Articles | Volume 34, issue 1/2
https://doi.org/10.5194/sd-34-1-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/sd-34-1-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Unearthing the climate history of the Atacama Desert in northern Chile – deep drilling in two clay pans of the Coastal Cordillera
Volker Wennrich
CORRESPONDING AUTHOR
Institute of Geology and Mineralogy, University of Cologne, 50674 Cologne, Germany
Julia Diederich-Leicher
Institute of Geology and Mineralogy, University of Cologne, 50674 Cologne, Germany
Bárbara Nataly Blanco-Arrué
Institute of Geophysics and Meteorology, University of Cologne, 50969 Cologne, Germany
now at: Leibniz Institute for Applied Geophysics, 30655 Hanover, Germany
Christoph Büttner
Institute of Geophysics and Geoinformatics, TU Bergakademie Freiberg, 09596 Freiberg, Germany
Stefan Buske
Institute of Geophysics and Geoinformatics, TU Bergakademie Freiberg, 09596 Freiberg, Germany
Eduardo Campos Sepulveda
Department of Geological Sciences, Universidad Católica del Norte, Antofagasta, Chile
Tibor Dunai
Institute of Geology and Mineralogy, University of Cologne, 50674 Cologne, Germany
Jacob Feller
Institute of Geology and Mineralogy, University of Cologne, 50674 Cologne, Germany
Emma Galego
Institute of Geology and Mineralogy, University of Cologne, 50674 Cologne, Germany
Ascelina Hasberg
Institute of Geology and Mineralogy, University of Cologne, 50674 Cologne, Germany
Niklas Leicher
Institute of Geology and Mineralogy, University of Cologne, 50674 Cologne, Germany
Damián Alejandro López
Institute of Geology and Mineralogy, University of Cologne, 50674 Cologne, Germany
Jorge Maldonado
Superex S.A. Diamond and Sonic Drilling Group, Santiago, Chile
Alicia Medialdea
Geographical Institute, University of Cologne, 50674 Cologne, Germany
National Research Centre on Human Evolution (CENIEH), 09002 Burgos, Spain
Lukas Ninnemann
Institute of Geophysics and Geoinformatics, TU Bergakademie Freiberg, 09596 Freiberg, Germany
now at: Center for Interdisciplinary Digital Sciences (CIDS), TUD Dresden University of Technology, 01069 Dresden, Germany
Russell Perryman
Comprobe, Borehole Imaging and Orientation Services, Santiago, Chile
Juan Cristóbal Ríos-Contesse
Department of Geological Sciences, Universidad Católica del Norte, Antofagasta, Chile
Benedikt Ritter
Institute of Geology and Mineralogy, University of Cologne, 50674 Cologne, Germany
Stephanie Scheidt
Institute of Geology and Mineralogy, University of Cologne, 50674 Cologne, Germany
Barbara Vargas-Machuca
Institute of Geology and Mineralogy, University of Cologne, 50674 Cologne, Germany
Pritam Yogeshwar
Institute of Geophysics and Meteorology, University of Cologne, 50969 Cologne, Germany
now at: Leibniz Institute for Applied Geophysics, 30655 Hanover, Germany
Martin Melles
Institute of Geology and Mineralogy, University of Cologne, 50674 Cologne, Germany
Related authors
Mark Reyers, Stephanie Fiedler, Patrick Ludwig, Christoph Böhm, Volker Wennrich, and Yaping Shao
Clim. Past, 19, 517–532, https://doi.org/10.5194/cp-19-517-2023, https://doi.org/10.5194/cp-19-517-2023, 2023
Short summary
Short summary
In this study we performed high-resolution climate model simulations for the hyper-arid Atacama Desert for the mid-Pliocene (3.2 Ma). The aim is to uncover the atmospheric processes that are involved in the enhancement of strong rainfall events during this period. We find that strong upper-level moisture fluxes (so-called moisture conveyor belts) originating in the tropical eastern Pacific are the main driver for increased rainfall in the mid-Pliocene.
Juan Ríos-Contesse, Richard Albert, Benedikt Ritter-Prinz, Axel Gerdes, Tibor Dunai, and Eduardo Campos
EGUsphere, https://doi.org/10.5194/egusphere-2025-4801, https://doi.org/10.5194/egusphere-2025-4801, 2025
This preprint is open for discussion and under review for Geochronology (GChron).
Short summary
Short summary
This study dated chrysocolla, a supergene copper mineral, from copper deposits hosted in the Coastal Cordillera of northern Chile, with ages between 8.4 and 0.046 million years. Results show that from the Late Miocene to the Pleistocene, short periods of moisture triggered mineral formation despite the hyperarid climate. These wetter periods were likely caused by occasional rainfall or stronger coastal fog, causing repeated pulses of supergene activity in the Coastal Cordillera.
Aline Zinelabedin, Joel Mohren, Maria Wierzbicka-Wieczorek, Tibor Janos Dunai, Stefan Heinze, and Benedikt Ritter
Earth Surf. Dynam., 13, 257–276, https://doi.org/10.5194/esurf-13-257-2025, https://doi.org/10.5194/esurf-13-257-2025, 2025
Short summary
Short summary
In order to interpret the formation processes of subsurface salt wedges and polygonal patterned grounds from the northern Atacama Desert, we present a multi-methodological approach. Due to the high salt content of the wedges, we suggest that their formation is dominated by subsurface salt dynamics requiring moisture. We assume that the climatic conditions during the wedge growth were slightly wetter than today, offering the potential to use the wedges as palaeoclimate archives.
