneria, IGAG-CNR, 00015 Monterotondo, Rome, Italy
Fabio Florindo
Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy
David A. Hodell
Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, United Kingdom
Thomas A. Neubauer
SNSB – Bavarian State Collection for Paleontology and Geology, Munich, Germany
Sebastien Nomade
Laboratoire de Sciences du Climat et de l'Environnement, CEA, UMR 8212, UVSQ, IPSL, Gif-sur-Yvette, France
Laboratory GEOPS, Université de Paris-Saclay, Gif-sur-Yvette, France
Alison Pereira
Laboratory GEOPS, Université de Paris-Saclay, Gif-sur-Yvette, France
Laura Sadori
Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Rome, Italy
Sara Satolli
Dipartimento di Ingegneria e Geologia, Università degli Studi G. d'Annunzio di Chieti–Pescara, Chieti–Pescara, Italy
Polychronis C. Tzedakis
Environmental Change Research Centre, Department of Geography, University College London, London, WC1E 6BT, United Kingdom
Paul Albert
Department of Geography, Swansea University, Swansea, SA2 8PP, United Kingdom
Paolo Boncio
Dipartimento di Ingegneria e Geologia, Università degli Studi G. d'Annunzio di Chieti–Pescara, Chieti–Pescara, Italy
Cindy De Jonge
Biogeoscience Group, Geological Institute, ETH Zurich, Zurich, Switzerland
Alexander Francke
School of Physics, Chemistry, and Earth Sciences, Faculty of Science, Engineering and Technology, University of Adelaide, Adelaide, SA 5005, Australia
Christine Heim
Institute of Geology and Mineralogy, University of Cologne, Cologne, Germany
Alessia Masi
Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Rome, Italy
Marta Marchegiano
Departamento de Estratigrafía y Paleontología, Universidad de Granada, 18002 Granada, Spain
Helen M. Roberts
Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, SY23 3DB, United Kingdom
Anders Noren
Continental Scientific Drilling Facility, University of Minnesota, Minneapolis, MN 55455, USA
A full list of authors appears at the end of the paper.
Related authors
Silvia Massaro, Manuel Stocchi, Beatriz Martínez Montesinos, Laura Sandri, Jacopo Selva, Roberto Sulpizio, Biagio Giaccio, Massimiliano Moscatelli, Edoardo Peronace, Marco Nocentini, Roberto Isaia, Manuel Titos Luzón, Pierfrancesco Dellino, Giuseppe Naso, and Antonio Costa
Nat. Hazards Earth Syst. Sci., 23, 2289–2311, https://doi.org/10.5194/nhess-23-2289-2023, https://doi.org/10.5194/nhess-23-2289-2023, 2023
Short summary
Short summary
A new methodology to calculate a probabilistic long-term tephra fallout hazard assessment in southern Italy from the Neapolitan volcanoes is provided. By means of thousands of numerical simulations we quantify the mean annual frequency with which the tephra load at the ground exceeds critical thresholds in 50 years. The output hazard maps account for changes in eruptive regimes of each volcano and are also comparable with those of other natural disasters in which more sources are integrated.
Nicola C. Thomas, Heather L. Ford, Mervyn Greaves, and David A. Hodell
EGUsphere, https://doi.org/10.5194/egusphere-2025-4566, https://doi.org/10.5194/egusphere-2025-4566, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
We reconstruct interbasinal temperature and salinity gradients using stacked Mg/Ca and benthic δ¹⁸O records for the past 1.5 Myr. Across the Middle Pleistocene Transition, the deep Atlantic cooled and the Pacific became more saline, increasing deep ocean density stratification. The glacial ocean became a more effective carbon trap, which lowered atmospheric pCO2, and led to the growth of larger ice sheets. Results support a physical role for abyssal ocean stratification in explaining the MPT.
Timothy J. Pollard, Jon D. Woodhead, Russell N. Drysdale, R. Lawrence Edwards, Xianglei Li, Ashlea N. Wainwright, Mathieu Pythoud, Hai Cheng, John C. Hellstrom, Ilaria Isola, Eleonora Regattieri, Giovanni Zanchetta, and Dylan S. Parmenter
Geochronology, 7, 335–355, https://doi.org/10.5194/gchron-7-335-2025, https://doi.org/10.5194/gchron-7-335-2025, 2025
Short summary
Short summary
The uranium–thorium (U–Th) and uranium–lead (U–Pb) radiometric dating methods are both suitable for dating carbonate samples ranging in age from about 400 000 to 650 000 years. Here we test agreement between the two methods by dating speleothems (i.e. secondary cave mineral deposits) that are well-suited to both methods. We demonstrate excellent agreement between them and discuss their relative strengths and weaknesses.
Léa d'Oliveira, Sébastien Joannin, Guillemette Ménot, Nathalie Combourieu-Nebout, Lucas Dugerdil, Marion Blache, Mary Robles, Assunta Florenzano, Alessia Masi, Anna Maria Mercuri, Laura Sadori, Marie Balasse, and Odile Peyron
EGUsphere, https://doi.org/10.5194/egusphere-2025-1106, https://doi.org/10.5194/egusphere-2025-1106, 2025
Short summary
Short summary
We studied climate change in the central Mediterranean during the Holocene by analysing 38 pollen records. Several methods were used to obtain reliable results on seasonal temperatures and precipitation. Our results show that, during the Holocene, summer temperatures were colder in the south and warmer in the north, with wetter winters and drier summers, especially in the south. Unlike winter conditions, summers ones did not follow variations in insolation, suggesting other factors.
Dael Sassoon, Nathalie Combourieu-Nebout, Odile Peyron, Adele Bertini, Francesco Toti, Vincent Lebreton, and Marie-Hélène Moncel
Clim. Past, 21, 489–515, https://doi.org/10.5194/cp-21-489-2025, https://doi.org/10.5194/cp-21-489-2025, 2025
Short summary
Short summary
Climatic reconstructions of Marine Isotope Stages (MISs) 19, 11, and 5 and the current interglacial (MIS 1) based on pollen data from a marine core (Alboran Sea) show that, compared with MIS 1, MIS 19 was colder and highly variable, MIS 11 was longer and more stable, and MIS 5 was warmer. There is no real equivalent to the current interglacial, but past interglacials give insights into the sensitivity of the southwestern Mediterranean to global climatic changes in conditions similar to MIS 1.
Marion Peral, Marta Marchegiano, Weronika Wierny, Inigo A. Müller, Johan Vellekoop, Zofia Dubicka, Maciej J. Bojanowski, Steven Goderis, and Philippe Claeys
EGUsphere, https://doi.org/10.5194/egusphere-2025-502, https://doi.org/10.5194/egusphere-2025-502, 2025
Short summary
Short summary
Around 70 million years ago, during the Late Cretaceous, Earth’s climate was undergoing long-term cooling despite high CO₂ levels. Using an advanced temperature reconstruction technique, we analyzed foraminifer fossils from the European Chalk Sea. Our results show highly variable surface waters, likely influenced by freshwater inputs or upwelling, while deeper waters remained warm and stable, possibly influenced by shifting ocean currents. This improves our understanding of past ocean dynamics.
Jonathan M. G. Stine, Joshua M. Feinberg, Adam K. Huttenlocker, Randall B. Irmis, Declan Ramirez, Rashida Doctor, John McDaris, Charles M. Henderson, Michael T. Read, Kristina Brady Shannon, Anders Noren, Ryan O'Grady, Ayva Sloo, Patrick Steury, Diego P. Fernandez, Amy C. Henrici, and Neil J. Tabor
Sci. Dril., 33, 109–128, https://doi.org/10.5194/sd-33-109-2024, https://doi.org/10.5194/sd-33-109-2024, 2024
Short summary
Short summary
We present initial results from the upper 450 m of ER-1, a legacy core collected from modern-day Bears Ears National Monument, Utah, USA. This section contains a relatively complete record of Upper Carboniferous to Early Permian sediments, providing a unique window on Earth's last icehouse–hothouse transition. Ongoing research will tie our results to important fossil sites, allowing us to better understand how this climate shift contributed to the evolution of terrestrial life.
Catherine C. Beck, Melissa Berke, Craig S. Feibel, Verena Foerster, Lydia Olaka, Helen M. Roberts, Christopher A. Scholz, Kat Cantner, Anders Noren, Geoffery Mibei Kiptoo, James Muirhead, and the Deep Drilling in the Turkana Basin (DDTB) project team
Sci. Dril., 33, 93–108, https://doi.org/10.5194/sd-33-93-2024, https://doi.org/10.5194/sd-33-93-2024, 2024
Short summary
Short summary
The Deep Drilling in the Turkana Basin project seeks to determine the relative impacts of tectonics and climate on eastern African ecosystems. To organize goals for coring, we hosted a workshop in Nairobi, Kenya, which focused on how a 4 Myr sedimentary core from Turkana will uniquely address research objectives related to basin evolution, past climates and environments, and modern resources. We concluded that a Pliocene to modern record is best accomplished through a two-phase drilling project.
Mauro Antonio Di Vito, Ilaria Rucco, Sandro de Vita, Domenico Maria Doronzo, Marina Bisson, Mattia de' Michieli Vitturi, Mauro Rosi, Laura Sandri, Giovanni Zanchetta, Elena Zanella, and Antonio Costa
Solid Earth, 15, 405–436, https://doi.org/10.5194/se-15-405-2024, https://doi.org/10.5194/se-15-405-2024, 2024
Short summary
Short summary
We study the distribution of two historical pyroclastic fall–flow and lahar deposits from the sub-Plinian Vesuvius eruptions of 472 CE Pollena and 1631. The motivation comes directly from the widely distributed impact that both the eruptions and lahar phenomena had on the Campanian territory, not only around the volcano but also down the nearby Apennine valleys. Data on about 500 stratigraphic sections and modeling allowed us to evaluate the physical and dynamical impact of these phenomena.
Matteo Maron, Tetsuji Onoue, Sara Satolli, Katsuhito Soda, Honami Sato, Giovanni Muttoni, and Manuel Rigo
Clim. Past, 20, 637–658, https://doi.org/10.5194/cp-20-637-2024, https://doi.org/10.5194/cp-20-637-2024, 2024
Short summary
Short summary
For better knowledge of the climate perturbation that occurred in the lattermost part of the Triassic (Norian–Rhaetian), we investigated the geochemical and rock magnetic properties of the limestones of the Pignola–Abriola section (Lagonegro Basin, Italy). Our investigation revealed at least a major episode of enhanced weathering occurring in the late Norian (~217–211 Ma), possibly related to the Cimmerian orogen and/or the northward motion of Pangea across the equatorial humid belt.
Alice R. Paine, Isabel M. Fendley, Joost Frieling, Tamsin A. Mather, Jack H. Lacey, Bernd Wagner, Stuart A. Robinson, David M. Pyle, Alexander Francke, Theodore R. Them II, and Konstantinos Panagiotopoulos
Biogeosciences, 21, 531–556, https://doi.org/10.5194/bg-21-531-2024, https://doi.org/10.5194/bg-21-531-2024, 2024
Short summary
Short summary
Many important processes within the global mercury (Hg) cycle operate over thousands of years. Here, we explore the timing, magnitude, and expression of Hg signals retained in sediments of lakes Prespa and Ohrid over the past ∼90 000 years. Divergent signals suggest that local differences in sediment composition, lake structure, and water balance influence the local Hg cycle and determine the extent to which sedimentary Hg signals reflect local- or global-scale environmental changes.
Jonathan Obrist-Farner, Andreas Eckert, Peter M. J. Douglas, Liseth Perez, Alex Correa-Metrio, Bronwen L. Konecky, Thorsten Bauersachs, Susan Zimmerman, Stephanie Scheidt, Mark Brenner, Steffen Kutterolf, Jeremy Maurer, Omar Flores, Caroline M. Burberry, Anders Noren, Amy Myrbo, Matthew Lachniet, Nigel Wattrus, Derek Gibson, and the LIBRE scientific team
Sci. Dril., 32, 85–100, https://doi.org/10.5194/sd-32-85-2023, https://doi.org/10.5194/sd-32-85-2023, 2023
Short summary
Short summary
In August 2022, 65 scientists from 13 countries gathered in Antigua, Guatemala, for a workshop, co-funded by the US National Science Foundation and the International Continental Scientific Drilling Program. This workshop considered the potential of establishing a continental scientific drilling program in the Lake Izabal Basin, eastern Guatemala, with the goals of establishing a borehole observatory and investigating one of the longest continental records from the northern Neotropics.