Joel Mohren, Hendrik Wiesel, Wulf Amelung, L. Keith Fifield, Alexandra Sandhage-Hofmann, Erik Strub, Steven A. Binnie, Stefan Heinze, Elmarie Kotze, Chris Du Preez, Stephen G. Tims, and Tibor J. Dunai
Biogeosciences, 22, 1077–1094, https://doi.org/10.5194/bg-22-1077-2025, https://doi.org/10.5194/bg-22-1077-2025, 2025
Short summary
Short summary
We measured concentrations of nuclear fallout in soil samples taken from arable land in South Africa. We find that during the second half of the 20th century, the data strongly correlate with the organic matter content of the soils. The finding implies that wind erosion strongly influenced the loss of organic matter in the soils we investigated. Furthermore, the exponential decline of fallout concentrations and organic matter content over time peaks shortly after native grassland is ploughed.
Benedikt Ritter, Richard Albert, Aleksandr Rakipov, Frederik M. Van der Wateren, Tibor J. Dunai, and Axel Gerdes
Geochronology, 5, 433–450, https://doi.org/10.5194/gchron-5-433-2023, https://doi.org/10.5194/gchron-5-433-2023, 2023
Short summary
Short summary
Chronological information on the evolution of the Namib Desert is scarce. We used U–Pb dating of silcretes formed by pressure solution during calcrete formation to track paleoclimate variability since the Late Miocene. Calcrete formation took place during the Pliocene with an abrupt cessation at 2.9 Ma. The end took place due to deep canyon incision which we dated using TCN exposure dating. With our data we correct and contribute to the Neogene history of the Namib Desert and its evolution.
Jonathan Obrist-Farner, Andreas Eckert, Peter M. J. Douglas, Liseth Perez, Alex Correa-Metrio, Bronwen L. Konecky, Thorsten Bauersachs, Susan Zimmerman, Stephanie Scheidt, Mark Brenner, Steffen Kutterolf, Jeremy Maurer, Omar Flores, Caroline M. Burberry, Anders Noren, Amy Myrbo, Matthew Lachniet, Nigel Wattrus, Derek Gibson, and the LIBRE scientific team
Sci. Dril., 32, 85–100, https://doi.org/10.5194/sd-32-85-2023, https://doi.org/10.5194/sd-32-85-2023, 2023
Short summary
Short summary
In August 2022, 65 scientists from 13 countries gathered in Antigua, Guatemala, for a workshop, co-funded by the US National Science Foundation and the International Continental Scientific Drilling Program. This workshop considered the potential of establishing a continental scientific drilling program in the Lake Izabal Basin, eastern Guatemala, with the goals of establishing a borehole observatory and investigating one of the longest continental records from the northern Neotropics.
Vera Lay, Christoph Büttner, Stefan Buske, and Ernst Niederleithinger
Saf. Nucl. Waste Disposal, 2, 67–67, https://doi.org/10.5194/sand-2-67-2023, https://doi.org/10.5194/sand-2-67-2023, 2023
Short summary
Short summary
We present a valuable experiment for ultrasonic quality assurance under realistic conditions for underground sealing structures made from shotcrete, where the locations of artificial reflectors are partly known. We apply advanced geophysical imaging methods to further enhance the quality of the obtained ultrasonic images.
Mark Reyers, Stephanie Fiedler, Patrick Ludwig, Christoph Böhm, Volker Wennrich, and Yaping Shao
Clim. Past, 19, 517–532, https://doi.org/10.5194/cp-19-517-2023, https://doi.org/10.5194/cp-19-517-2023, 2023
Short summary
Short summary
In this study we performed high-resolution climate model simulations for the hyper-arid Atacama Desert for the mid-Pliocene (3.2 Ma). The aim is to uncover the atmospheric processes that are involved in the enhancement of strong rainfall events during this period. We find that strong upper-level moisture fluxes (so-called moisture conveyor belts) originating in the tropical eastern Pacific are the main driver for increased rainfall in the mid-Pliocene.
Brij Singh, Michał Malinowski, Andrzej Górszczyk, Alireza Malehmir, Stefan Buske, Łukasz Sito, and Paul Marsden
Solid Earth, 13, 1065–1085, https://doi.org/10.5194/se-13-1065-2022, https://doi.org/10.5194/se-13-1065-2022, 2022
Short summary
Short summary
Fast depletion of shallower deposits is pushing the mining industry to look for cutting-edge technologies for deep mineral targeting. We demonstrated a joint workflow including two state-of-the-art technologies: full-waveform inversion and reverse time migration. We produced Earth images with significant details which can help with better estimation of areas with high mineralisation, better mine planning and safety measures.
Felix Hloušek, Michal Malinowski, Lena Bräunig, Stefan Buske, Alireza Malehmir, Magdalena Markovic, Lukasz Sito, Paul Marsden, and Emma Bäckström
Solid Earth, 13, 917–934, https://doi.org/10.5194/se-13-917-2022, https://doi.org/10.5194/se-13-917-2022, 2022
Short summary
Short summary
Methods for mineral exploration play an important role within the EU. Exploration must be environmentally friendly, cost effective, and feasible in populated areas. Seismic methods have the potential to deliver detailed images of mineral deposits but suffer from these demands. We show the results for a sparse 3D seismic dataset acquired in Sweden. The 3D depth image allows us to track the known mineralizations beyond the known extent and gives new insights into the geometry of the deposit.