Julia Homann, Niklas Karbach, Stacy A. Carolin, Daniel H. James, David Hodell, Sebastian F. M. Breitenbach, Ola Kwiecien, Mark Brenner, Carlos Peraza Lope, and Thorsten Hoffmann
Biogeosciences, 20, 3249–3260, https://doi.org/10.5194/bg-20-3249-2023, https://doi.org/10.5194/bg-20-3249-2023, 2023
Short summary
Short summary
Cave stalagmites contain substances that can be used to reconstruct past changes in local and regional environmental conditions. We used two classes of biomarkers (polycyclic aromatic hydrocarbons and monosaccharide anhydrides) to detect the presence of fire and to also explore changes in fire regime (e.g. fire frequency, intensity, and fuel source). We tested our new method on a stalagmite from Mayapan, a large Maya city on the Yucatán Peninsula.
Rodrigo Martínez-Abarca, Michelle Abstein, Frederik Schenk, David Hodell, Philipp Hoelzmann, Mark Brenner, Steffen Kutterolf, Sergio Cohuo, Laura Macario-González, Mona Stockhecke, Jason Curtis, Flavio S. Anselmetti, Daniel Ariztegui, Thomas Guilderson, Alexander Correa-Metrio, Thorsten Bauersachs, Liseth Pérez, and Antje Schwalb
Clim. Past, 19, 1409–1434, https://doi.org/10.5194/cp-19-1409-2023, https://doi.org/10.5194/cp-19-1409-2023, 2023
Short summary
Short summary
Lake Petén Itzá, northern Guatemala, is one of the oldest lakes in the northern Neotropics. In this study, we analyzed geochemical and mineralogical data to decipher the hydrological response of the lake to climate and environmental changes between 59 and 15 cal ka BP. We also compare the response of Petén Itzá with other regional records to discern the possible climate forcings that influenced them. Short-term climate oscillations such as Greenland interstadials and stadials are also detected.
Silvia Massaro, Manuel Stocchi, Beatriz Martínez Montesinos, Laura Sandri, Jacopo Selva, Roberto Sulpizio, Biagio Giaccio, Massimiliano Moscatelli, Edoardo Peronace, Marco Nocentini, Roberto Isaia, Manuel Titos Luzón, Pierfrancesco Dellino, Giuseppe Naso, and Antonio Costa
Nat. Hazards Earth Syst. Sci., 23, 2289–2311, https://doi.org/10.5194/nhess-23-2289-2023, https://doi.org/10.5194/nhess-23-2289-2023, 2023
Short summary
Short summary
A new methodology to calculate a probabilistic long-term tephra fallout hazard assessment in southern Italy from the Neapolitan volcanoes is provided. By means of thousands of numerical simulations we quantify the mean annual frequency with which the tephra load at the ground exceeds critical thresholds in 50 years. The output hazard maps account for changes in eruptive regimes of each volcano and are also comparable with those of other natural disasters in which more sources are integrated.
Sebastian Kreutzer, Steve Grehl, Michael Höhne, Oliver Simmank, Kay Dornich, Grzegorz Adamiec, Christoph Burow, Helen M. Roberts, and Geoff A. T. Duller
Geochronology, 5, 271–284, https://doi.org/10.5194/gchron-5-271-2023, https://doi.org/10.5194/gchron-5-271-2023, 2023
Short summary
Short summary
The concept of open data has become the modern science meme. Funding bodies and publishers support open data. However, the open data mandate frequently encounters technical obstacles, such as a lack of a suitable data format for data sharing and long-term data preservation. Such issues are often community-specific and demand community-tailored solutions. We propose a new human-readable data format for data exchange and long-term preservation of luminescence data called XLUM.
David A. Hodell, Simon J. Crowhurst, Lucas Lourens, Vasiliki Margari, John Nicolson, James E. Rolfe, Luke C. Skinner, Nicola C. Thomas, Polychronis C. Tzedakis, Maryline J. Mleneck-Vautravers, and Eric W. Wolff
Clim. Past, 19, 607–636, https://doi.org/10.5194/cp-19-607-2023, https://doi.org/10.5194/cp-19-607-2023, 2023
Short summary
Short summary
We produced a 1.5-million-year-long history of climate change at International Ocean Discovery Program Site U1385 of the Iberian margin, a well-known location for rapidly accumulating sediments on the seafloor. Our record demonstrates that longer-term orbital changes in Earth's climate were persistently overprinted by abrupt millennial-to-centennial climate variability. The occurrence of abrupt climate change is modulated by the slower variations in Earth's orbit and climate background state.
Lucas Bittner, Cindy De Jonge, Graciela Gil-Romera, Henry F. Lamb, James M. Russell, and Michael Zech
Biogeosciences, 19, 5357–5374, https://doi.org/10.5194/bg-19-5357-2022, https://doi.org/10.5194/bg-19-5357-2022, 2022
Short summary
Short summary
With regard to global warming, an understanding of past temperature changes is becoming increasingly important. Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are membrane lipids used globally to reconstruct lake water temperatures. In the Bale Mountains lakes, we find a unique composition of brGDGT isomers. We present a modified local calibration and a new high-altitude temperature reconstruction from the Horn of Africa spanning the last 12.5 kyr.
Takahito Mitsui, Polychronis C. Tzedakis, and Eric W. Wolff
Clim. Past, 18, 1983–1996, https://doi.org/10.5194/cp-18-1983-2022, https://doi.org/10.5194/cp-18-1983-2022, 2022
Short summary
Short summary
We provide simple quantitative models for the interglacial and glacial intensities over the last 800 000 years. Our results suggest that the memory of previous climate states and the time course of the insolation in both hemispheres are crucial for understanding interglacial and glacial intensities. In our model, the shift in interglacial intensities at the Mid-Brunhes Event (~430 ka) is ultimately attributed to the amplitude modulation of obliquity.
Eric W. Wolff, Hubertus Fischer, Tas van Ommen, and David A. Hodell
Clim. Past, 18, 1563–1577, https://doi.org/10.5194/cp-18-1563-2022, https://doi.org/10.5194/cp-18-1563-2022, 2022
Short summary
Short summary
Projects are underway to drill ice cores in Antarctica reaching 1.5 Myr back in time. Dating such cores will be challenging. One method is to match records from the new core against datasets from existing marine sediment cores. Here we explore the options for doing this and assess how well the ice and marine records match over the existing 800 000-year time period. We are able to recommend a strategy for using marine data to place an age scale on the new ice cores.
Paolo Boncio, Eugenio Auciello, Vincenzo Amato, Pietro Aucelli, Paola Petrosino, Anna C. Tangari, and Brian R. Jicha
Solid Earth, 13, 553–582, https://doi.org/10.5194/se-13-553-2022, https://doi.org/10.5194/se-13-553-2022, 2022
Short summary
Short summary
We studied the Gioia Sannitica normal fault (GF) within the southern Matese fault system (SMF) in southern Apennines (Italy). It is a fault with a long slip history that has experienced recent reactivation or acceleration. Present activity has resulted in late Quaternary fault scarps and Holocene surface faulting. The maximum slip rate is ~ 0.5 mm/yr. Activation of the 11.5 km GF or the entire 30 km SMF can produce up to M 6.2 or M 6.8 earthquakes, respectively.
Molly O. Patterson, Richard H. Levy, Denise K. Kulhanek, Tina van de Flierdt, Huw Horgan, Gavin B. Dunbar, Timothy R. Naish, Jeanine Ash, Alex Pyne, Darcy Mandeno, Paul Winberry, David M. Harwood, Fabio Florindo, Francisco J. Jimenez-Espejo, Andreas Läufer, Kyu-Cheul Yoo, Osamu Seki, Paolo Stocchi, Johann P. Klages, Jae Il Lee, Florence Colleoni, Yusuke Suganuma, Edward Gasson, Christian Ohneiser, José-Abel Flores, David Try, Rachel Kirkman, Daleen Koch, and the SWAIS 2C Science Team
Sci. Dril., 30, 101–112, https://doi.org/10.5194/sd-30-101-2022, https://doi.org/10.5194/sd-30-101-2022, 2022
Short summary
Short summary
How much of the West Antarctic Ice Sheet will melt and how quickly it will happen when average global temperatures exceed 2 °C is currently unknown. Given the far-reaching and international consequences of Antarctica’s future contribution to global sea level rise, the SWAIS 2C Project was developed in order to better forecast the size and timing of future changes.
Stephanie Scheidt, Matthias Lenz, Ramon Egli, Dominik Brill, Martin Klug, Karl Fabian, Marlene M. Lenz, Raphael Gromig, Janet Rethemeyer, Bernd Wagner, Grigory Federov, and Martin Melles
Geochronology, 4, 87–107, https://doi.org/10.5194/gchron-4-87-2022, https://doi.org/10.5194/gchron-4-87-2022, 2022
Short summary
Short summary
Levinson-Lessing Lake in northern central Siberia provides an exceptional opportunity to study the evolution of the Earth's magnetic field in the Arctic. This is the first study carried out at the lake that focus on the palaeomagnetic record. It presents the relative palaeointensity and palaeosecular variation of the upper 38 m of sediment core Co1401, spanning ~62 kyr. A comparable high-resolution record of this time does not exist in the Eurasian Arctic.
Fabrizio Marra, Alison Pereira, Brian Jicha, Sebastien Nomade, Italo Biddittu, Fabio Florindo, Giovanni Muttoni, Elizabeth Niespolo, Paul Renne, and Vincent Scao
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-161, https://doi.org/10.5194/cp-2021-161, 2021
Publication in CP not foreseen
Short summary
Short summary
We demonstrate that coarse gravel deposition in the catchment basins of the major rivers of central Italy is a direct proxy of global deglaciation events associated with meltwater pulses. By precise 40Ar/39Ar dating of the sedimentary deposits we show that emplacement of these gravel beds is closely coincident with discrete events of sea-level rise, with peaks of the Ice-rafted debris (IRD) curve, and with particularly mild (warmer) minima of mean summer insolation at 65° N.
Anna Joy Drury, Diederik Liebrand, Thomas Westerhold, Helen M. Beddow, David A. Hodell, Nina Rohlfs, Roy H. Wilkens, Mitchell Lyle, David B. Bell, Dick Kroon, Heiko Pälike, and Lucas J. Lourens
Clim. Past, 17, 2091–2117, https://doi.org/10.5194/cp-17-2091-2021, https://doi.org/10.5194/cp-17-2091-2021, 2021
Short summary
Short summary
We use the first high-resolution southeast Atlantic carbonate record to see how climate dynamics evolved since 30 million years ago (Ma). During ~ 30–13 Ma, eccentricity (orbital circularity) paced carbonate deposition. After the mid-Miocene Climate Transition (~ 14 Ma), precession (Earth's tilt direction) increasingly drove carbonate variability. In the latest Miocene (~ 8 Ma), obliquity (Earth's tilt) pacing appeared, signalling increasing high-latitude influence.