Stephanie Scheidt, Matthias Lenz, Ramon Egli, Dominik Brill, Martin Klug, Karl Fabian, Marlene M. Lenz, Raphael Gromig, Janet Rethemeyer, Bernd Wagner, Grigory Federov, and Martin Melles
Geochronology, 4, 87–107, https://doi.org/10.5194/gchron-4-87-2022, https://doi.org/10.5194/gchron-4-87-2022, 2022
Short summary
Short summary
Levinson-Lessing Lake in northern central Siberia provides an exceptional opportunity to study the evolution of the Earth's magnetic field in the Arctic. This is the first study carried out at the lake that focus on the palaeomagnetic record. It presents the relative palaeointensity and palaeosecular variation of the upper 38 m of sediment core Co1401, spanning ~62 kyr. A comparable high-resolution record of this time does not exist in the Eurasian Arctic.
Tomi Jusri, Stefan Buske, Olaf Hellwig, and Felix Hloušek
Solid Earth Discuss., https://doi.org/10.5194/se-2021-143, https://doi.org/10.5194/se-2021-143, 2022
Preprint withdrawn
Short summary
Short summary
This study presents a method for constructing angle-domain common-image gathers (ADCIGs) and common-angle stacks from Fresnel volume migration, which can facilitate prestack amplitude analysis from the migrated seismic data in the angle-domain. The results obtained in this study may eventually help improve the feasibility of rock characterization in challenging geological settings, such as in hard-rock environments.
Tibor János Dunai, Steven Andrew Binnie, and Axel Gerdes
Geochronology, 4, 65–85, https://doi.org/10.5194/gchron-4-65-2022, https://doi.org/10.5194/gchron-4-65-2022, 2022
Short summary
Short summary
We develop in situ-produced terrestrial cosmogenic krypton as a new tool to date and quantify Earth surface processes, the motivation being the availability of six stable isotopes and one radioactive isotope (81Kr, half-life 229 kyr) and of an extremely weathering-resistant target mineral (zircon). We provide proof of principle that terrestrial Krit can be quantified and used to unravel Earth surface processes.
Hossein Hassani, Felix Hloušek, Stefan Buske, and Olaf Wallner
Solid Earth, 12, 2703–2715, https://doi.org/10.5194/se-12-2703-2021, https://doi.org/10.5194/se-12-2703-2021, 2021
Short summary
Short summary
Passive seismic imaging methods use natural earthquakes as seismic sources, while in active seismic imaging methods, artificial sources (e.g. explosives) are used to generate seismic waves. We imaged some structures related to a major fault plane through a passive seismic imaging approach using microearthquakes with magnitudes smaller than 0.9 (Mw). These structures have not been illuminated by a previously conducted 3D active seismic survey due to their large dip angles.
Benedikt Ritter, Andreas Vogt, and Tibor J. Dunai
Geochronology, 3, 421–431, https://doi.org/10.5194/gchron-3-421-2021, https://doi.org/10.5194/gchron-3-421-2021, 2021
Short summary
Short summary
We describe the design and performance of a new noble gas mass laboratory dedicated to the development of and application to cosmogenic nuclides at the University of Cologne (Germany). At the core of the laboratory are a state-of-the-art high-mass-resolution multicollector Helix MCPlus (Thermo-Fisher) noble gas mass spectrometer and a novel custom-designed automated extraction line, including a laser-powered extraction furnace. Performance was tested with intercomparison (CREU-1) material.
Nikita Afonin, Elena Kozlovskaya, Suvi Heinonen, and Stefan Buske
Solid Earth, 12, 1563–1579, https://doi.org/10.5194/se-12-1563-2021, https://doi.org/10.5194/se-12-1563-2021, 2021
Short summary
Short summary
In our study, we show the results of a passive seismic interferometry application for mapping the uppermost crust in the area of active mineral exploration in northern Finland. The obtained velocity models agree well with geological data and complement the results of reflection seismic data interpretation.
Alireza Malehmir, Magdalena Markovic, Paul Marsden, Alba Gil, Stefan Buske, Lukasz Sito, Emma Bäckström, Martiya Sadeghi, and Stefan Luth
Solid Earth, 12, 483–502, https://doi.org/10.5194/se-12-483-2021, https://doi.org/10.5194/se-12-483-2021, 2021
Short summary
Short summary
A smooth transition toward decarbonization demands access to more minerals of critical importance. Europe has a good geology for many of these mineral deposits, but at a depth requiring sensitive, environmentally friendly, and cost-effective methods for their exploration. In this context, we present a sparse 3D seismic dataset that allowed identification of potential iron oxide resources at depth and helped to characterise key geological structures and a historical tailing in central Sweden.
Joel Mohren, Steven A. Binnie, Gregor M. Rink, Katharina Knödgen, Carlos Miranda, Nora Tilly, and Tibor J. Dunai
Earth Surf. Dynam., 8, 995–1020, https://doi.org/10.5194/esurf-8-995-2020, https://doi.org/10.5194/esurf-8-995-2020, 2020
Short summary
Short summary
In this study, we comprehensively test a method to derive soil densities under fieldwork conditions. The method is mainly based on images taken from consumer-grade cameras. The obtained soil/sediment densities reflect
truevalues by generally > 95 %, even if a smartphone is used for imaging. All computing steps can be conducted using freeware programs. Soil density is an important variable in the analysis of terrestrial cosmogenic nuclides, for example to infer long-term soil production rates.
Cited articles
Allmendinger, R. W. and González, G.: Invited review paper: Neogene to Quaternary tectonics of the coastal Cordillera, northern Chile, Tectonophysics, 495, 93–110, https://doi.org/10.1016/j.tecto.2009.04.019, 2010.
Álvarez, J., Jorquera, R., Mirales, C., Padel, M., and Martínez, P.: Cartas Punta Posallaves y Sierra Vicuña Mackenna: Región de Antofagasta, Serie Geología Básica, Servicio Nacional de Geología y Minería, Subdirección Nacional de Geología, Santiago, 183–184, 147 pp., ISSN 0717-7283, 2016.
Amundson, R., Dietrich, W., Bellugi, D., Ewing, S., Nishiizumi, K., Chong, G., Owen, J., Finkel, R., Heimsath, A., Stewart, B., and Caffee, M.: Geomorphologic evidence for the late Pliocene onset of hyperaridity in the Atacama Desert, Geol. Soc. Am. Bull., 124, 1048–1070, https://doi.org/10.1130/b30445.1, 2012.
Ankjærgaard, C., Jain, M., and Wallinga, J.: Towards dating Quaternary sediments using the quartz Violet Stimulated Luminescence (VSL) signal, Quat. Geochronol., 18, 99–109, https://doi.org/10.1016/j.quageo.2013.06.001, 2013.
Arens, F. L., Feige, J., Airo, A., Sager, C., Hecht, L., Horstmann, L., Kaufmann, F. E. D., Lachner, J., Neumann, T., Nowaczyk, N., Schiperski, F., Steier, P., Stoll, A., Struck, U., Valenzuela, B., von Blanckenburg, F., Wittmann, H., Wacker, L., Wagner, D., Zamorano, P., and Schulze-Makuch, D.: Climate variability in a 3.8 Ma old sedimentary record from the hyperarid Atacama Desert, Global Planet. Change, 242, 104576, https://doi.org/10.1016/j.gloplacha.2024.104576, 2024.
Baker, P. A., Seltzer, G. O., Fritz, S. C., Dunbar, R. B., Grove, M. J., Tapia, P. M., Cross, S. L., Rowe, H. D., and Broda, J. P.: The History of South American Tropical Precipitation for the Past 25 000 Years, Science, 291, 640–643, https://doi.org/10.1126/science.291.5504.640, 2001.
Balco, G. and Shuster, D. L.: 26Al–10Be–21Ne burial dating, Earth Planet. Sc. Lett., 286, 570–575, https://doi.org/10.1016/j.epsl.2009.07.025, 2009.
Bao, H., Jenkins, K. A., Khachaturyan, M., and Díaz, G. C.: Different sulfate sources and their post-depositional migration in Atacama soils, Earth Planet. Sc. Lett., 224, 577–587, https://doi.org/10.1016/j.epsl.2004.05.006, 2004.
Barrow, J. C.: The Resonant Sonic Drilling Method: An Innovative Technology for Environmental Restoration Programs, Groundwater Monitoring & Remediation, 14, 153–160, https://doi.org/10.1111/j.1745-6592.1994.tb00110.x, 1994.
Blanco Arrué, B.: Multidimensional inversion of transient electromagnetic data for the exploration of clay pans in the Atacama Desert, Chile, PhD thesis, University of Cologne, Germany, 125 pp., 2024.
Blanco-Arrué, B., Yogeshwar, P., Tezkan, B., Mörbe, W., Díaz, D., Farah, B., Buske, S., Ninneman, L., Domagala, J. P., Diederich-Leicher, J. L., Gebhardt, A. C., and Wennrich, V.: Exploration of sedimentary deposits in the Atacama Desert, Chile, using integrated geophysical techniques, J. S. Am. Earth Sci., 115, 103746, https://doi.org/10.1016/j.jsames.2022.103746, 2022.
Bobst, A. L., Lowenstein, T. K., Jordan, T. E., Godfrey, L. V., Ku, T.-L., and Luo, S.: A 106ka paleoclimate record from drill core of the Salar de Atacama, northern Chile, Palaeogeogr. Palaeocl., 173, 21–42, https://doi.org/10.1016/S0031-0182(01)00308-X, 2001.
Bowman, D.: Aggradation, in: Principles of Alluvial Fan Morphology, Springer Netherlands, Dordrecht, 57–60, https://doi.org/10.1007/978-94-024-1558-2_7, 2019.
Breitkreuz, C., de Silva, S. L., Wilke, H. G., Pfänder, J. A., and Renno, A. D.: Neogene to Quaternary ash deposits in the Coastal Cordillera in northern Chile: Distal ashes from supereruptions in the Central Andes, J. Volcanol. Geoth. Res., 269, 68–82, https://doi.org/10.1016/j.jvolgeores.2013.11.001, 2014.
Coira, B., Davidson, J., Mpodozis, C., and Ramos, V.: Tectonic and magmatic evolution of the Andes of northern Argentina and Chile, Earth-Sci. Rev., 18, 303–332, https://doi.org/10.1016/0012-8252(82)90042-3, 1982.
Criado-Reyes, J., Otálora, F., Canals, À., Verdugo-Escamilla, C., and García-Ruiz, J.-M.: Mechanisms shaping the gypsum stromatolite-like structures in the Salar de Llamara (Atacama Desert, Chile), Sci. Rep., 13, 678, https://doi.org/10.1038/s41598-023-27666-5, 2023.
de Silva, S. L.: Altiplano-Puna volcanic complex of the central Andes, Geology, 17, 1102–1106, https://doi.org/10.1130/0091-7613(1989)017<1102:Apvcot>2.3.Co;2, 1989.
Díaz, F. P., Latorre, C., Maldonado, A., Quade, J., and Betancourt, J. L.: Rodent middens reveal episodic, long-distance plant colonizations across the hyperarid Atacama Desert over the last 34 000 years, J. Biogeogr., 39, 510–525, https://doi.org/10.1111/j.1365-2699.2011.02617.x, 2012.