Bette L. Otto-Bliesner, Esther C. Brady, Anni Zhao, Chris M. Brierley, Yarrow Axford, Emilie Capron, Aline Govin, Jeremy S. Hoffman, Elizabeth Isaacs, Masa Kageyama, Paolo Scussolini, Polychronis C. Tzedakis, Charles J. R. Williams, Eric Wolff, Ayako Abe-Ouchi, Pascale Braconnot, Silvana Ramos Buarque, Jian Cao, Anne de Vernal, Maria Vittoria Guarino, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina A. Morozova, Kerim H. Nisancioglu, Ryouta O'ishi, David Salas y Mélia, Xiaoxu Shi, Marie Sicard, Louise Sime, Christian Stepanek, Robert Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, and Weipeng Zheng
Clim. Past, 17, 63–94, https://doi.org/10.5194/cp-17-63-2021, https://doi.org/10.5194/cp-17-63-2021, 2021
Short summary
Short summary
The CMIP6–PMIP4 Tier 1 lig127k experiment was designed to address the climate responses to strong orbital forcing. We present a multi-model ensemble of 17 climate models, most of which have also completed the CMIP6 DECK experiments and are thus important for assessing future projections. The lig127ksimulations show strong summer warming over the NH continents. More than half of the models simulate a retreat of the Arctic minimum summer ice edge similar to the average for 2000–2018.
Cited articles
Allan, R. P., Hawkins, E. , Bellouin, N. and Collins, B. IPCC: Summary for Policymakers, in: Climate Change: The Physical Science Basis, Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, 3–32, ISBN 978-92-9169-163-0, 2021.
Bajo, P., Drysdale, R. N., Woodhead, J. D., Hellstrom, J. C., Hodell, D., Ferretti, P., Voelker, A. H. L., Zanchetta, G., Rodrigues, T., Wolff, E., Tyler, J., Frisia, S.,and Spötl, C., and Fallick, A. E.: Persistent influence of obliquity onice age terminations since the Middle Pleistocene transition, Science, 367, 1235–1239, 2020.
Barker, S., Knorr, G., Edwards, R. L., Parrenin, F., Putnam, A. E., Skinner, L. C., Wolff, E., and Ziegler, M.: 800,000 years of abrupt climate variability, Science, 334, 347–351, 2011.
Berends, C. J., Kohler, P., Lourens, L. J., and van de Wal, R. S. W.: On the cause of the mid-Pleistocene transition, Rev. Geophys., 59, e2020RG000727, https://doi.org/10.1029/2020RG000727, 2021.
Bertini, A., Arcangeli, P., Bragagni, A., Casalini M., Cifelli, F., Conte, A. M., Conticelli, S., Cosentino, D., Deino, Alan, Di Salvo, S., Giaccio, B., Gliozzi, E., Huang, H., Iorio, M., Marchegiano, M., Mattei, M., Mondati, G., Nocentini, M., Petrelli, M., Regattieri, E., Sagnotti, L., Spadi, M., Tallini, M., and Zanchetta, G.: Before the Early Middle Pleistocene Transition: insights on the environmental variability and explosive activity in central Italy during the 1.5-2.1 Ma interval from the L'Aquila Basin lacustrine record, in: INQUA 2023, 14–20 July 2023, Sapienza University of Rome, Italy, Abstract, 16, Session 3, 2023.
Burke, K. D., Williams, J. W., Chandler, M. A., Haywood, A. M., Lunt, D. J., and Otto-Bliesner, B. L.: Pliocene and Eocene provide best analogs for near-future climates, P. Natl. Acad. Sci. USA, 115, 13288–13293, 2018.
Caielli, G., Maffucci, R., De Franco, R., Bigi, S., Parotto, M., Mollica, R., Gaudiosi, I., Simionato, M., Romanelli, M., De Marchi, N., and Cavinato, G. P.: Fucino basin structure revealed by the tomography and the reusing of the CROP11 seismic data, Tectonophysics, 865, 230043, https://doi.org/10.1016/j.tecto.2023.230043, 2023.
Cavinato, G. P., Carusi, C., Dall'Asta, M., Miccadei, E., and Piacentini, T.: Sedimentary and tectonic evolution of Plio–Pleistocene alluvial and lacustrine deposits of Fucino Basin (central Italy), Sediment. Geol., 148, 29–59, 2002.
Clark, P. U., Shakun, J. D., Rosenthal, Y., Köhler, P., and Bartlein, P. J.: Global and regional temperature change over the past 4.5 million years, Science, 383, 884–890, 2024.
Conte, A. M., Perinelli, C., Bianchini, G., Natali, C., Martorelli, E., and Chiocci, F. L.: New insights on the petrology of submarine volcanics from the Western Pontine Archipelago (Tyrrhenian Sea, Italy), J. Volcanol. Geoth. Res., 327, 223–239, 2016.
de la Vega, E., Chalk, T. B., Wilson, P. A., Bysani, R. P., and Foster, G. L.: Atmospheric CO2 during the Mid-Piacenzian Warm Period and the M2 glaciation, Scientific Reports, 10, 11002, https://doi.org/10.1038/s41598-020-67154-8, 2020.
Donders, T., Panagiotopoulos, K., Koutsodendris, A., Bertini, A., Mercuri, A. M., Masi, A., Combourieu-Nebout, N., Joannin, S., Kouli, K., Kousis, I., Peyron, O., Torri, P., Florenzano, A., Francke, A., Wagner, B., and Sadori, L.: 1.36 million years of Mediterranean forest refugium dynamics in response to glacialinterglacial cycle strength, P. Natl. Acad. Sci. USA, 118, e2026111118, https://doi.org/10.1073/pnas.2026111118, 2021.
Filippelli, G. M. and Flores, J. A.: From the warm Pliocene to the cold Pleistocene: A tale of two oceans, Geology, 37, 959–960, 2009.
Galadini, F. and Galli, P.: Active tectonics in the central Apennines (Italy) – input data for seismic hazard assessment, Nat. Hazards, 22, 225–270, 2000.
Galadini, F., Messina, P., and Giaccio, B., Sposato, A.:Early uplift history of the Abruzzi Apennines (central Italy): Available geomorphological constraints, Quatern. Int., 101–102, 125–135, 2003.
Galli, P., Messina, P., Giaccio, B., Peronace, E., and Quadrio, B.: Early Pleistocene to Late Holocene activity of the Magnola Fault (Fucino Fault System, central Italy), B. Geofis. Teor. Appl., 53, 435–458, 2012.
Galli, P., Giaccio, B., Messina, P., and Peronace, E.: Three magnitude 7 earthquakes on a single fault in central Italy in 1400 years, evidenced by new palaeoseismic results, Terra Nova, 28, 146–154, 2016.