Diederich, J. L., Wennrich, V., Bao, R., Büttner, C., Bolten, A., Brill, D., Buske, S., Campos, E., Fernández-Galego, E., Gödickmeier, P., Ninnemann, L., Reyers, M., Ritter, B., Ritterbach, L., Rolf, C., Scheidt, S., Dunai, T. J., and Melles, M.: A 68 ka precipitation record from the hyperarid core of the Atacama Desert in northern Chile, Global Planet. Change, 184, 103054, https://doi.org/10.1016/j.gloplacha.2019.103054, 2020.
Domagala, J., Escribano, J., De La Cruz, R., Saldias, J., and Joquera, R.: Cartas Blanco Encalada y Pampa Remiendos, Region de Antofagasta, Serie Geología Básica, Servicio Nacional de Geología y Minería, Subdirección Nacional de Geología, Santiago, 187–188, 97 pp., ISSN 0717-7283, 2016.
Dunai, T. J., González López, G. A., and Juez-Larré, J.: Oligocene–Miocene age of aridity in the Atacama Desert revealed by exposure dating of erosion-sensitive landforms, Geology, 33, 321–324, https://doi.org/10.1130/g21184.1, 2005.
Dunai, T. J., Melles, M., Quandt, D., Knief, C., and Amelung, W.: Whitepaper: Earth – Evolution at the dry limit, Global Planet. Change, 193, 103275, https://doi.org/10.1016/j.gloplacha.2020.103275, 2020.
Elgueta, M. and Barría, C.: Registro en Altura de Enodisoma curtipennis Cigliano, 1989 (Orthoptera: Tristiridae), en la Zona Costera Sur de la Región de Antofagasta, Boletín Museo Nacional de Historia Natural, 57, 133–138, https://doi.org/10.54830/bmnhn.v57.2008.252, 2008.
Ericksen, G. E.: Geology and origin of the Chilean nitrate deposits, USGS Professional paper 1188, 37 pp., https://doi.org/10.3133/pp1188, 1981.
Evenstar, L. A., Hartley, A. J., Stuart, F. M., Mather, A. E., Rice, C. M., and Chong, G.: Multiphase development of the Atacama Planation Surface recorded by cosmogenic 3He exposure ages: Implications for uplift and Cenozoic climate change in western South America, Geology, 37, 27–30, https://doi.org/10.1130/g25437a.1, 2009.
Evenstar, L. A., Mather, A. E., Hartley, A. J., Stuart, F. M., Sparks, R. S. J., and Cooper, F. J.: Geomorphology on geologic timescales: Evolution of the late Cenozoic Pacific paleosurface in Northern Chile and Southern Peru, Earth-Sci. Rev., 171, 1–27, https://doi.org/10.1016/j.earscirev.2017.04.004, 2017.
Ewing, S. A., Sutter, B., Owen, J., Nishiizumi, K., Sharp, W., Cliff, S. S., Perry, K., Dietrich, W., McKay, C. P., and Amundson, R.: A threshold in soil formation at Earth's arid–hyperarid transition, Geochim. Cosmochim. Ac., 70, 5293–5322, https://doi.org/10.1016/j.gca.2006.08.020, 2006.
Fritz, S. C., Baker, P. A., Lowenstein, T. K., Seltzer, G. O., Rigsby, C. A., Dwyer, G. S., Tapia, P. M., Arnold, K. K., Ku, T.-L., and Luo, S.: Hydrologic variation during the last 170 000 years in the southern hemisphere tropics of South America, Quaternary Res., 61, 95–104, https://doi.org/10.1016/j.yqres.2003.08.007, 2004.
Garreaud, R. D., Vuille, M., Compagnucci, R., and Marengo, J.: Present-day South American climate, Palaeogeogr. Palaeocl., 281, 180–195, https://doi.org/10.1016/j.palaeo.2007.10.032, 2009.
Garreaud, R. D., Molina, A., and Farias, M.: Andean uplift, ocean cooling and Atacama hyperaridity: A climate modeling perspective, Earth Planet. Sc. Lett., 292, 39–50, https://doi.org/10.1016/j.epsl.2010.01.017, 2010.
González, G., Pasten-Araya, F., Victor, P., González, Y., Valenzuela, J., and Shrivastava, M.: The role of interplate locking on the seismic reactivation of upper plate faults on the subduction margin of northern Chile, Sci. Rep., 11, 21444, https://doi.org/10.1038/s41598-021-00875-6, 2021.
Harrington, H. J.: Geology of Parts of Antofagasta and Atacama Provinces, Northern Chile1, AAPG Bull., 45, 169–197, https://doi.org/10.1306/0bda6332-16bd-11d7-8645000102c1865d, 1961.
Hartley, A. J. and Chong, G.: Late Pliocene age for the Atacama Desert: Implications for the desertification of western South America, Geology, 30, 43–46, https://doi.org/10.1130/0091-7613(2002)030<0043:Lpafta>2.0.Co;2, 2002.
Hartley, A. J., Chong, G., Houston, J., and Mather, A. E.: 150 million years of climatic stability: evidence from the Atacama Desert, northern Chile, J. Geol. Soc., 162, 421–424, https://doi.org/10.1144/0016-764904-071, 2005.
Herve, M.: Movimiento normal de la falla Paposo, Zona de Falla Atacama, en el Mioceno, Chile, Andean Geol., 31, 31–36, 1987.
Hogg, A. G., Heaton, T. J., Hua, Q., Palmer, J. G., Turney, C. S. M., Southon, J., Bayliss, A., Blackwell, P. G., Boswijk, G., Bronk Ramsey, C., Pearson, C., Petchey, F., Reimer, P., Reimer, R., and Wacker, L.: SHCal20 Southern Hemisphere Calibration, 0–55 000 Years cal BP, Radiocarbon, 62, 759–778, https://doi.org/10.1017/rdc.2020.59, 2020.
Houston, J.: Variability of precipitation in the Atacama Desert: its causes and hydrological impact, Int. J. Climatol., 26, 2181–2198, https://doi.org/10.1002/joc.1359, 2006.
Houston, J. and Hartley, A. J.: The central Andean west-slope rainshadow and its potential contribution to the origin of hyper-aridity in the Atacama Desert, Int. J. Climatol., 23, 1453–1464, 2003.
Jordan, T. E., Kirk-Lawlor, N. E., Blanco, N. P., Rech, J. A., and Cosentino, N. J.: Landscape modification in response to repeated onset of hyperarid paleoclimate states since 14 Ma, Atacama Desert, Chile, GSA Bulletin, 126, 1016–1046, https://doi.org/10.1130/b30978.1, 2014.
Klipsch, S., Herwartz, D., Voigt, C., Münker, C., Chong, G., Böttcher, M. E., and Staubwasser, M.: Sulfate sources, biologic cycling, and mobility in Atacama Desert soils revealed by isotope signatures, Global Planet. Change, 230, 104290, https://doi.org/10.1016/j.gloplacha.2023.104290, 2023.
Labbé, N., García, M., Simicic, Y., Contreras-Reyes, E., Charrier, R., De Pascale, G., and Arriagada, C.: Sediment fill geometry and structural control of the Pampa del Tamarugal basin, northern Chile, GSA Bulletin, 131, 155–174, https://doi.org/10.1130/b31722.1, 2018.
Latorre, C., Betancourt, J. L., Rylander, K. A., and Quade, J.: Vegetation invasions into absolute desert: A 45 000 yr rodent midden record from the Calama–Salar de Atacama basins, northern Chile (lat 22–24 S), Geol. Soc. Am. Bull., 114, 349–366, 2002.
Lebatard, A.-E., Bourlès, D. L., Braucher, R., Arnold, M., Duringer, P., Jolivet, M., Moussa, A., Deschamps, P., Roquin, C., Carcaillet, J., Schuster, M., Lihoreau, F., Likius, A., Mackaye, H. T., Vignaud, P., and Brunet, M.: Application of the authigenic 10Be/9Be dating method to continental sediments: Reconstruction of the Mio-Pleistocene sedimentary sequence in the early hominid fossiliferous areas of the northern Chad Basin, Earth Planet. Sc. Lett., 297, 57–70, https://doi.org/10.1016/j.epsl.2010.06.003, 2010.
Ma, Y., Wang, W., Zheng, D., Zhang, H., Pang, J., Wu, Y., Stuart, F. M., and Xu, S.: Mid-Miocene cosmogenic upper limit for 10Be 21Ne burial age, Quat. Geochronol., 48, 72–79, https://doi.org/10.1016/j.quageo.2018.08.004, 2018.
Maksaev, V. and Marinovic, N.: Geología de los cuadrángulos Cerro de La Mica, Quillagua, Cerro Posada y Oficina Prosperidad, Región de Antofagasta, 1980.
Maldonado, A., Betancourt, J. L., Latorre, C., and Villagran, C.: Pollen analyses from a 50 000-yr rodent midden series in the southern Atacama Desert (25°30′ S), J. Quaternary Sci., 20, 493–507, https://doi.org/10.1002/jqs.936, 2005.
Mather, A. E. and Hartley, A.: Flow events on a hyper-arid alluvial fan: Quebrada Tambores, Salar de Atacama, northern Chile, Geol. Soc. Spec. Publ., 251, 9–24, https://doi.org/10.1144/GSL.SP.2005.251.01.02, 2005.
May, G., Hartley, A. J., Stuart, F. M., and Chong, G.: Tectonic signatures in arid continental basins: an example from the Upper Miocene–Pleistocene, Calama Basin, Andean forearc, northern Chile, Palaeogeogr. Palaeocl., 151, 55–77, https://doi.org/10.1016/S0031-0182(99)00016-4, 1999.
May, S. M., Meine, L., Hoffmeister, D., Brill, D., Medialdea, A., Wennrich, V., Gröbner, M., Schulte, P., Steininger, F., Deprez, M., de Kock, T., and Bubenzer, O.: Origin and timing of past hillslope activity in the hyper-arid core of the Atacama Desert – The formation of fine sediment lobes along the Chuculay Fault System, Northern Chile, Global Planet. Change, 184, 103057, https://doi.org/10.1016/j.gloplacha.2019.103057, 2020.
Mortimer, C.: The Cenozoic history of the southern Atacama Desert, Chile, J. Geol. Soc., 129, 505–526, https://doi.org/10.1144/gsjgs.129.5.0505, 1973.
Muñoz-Farías, S., Ritter, B., Dunai, T. J., Morales-Leal, J., Campos, E., Spikings, R., and Riquelme, R.: Geomorphological significance of the Atacama Pediplain as a marker for the climatic and tectonic evolution of the Andean forearc, between 26° to 28° S, Geomorphology, 420, 108504, https://doi.org/10.1016/j.geomorph.2022.108504, 2023.