Giaccio, B., Regattieri, E., Zanchetta, G., Wagner, B., Galli, P., Mannella, G., Niespolo, E., Peronace, E., Renne, P. R., Nomade, S., Cavinato, G. P., Messina, P., Sposato, A., Boschi, C., Florindo, F., Marra, F., and Sadori, L.: A key continental archive for the last 2 Ma of climatic history of the central Mediterranean region: A pilot drilling in the Fucino Basin, central Italy, Sci. Dril., 20, 13–19, https://doi.org/10.5194/sd-20-13-2015, 2015b.
Giaccio, B., Niespolo, E. M., Pereira, A., Nomade, S., Renne, P. R., Albert, P. G., Arienzo, I., Regattieri, E., Wagner, B., Zanchetta, G., Gaeta, M., Galli, P., Mannella, G., Peronace, E., Sottili, G., Florindo, F., Leicher, N., Marra, F., and Tomlinson, E. L.: First integrated tephrochronological record for the last ∼190 kyr from the Fucino Quaternary lacustrine succession, central Italy, Quaternary Sci. Rev., 158, 211–234, https://doi.org/10.1016/j.quascirev.2017.01.004, 2017.
Giaccio, B., Leicher, N., Mannella, G., Monaco, L., Regattieri, E., Wagner, B., Zanchetta, G., Gaeta, M., Marra, F., Nomade, S., Palladino, D. M., Pereira, A., Scheidt, S., Sottili, G., Wonik, T., Wulf, S., Zeeden, C., Ariztegui, D., Cavinato, G. P., Dean, J. R., Florindo, F., Leng, M. J., Macrì, P., Niespolo, E., Renne, P. R., Rolf, C., Sadori, L., Thomas, C., and Tzedakis, P. C.: Extending the tephra and palaeoenvironmental record of the Central Mediterranean back to 430 ka: A new core from Fucino Basin, central Italy, Quaternary Sci. Rev., 225, 106003, https://doi.org/10.1016/j.quascirev.2019.106003, 2019.
Giraudi, C. and Giaccio, B.: Middle Pleistocene glaciations in the Apennines, Italy: new chronological data and preservation of the glacial record, Geological Society, London, Special Publications, 433, 161–178, https://doi.org/10.1144/SP433.1, 2015.
Guillermic, M., Misra, S., Eagle, R., and Tripati, A.: Atmospheric CO2 estimates for the Miocene to Pleistocene based on foraminiferal δ11B at Ocean Drilling Program Sites 806 and 807 in the Western Equatorial Pacific, Clim. Past, 18, 183–207, https://doi.org/10.5194/cp-18-183-2022, 2022.
Haywood, A. M., Dowsett, H. J., Valdes, P. J., Lunt, D. J., Francis, J. E., and Sellwood, B. W.: Introduction. Pliocene climate, processes and problems, Philos. T. Roy. Soc. A, 367, 3–17, 2009.
Haywood, A. M., Dowsett, H., and Dolan, A.: Integrating geological archives and climate models for the mid-Pliocene warm period. Nat Commun 7, 10646, https://doi.org/10.1038/ncomms10646, 2016.
Haywood, A. M., Tindall, J. C., Dowsett, H. J., Dolan, A. M., Foley, K. M., Hunter, S. J., Hill, D. J., Chan, W.-L., Abe-Ouchi, A., Stepanek, C., Lohmann, G., Chandan, D., Peltier, W. R., Tan, N., Contoux, C., Ramstein, G., Li, X., Zhang, Z., Guo, C., Nisancioglu, K. H., Zhang, Q., Li, Q., Kamae, Y., Chandler, M. A., Sohl, L. E., Otto-Bliesner, B. L., Feng, R., Brady, E. C., von der Heydt, A. S., Baatsen, M. L. J., and Lunt, D. J.: The Pliocene Model Intercomparison Project Phase 2: large-scale climate features and climate sensitivity, Clim. Past, 16, 2095–2123, https://doi.org/10.5194/cp-16-2095-2020, 2020.
Head, M. J. and Gibbard, P. L.: Early–Middle Pleistocene transitions: linking terrestrial and marine realms, Quatern. Int., 389, 7–46, 2015.
Hodell, D. A., Channell, J. E., Curtis, J. H., Romero, O. E., and Röhl, U.: Onset of “Hudson Strait” Heinrich events in the eastern North Atlantic at the end of the middle Pleistocene transition (∼ 640 ka)?, Paleoceanography, 23, PA4218, https://doi.org/10.1029/2008PA001591, 2008.
Hodell, D. A., Abrantes, F., Alvarez Zarikian, C. A., and the Expedition 397 Scientists: Expedition 397 Preliminary Report: Iberian Margin Paleoclimate. International Ocean Discovery Program, https://doi.org/10.14379/iodp.pr.397.2023, 2023a.
Hodell, D. A., Crowhurst, S. J., Lourens, L., Margari, V., Nicolson, J., Rolfe, J. E., Skinner, L. C., Thomas, N. C., Tzedakis, P. C., Mleneck-Vautravers, M. J., and Wolff, E. W.: A 1.5-million-year record of orbital and millennial climate variability in the North Atlantic, Clim. Past, 19, 607–636, https://doi.org/10.5194/cp-19-607-2023, 2023b.
Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., Minster, B., Nouet, J., Barnola, J. M., Chappellaz, J., Fischer, H., Gallet, J. C., Johnsen, S., Leuenberger, M., Loulergue, L., Luethi, D., Oerter, H., Parrenin, F., Raisbeck, G., Raynaud, D., Schilt, A., Schwander, J., Selmo, E., Souchez, R., Spahni, R., Stauffer, B., Steffensen, J. P., Stenni, B., Stocker, T. F., Tison, J. L., Werner, M., and Wolff, E. W.: Orbital and millennial Antarctic climate variability over the past 800,000 years, Science, 317, 793–796, 2007.