Nalpas, T., Dabard, M. P., Ruffet, G., Vernon, A., Mpodozis, C., Loi, A., and Hérail, G.: Sedimentation and preservation of the Miocene Atacama Gravels in the Pedernales–Chañaral Area, Northern Chile: Climatic or tectonic control?, Tectonophysics, 459, 161–173, https://doi.org/10.1016/j.tecto.2007.10.013, 2008.
Nunnery, J. A., Fritz, S. C., Baker, P. A., and Salenbien, W.: Lake-level variability in Salar de Coipasa, Bolivia during the past ∼ 40 000 yr, Quaternary Res., 91, 881–891, https://doi.org/10.1017/qua.2018.108, 2019.
Owen, J. J., Dietrich, W. E., Nishiizumi, K., Chong, G., and Amundson, R.: Zebra stripes in the Atacama Desert: Fossil evidence of overland flow, Geomorphology, 182, 157–172, https://doi.org/10.1016/j.geomorph.2012.11.006, 2013.
Pfeiffer, M., Latorre, C., Santoro, C. M., Gayo, E. M., Rojas, R., Carrevedo, M. L., McRostie, V. B., Finstad, K. M., Heimsath, A., Jungers, M. C., De Pol-Holz, R., and Amundson, R.: Chronology, stratigraphy and hydrological modelling of extensive wetlands and paleolakes in the hyperarid core of the Atacama Desert during the late quaternary, Quat. Sci. Rev., 197, 224–245, https://doi.org/10.1016/j.quascirev.2018.08.001, 2018.
Pfeiffer, M., Morgan, A., Heimsath, A., Jordan, T., Howard, A., and Amundson, R.: Century scale rainfall in the absolute Atacama Desert: Landscape response and implications for past and future rainfall, Quat. Sci. Rev., 254, 106797, https://doi.org/10.1016/j.quascirev.2021.106797, 2021.
Pizarro, H., Rousse, S., Riquelme, R., Veloso, E., Campos, E., González, R., Bissig, T., Carretier, S., Fernández-Mort, A., and Muñoz, S.: The origin of the magnetic record in Eocene-Miocene coarse-grained sediments deposited in hyper-arid/arid conditions: Examples from the Atacama Desert, Palaeogeogr. Palaeocl., 516, 322–335, https://doi.org/10.1016/j.palaeo.2018.12.009, 2019.
Placzek, C., Quade, J., Rech, J. A., Patchett, P. J., and Pérez de Arce, C.: Geochemistry, chronology and stratigraphy of Neogene tuffs of the Central Andean region, Quat. Geochronol., 4, 22–36, https://doi.org/10.1016/j.quageo.2008.06.002, 2009.
Quade, J., Rech, J. A., Betancourt, J. L., Latorre, C., Quade, B., Rylander, K. A., and Fisher, T.: Paleowetlands and regional climate change in the central Atacama Desert, northern chile, Quaternary Res., 69, 343–360, https://doi.org/10.1016/j.yqres.2008.01.003, 2008.
Rech, J. A., Currie, B. S., Shullenberger, E. D., Dunagan, S. P., Jordan, T. E., Blanco, N., Tomlinson, A. J., Rowe, H. D., and Houston, J.: Evidence for the development of the Andean rain shadow from a Neogene isotopic record in the Atacama Desert, Chile, Earth Planet. Sc. Lett., 292, 371–382, https://doi.org/10.1016/j.epsl.2010.02.004, 2010.
Rech, J. A., Currie, B. S., Jordan, T. E., Riquelme, R., Lehmann, S. B., Kirk-Lawlor, N. E., Li, S., and Gooley, J. T.: Massive middle Miocene gypsic paleosols in the Atacama Desert and the formation of the Central Andean rain-shadow, Earth Planet. Sc. Lett., 506, 184–194, https://doi.org/10.1016/j.epsl.2018.10.040, 2019.
Reyers, M., Boehm, C., Knarr, L., Shao, Y., and Crewell, S.: Synoptic-to-Regional-Scale Analysis of Rainfall in the Atacama Desert (18°–26° S) Using a Long-Term Simulation with WRF, Mon. Weather Rev., 149, 91–112, https://doi.org/10.1175/mwr-d-20-0038.1, 2021.
Riquelme, R., Hérail, G., Martinod, J., Charrier, R., and Darrozes, J.: Late Cenozoic geomorphologic signal of Andean forearc deformation and tilting associated with the uplift and climate changes of the Southern Atacama Desert (26° S–28° S), Geomorphology, 86, 283–306, https://doi.org/10.1016/j.geomorph.2006.09.004, 2007.
Ritter, B., Stuart, F. M., Binnie, S. A., Gerdes, A., Wennrich, V., and Dunai, T. J.: Neogene fluvial landscape evolution in the hyperarid core of the Atacama Desert, Sci. Rep., 8, 13952, https://doi.org/10.1038/s41598-018-32339-9, 2018.
Ritter, B., Wennrich, V., Medialdea, A., Brill, D., King, G., Schneiderwind, S., Niemann, K., Fernández-Galego, E., Diederich, J., Rolf, C., Bao, R., Melles, M., and Dunai, T. J.: Climatic fluctuations in the hyperarid core of the Atacama Desert during the past 215 ka, Sci. Rep., 9, 5270, https://doi.org/10.1038/s41598-019-41743-8, 2019.
Ritter, B., Vogt, A., and Dunai, T. J.: Technical Note: Noble gas extraction procedure and performance of the Cologne Helix MC Plus multi-collector noble gas mass spectrometer for cosmogenic neon isotope analysis, Geochronology, 3, 421–431, https://doi.org/10.5194/gchron-3-421-2021, 2021.