Leicher, N., Giaccio, B., Pereira, A., Nomade, S., Monaco, L., Mannella, G., Galli, P., Peronance, E., Palladino, D. M., Sottili, G., Zanchetta, G., and Wagner, B.: Central Mediterranean tephrochronology between 313 and 366 ka: New insights from the Fucino palaeolake sediment succession, Boreas, 52, 240–271, 2023.
Leicher, N., Monaco, L., Giaccio, B., Nomade, S., Pereira, A., Mannella, G., Wulf, S., Sottili, G., Palladino, D., Zanchetta, G., and Wagner, B.: Central Mediterranean tephrochronology for the time interval 250–315 ka derived from the Fucino sediment succession, Boreas, 53, 164–185, https://doi.org/10.1111/bor.12637, 2024.
Lionello, P., Malanotte-Rizzoli, P., Boscolo, R., Alpert, P., Artale, V., Li, L., Luterbacher, J., May, W., Trigo, R., Tsimplis, M., Ulbrich, U., and Xoplaki, E.: The Mediterranean climate: an overview of the main characteristics and issues, Developments in Earth and Environmental Sciences, 4, 1–26, https://doi.org/10.1016/S1571-9197(06)80003-0, 2006.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography 20, PA1003, https://doi.org/10.1029/2004PA001071, 2005.
Lisiecki, L. E. and Raymo, M. E.: Plio–Pleistocene climate evolution: trends and transitions in glacial cycle dynamics, Quaternary Sci. Rev., 26, 56–69, 2007.
Mancinelli, P., Scisciani, V., Patruno, S., and Minelli, G.: Gravity modelling reveals a Messinian foredeep depocenter beneath the intermontane Fucino Basin (Central Apennines), Tectonophysics, 821, 229144, https://doi.org/10.1016/j.tecto.2021.229144, 2021.
Mannella, G., Giaccio, B., Zanchetta, G., Regattieri, E., Niespolo, E. M., Pereira, A., Renne, P. R., Nomade, S., Leicher, N., Perchiazzi, N., and Wagner, B.: Palaeoenvironmental and palaeohydrological variability of mountain areas in the central Mediterranean region: A 190 ka-long chronicle from the independently dated Fucino palaeolake record (central Italy), Quaternary Sci. Rev., 210, 190–210, 2019.
McManus, J. F., Oppo, D. W., and Cullen, J. L.: A 0.5-million-year record of millennial-scale climate variability in the North Atlantic, Science, 283, 971–975, 1999.
Melles, M., Brigham-Grette, J., Minyuk, P. S., Nowaczyk, N. R., Wennrich, V., DeConto, R. M., Anderson, P. M., Andreev, A. A., Coletti, A., Cook, T. L., Haltia-Hovi, E., Kukkonen, M., Lozhkin, A. V., Rosén, P., Tarasov, P., Vogel, H., and Wagner, B.: 2.8 million years of Arctic climate change from Lake El'gygytgyn, NE Russia, Science, 337, 315–320, 2012.
Milankovitch, M. R.: Canon of Insulation and the ice-Age Problem, Serb. Acad. Special Publ. 132, Belgrade, 1941.
Miller, K. G., Browning, J. V., Schmelz, W. J., Kopp, R. E., Mountain, G. S., and Wright, J. D.: Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records, Science Advances, 6, eaaz1346, https://doi.org/10.1126/sciadv.aaz1346, 2020.
Monaco, L., Palladino, D. M., Gaeta, M., Marra, F., Sottili, G., Leicher, N., Mannella, G., Nomade, S., Pereira, A., Regattieri, E., Wagner, B., Zanchetta, G., Albert, P. G., Arienzo, I., D'Antonio, M., Petrosino, P., Manning, C. J., and Giaccio, B.: Mediterranean tephrostratigraphy and peri-Tyrrhenian explosive activity reevaluated in light of the 430–365 ka record from Fucino Basin (central Italy), Earth-Sci. Rev., 220, 103706, https://doi.org/10.1016/j.earscirev.2021.103706, 2021.
Monaco, L., Leicher, N., Palladino, D. M., Arienzo, I., Marra, F., Petrelli, M., Nomade, S., Pereira, A., Sottili, G., Conticelli, S., D'Antonio, M., Fabbrizio, A., Jicha, B. R., Mannella, G., Petrosino, P., Regattieri, E., Tzedakis, P. C., Wagner, B., Zanchetta, G., and Giaccio, B.: The Fucino 250–170 ka tephra record: New insights on peri-Tyrrhenian explosive volcanism, central mediterranean tephrochronology, and timing of the MIS 8-6 climate variability, Quaternary Sci. Rev., 296, 107797, https://doi.org/10.1016/j.quascirev.2022.107797, 2022.
Naafs, B. D. A., Hefter, J., and Stein, R.: Millennial-scale ice rafting events and Hudson Strait Heinrich (-like) Events during the late Pliocene and Pleistocene: a review, Quaternary Sci. Rev., 80, 1–28, 2013.
Patacca, E., Scandone, P., Di Luzio, E., Cavinato, G., and Parotto, M.: Structural architecture of the central Apennines: interpretation of the CROP 11 seismic profile from the Adriatic coast to the orographic divide, Tectonics, 27, TC3006, https://doi.org/10.1029/2005TC001917, 2008.
Patruno, S. and Scisciani, V.: Testing normal fault growth models by seismic stratigraphic architecture: The case of the Pliocene-Quaternary Fucino Basin (Central Apennines, Italy), Basin Res., 33, 2118–2156, https://doi.org/10.1111/bre.12551, 2021.
Ravelo, A. C., Andreasen, D. H., Lyle, M., Olivarez Lyle, A., and Wara, M. W.: Regional climate shifts caused by gradual global cooling in the Pliocene epoch, Nature, 429, 263–267, 2004.
Raymo, M. E., Ganley, K., Carter, S., Oppo, D. W., and McManus, J.: Millennial-scale climate instability during the early Pleistocene epoch, Nature, 392, 699–702, 1998.
Regattieri, E., Giaccio, B., Zanchetta, G., Drysdale, R.N., Galli, P., Nomade, S., Peronace, E., and Wulf, S.: Hydrological variability over the Apennines during the Early Last Glacial precession minimum, as revealed by a stable isotope record from Sulmona basin, Central Italy, J. Quaternary Sci., 30, 19–31, 2015.
Regattieri, E., Giaccio, B., Galli, P., Nomade, S., Peronace, E., Messina, P., Sposato, A., Boschi, C., and Gemelli, M.: A multi-proxy record of MIS 11–12 deglaciation and glacial MIS 12 instability from the Sulmona Basin (central Italy), Quaternary Sci. Rev., 30, 19–31, 2016.
Regattieri, E., Giaccio, B., Mannella, G., Zanchetta, G., Nomade, S., Tognarelli, A., Perchiazzi, N., Vogel, H., Boschi, C., Drysdale, R.N., Wagner, B., Gemelli, M., and Tzedakis, P.: Frequency and dynamics of millennial-scale variability during Marine Isotope Stage 19: Insights from the Sulmona Basin (central Italy), Quaternary Sci. Rev., 214, 28–43, 2019.
Ronge, T. A., Nürnberg, D., and Tiedemann, R.: Plio-Pleistocene Variability of the East Pacific Thermocline and Atmospheric Systems, Paleoceanography and Paleoclimatology, 35, e2019PA003758, https://doi.org/10.1029/2019PA003758, 2020.
Sadori, L., Koutsodendris, A., Panagiotopoulos, K., Masi, A., Bertini, A., Combourieu-Nebout, N., Francke, A., Kouli, K., Joannin, S., Mercuri, A. M., Peyron, O., Torri, P., Wagner, B., Zanchetta, G., Sinopoli, G., and Donders, T. H.: Pollen-based paleoenvironmental and paleoclimatic change at Lake Ohrid (south-eastern Europe) during the past 500 ka, Biogeosciences, 13, 1423–1437, https://doi.org/10.5194/bg-13-1423-2016, 2016.
Shackleton, N. J., Hall, M. A., and Vincent, E.: Phase relationships between millennial-scale events 64,000–24,000 years ago, Paleoceanography, 15, 565–569, 2000.
Skelton, A., Andrén, M., Kristmannsdóttir, H., Stockmann, G., Mörth, C.-M., Sveinbjörnsdóttir, Á., Jónsson, S., Sturkell, E., Guðrúnardóttir, H. R., Hjartarson, H., Siegmund, H., and Kockum, I.: Changes in groundwater chemistry before two consecutive earthquakes in Iceland, Nat. Geosci., 7, 752–756, 2014.
Stap, L. B., de Boer, B., Ziegler, M., Bintanja, R., Lourens, L. J., and van de Wal, R. S.: CO2 over the past 5 million years: Continuous simulation and new δ11B-based proxy data, Earth Planet. Sc. Lett., 439, 1–10, 2016.
Tzedakis, P. C., Drysdale, R. N., Margari, V., Skinner, L. C., Menviel, L., Rhodes, R. H., Taschetto, A. S., Hodell, D. A., Crowhurst, S. J., Hellstrom, J. C., Fallick, A. E., Grimalt, J. O., McManus, J. F., Martrat, B., Mokeddem, Z., Parrenin, F., Regattieri, E., Roe, K., and Zanchetta, G.: Enhanced climate instability in the North Atlantic and southern Europe during the Last Interglacial, Nat. Commun., 9, 1–14, 2018.
Vera-Polo, P., Sadori, L., Jiménez-Moreno G., Masi, A., Giaccio, B., Zanchetta, G., and Tzedakis, P. C.: Wagner, B. Climate, vegetation, and environmental change during the MIS 12-MIS 11 glacial-interglacial transition deduced from a high-resolution pollen analysis from the Fucino Basin, Palaeogeogr. Palaeocl., 655, 112486, https://doi.org/10.1016/j.palaeo.2024.112486, 2024
Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C., Anagnostou, E., Barnet, J. S. K., Bohaty, S. M., De Vleeschouwer, D., Florindo, F., Frederichs, T., Hodell, D. A., Holbourn, A. E., Kroon, D., Lauretano, V., Littler, K., Lourens, L. J., Lyle, M., Pälike, H., Röhl, U., Tian, J., Wilkens, R. H., Wilson, P. A., and Zachos, J. C.: An astronomically dated record of Earth's climate and its predictability over the last 66 million years, Science, 369, 1383–1387, 2020.
Wilke, T., Hauffe, T., Jovanovska, E., Cvetkoska, A., Donders, T., Ekschmitt, K., Francke, A., Lacey, J. H., Levkov, Z., Marshall, C. R., Neubauer, T. A., Silvestro, D., Stelbrink, B., Vogel, H., Albrecht, C., Holtvoeth, J., Krastel, S., Leicher, N., Leng, M. J., Lindhorst, K., Masi, A., Ognjanova-Rumenova, N., Panagiotopoulos, K., Reed, J. M., Sadori, L., Tofilovska, S., Van Bocxlaer, B., Wagner-Cremer, F., Wesselingh, Frank P., Wolters, V., Zanchetta, G., Zhang, X., and Wagner, B.: Deep drilling reveals massive shifts in evolutionary dynamics after formation of ancient ecosystem, Science Advances, 6, eabb2943, https://doi.org/10.1126/sciadv.abb2943, 2020.
Williams, D. F., Peck, J., Karabanov, E. B., Prokopenko, A. A., Kravchinsky, V., King, J., and Kuzmin, M. I.: Lake Baikal record of continental climate response to orbital insolation during the past 5 million years, Science, 278, 1114–1117, 1997.
Short summary
A total of 42 Earth scientists from 14 countries met in Gioia dei Marsi, central Italy, on 23 to 27 October 2023 to explore the potential for deep drilling of the thick lake sediment sequence of the Fucino Basin. The aim was to reconstruct the history of climate, ecosystem, and biodiversity changes and of the explosive volcanism and tectonics in central Italy over the last 3.5 million years, constrained by a detailed radiometric chronology.
A total of 42 Earth scientists from 14 countries met in Gioia dei Marsi, central Italy, on 23 to...