Ritter, B., Diederich-Leicher, J. L., Binnie, S. A., Stuart, F. M., Wennrich, V., Bolten, A., and Dunai, T. J.: Impact of CaSO4-rich soil on Miocene surface preservation and Quaternary sinuous to meandering channel forms in the hyperarid Atacama Desert, Sci. Rep., 12, 17951, https://doi.org/10.1038/s41598-022-22787-9, 2022.
Roldán, F., Salazar, I., González, G., Roldán, W., and Toro, N.: Flow-Type Landslides Analysis in Arid Zones: Application in La Chimba Basin in Antofagasta, Atacama Desert (Chile), Water, 14, 2225, https://doi.org/10.3390/w14142225, 2022.
Sáez, A., Cabrera, L., Garcés, M., van den Bogaard, P., Jensen, A., and Gimeno, D.: The stratigraphic record of changing hyperaridity in the Atacama desert over the last 10 Ma, Earth Planet. Sc. Lett., 355, 32–38, https://doi.org/10.1016/j.epsl.2012.08.029, 2012.
Sáez, A., Godfrey, L. V., Herrera, C., Chong, G., and Pueyo, J. J.: Timing of wet episodes in Atacama Desert over the last 15 ka. The Groundwater Discharge Deposits (GWD) from Domeyko Range at 25° S, Quat. Sci. Rev., 145, 82–93, https://doi.org/10.1016/j.quascirev.2016.05.036, 2016.
Sager, C., Airo, A., Arens, F. L., and Schulze-Makuch, D.: New type of sand wedge polygons in the salt cemented soils of the hyper-arid Atacama Desert, Geomorphology, 373, 107481, https://doi.org/10.1016/j.geomorph.2020.107481, 2021.
Scheuber, E. and Andriessen, P. A. M.: The kinematic and geodynamic significance of the Atacama fault zone, northern Chile, J. Struct. Geol., 12, 243–257, https://doi.org/10.1016/0191-8141(90)90008-M, 1990.
Stern, C. R.: Active Andean volcanism: its geologic and tectonic setting, Rev. Geol. Chile, 31, 161–206, 2004.
Sun, T., Bao, H., Reich, M., and Hemming, S. R.: More than ten million years of hyper-aridity recorded in the Atacama Gravels, Geochim. Cosmochim. Ac., 227, 123–132, https://doi.org/10.1016/j.gca.2018.02.021, 2018.
Voigt, C., Klipsch, S., Herwartz, D., Chong, G., and Staubwasser, M.: The spatial distribution of soluble salts in the surface soil of the Atacama Desert and their relationship to hyperaridity, Global Planet. Change, 184, 103077, https://doi.org/10.1016/j.gloplacha.2019.103077, 2020.
Wagner, G. A.: Age Determination of Young Rocks and Artifacts: Physical and Chemical Clocks in Quaternary Geology and Archaeology, Springer Berlin Heidelberg, Berlin, Heidelberg, 466 pp., https://doi.org/10.1007/978-3-662-03676-1, 1998.
Wennrich, V., Böhm, C., Brill, D., Carballeira, R., Hoffmeister, D., Jaeschke, A., Kerber, F., Maldonado, A., May, S. M., Olivares, L., Opitz, S., Rethemeyer, J., Reyers, M., Ritter, B., Schween, J. H., Sevinç, F., Steiner, J., Walber-Hellmann, K., and Melles, M.: Late Pleistocene to modern precipitation changes at the Paranal clay pan, central Atacama Desert, Global Planet. Change, 233, 104349, https://doi.org/10.1016/j.gloplacha.2023.104349, 2024.
Wennrich, V., Diederich-Leicher, J., and Ritter, B.: Supplement to “Unearthing the climate history of the Atacama Desert in northern Chile – deep drilling in two clay pans of the Coastal Cordillera”, Collaborative Research Centre 1211 – Database [data set], https://www.crc1211db.uni-koeln.de/search/view.php?dataID=1031 (last access: 7 July 2025), 2025.
Yogeshwar, P., Küpper, M., Tezkan, B., Rath, V., Kiyan, D., Byrdina, S., Cruz, J., Andrade, C., and Viveiros, F.: Innovative boat-towed transient electromagnetics – Investigation of the Furnas volcanic lake hydrothermal system, Azores, Geophysics, 85, E41–E56, https://doi.org/10.1190/geo2019-0292.1, 2020.
Zander, A. and Hilgers, A.: Potential and limits of OSL, TT-OSL, IRSL and pIRIR290 dating methods applied on a Middle Pleistocene sediment record of Lake El'gygytgyn, Russia, Clim. Past, 9, 719–733, https://doi.org/10.5194/cp-9-719-2013, 2013.
Zinelabedin, A., Mohren, J., Wierzbicka-Wieczorek, M., Dunai, T. J., Heinze, S., and Ritter, B.: Haloturbation in the northern Atacama Desert revealed by a hidden subsurface network of calcium sulfate wedges, Earth Surf. Dynam., 13, 257–276, https://doi.org/10.5194/esurf-13-257-2025, 2025.
Short summary
We present the results of comprehensive pre-site surveys and deep drillings in two clay pans in the central Atacama Desert of northern Chile, one of the driest deserts on Earth. The results of the site surveys as well as lithological and downhole-logging data of the deep-drilling operations highlight the potential of the sediment records from the PAG (Playa Adamito Grande) and Paranal clay pans to provide unprecedented information on the Neogene precipitation history of the hyperarid core of the Atacama Desert.
We present the results of comprehensive pre-site surveys and deep drillings in two clay pans in...

