Articles | Volume 34, issue 1/2
https://doi.org/10.5194/sd-34-29-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/sd-34-29-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The RISeR cores: unexpected and extensive Middle Pleistocene terrestrial stratigraphy in the southern North Sea
Amy M. McGuire
CORRESPONDING AUTHOR
School of Earth and Environment, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
Víctor Cartelle
School of Earth and Environment, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
Flanders Marine Institute (VLIZ), InnovOCean Site, Jacobstraat 1, Oostende, Belgium
Graham Rush
School of Earth and Environment, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
School of Built Environment, Leeds Beckett University, Woodhouse Lane, Leeds, LS1 3HE, UK
Freek S. Busschers
TNO Geological Survey of the Netherlands, P.O. Box 80.015, 3508TA Utrecht, the Netherlands
Kim M. Cohen
Department of Physical Geography, Utrecht University, P.O. Box 80.115, 3508TC Utrecht, the Netherlands
David M. Hodgson
School of Earth and Environment, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
Natasha L. M. Barlow
School of Earth and Environment, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
Related authors
No articles found.
Janet C. Richardson, Veerle Vanacker, David M. Hodgson, Marcus Christl, and Andreas Lang
Earth Surf. Dynam., 13, 315–339, https://doi.org/10.5194/esurf-13-315-2025, https://doi.org/10.5194/esurf-13-315-2025, 2025
Short summary
Short summary
Pediments are long flat surfaces that extend outwards from the foot of mountains; within South Africa they are regarded as ancient landforms that can give key insights into landscape and mantle dynamics. Cosmogenic nuclide dating has been incorporated with geological (soil formation) and geomorphological (river incision) evidence, which shows that the pediments are long-lived features beyond the ages reported by cosmogenic nuclide dating.
Kim de Wit, Kim M. Cohen, and Roderik S. W. van de Wal
Earth Syst. Sci. Data, 17, 545–577, https://doi.org/10.5194/essd-17-545-2025, https://doi.org/10.5194/essd-17-545-2025, 2025
Short summary
Short summary
In the Holocene, deltas and coastal plains developed due to relative sea level rise (RSLR). Past coastal and inland water levels are preserved in geological indicators, like basal peats. We present a dataset of 712 Holocene water level indicators from the Dutch coastal plain, relevant for studying RSLR and regional subsidence, compiled in HOLSEA workbook format. Our new, internally consistent, expanded documentation encourages multiple data uses and to report RSLR uncertainties transparently.
Oliver G. Pollard, Natasha L. M. Barlow, Lauren J. Gregoire, Natalya Gomez, Víctor Cartelle, Jeremy C. Ely, and Lachlan C. Astfalck
The Cryosphere, 17, 4751–4777, https://doi.org/10.5194/tc-17-4751-2023, https://doi.org/10.5194/tc-17-4751-2023, 2023
Short summary
Short summary
We use advanced statistical techniques and a simple ice-sheet model to produce an ensemble of plausible 3D shapes of the ice sheet that once stretched across northern Europe during the previous glacial maximum (140,000 years ago). This new reconstruction, equivalent in volume to 48 ± 8 m of global mean sea-level rise, will improve the interpretation of high sea levels recorded from the Last Interglacial period (120 000 years ago) that provide a useful perspective on the future.
Sarah A. Woodroffe, Leanne M. Wake, Kristian K. Kjeldsen, Natasha L. M. Barlow, Antony J. Long, and Kurt H. Kjær
Clim. Past, 19, 1585–1606, https://doi.org/10.5194/cp-19-1585-2023, https://doi.org/10.5194/cp-19-1585-2023, 2023
Short summary
Short summary
Salt marsh in SE Greenland records sea level changes over the past 300 years in sediments and microfossils. The pattern is rising sea level until ~ 1880 CE and sea level fall since. This disagrees with modelled sea level, which overpredicts sea level fall by at least 0.5 m. This is the same even when reducing the overall amount of Greenland ice sheet melt and allowing for more time. Fitting the model to the data leaves ~ 3 mm yr−1 of unexplained sea level rise in SE Greenland since ~ 1880 CE.
Kim M. Cohen, Víctor Cartelle, Robert Barnett, Freek S. Busschers, and Natasha L. M. Barlow
Earth Syst. Sci. Data, 14, 2895–2937, https://doi.org/10.5194/essd-14-2895-2022, https://doi.org/10.5194/essd-14-2895-2022, 2022
Short summary
Short summary
We describe a geological sea-level dataset for the Last Interglacial period (peaking ~125 000 years ago). From 80 known sites in and around the North Sea and English Channel (from below coastal plains, from along terraced parts of coastlines, from offshore), we provide and document 146 data points (35 entries in the Netherlands, 10 in Belgium, 23 in Germany, 17 in Denmark, 36 in Britain and the Channel Isles, 25 in France) that are also viewable at https://warmcoasts.eu/world-atlas.html.
Víctor Cartelle, Natasha L. M. Barlow, David M. Hodgson, Freek S. Busschers, Kim M. Cohen, Bart M. L. Meijninger, and Wessel P. van Kesteren
Earth Surf. Dynam., 9, 1399–1421, https://doi.org/10.5194/esurf-9-1399-2021, https://doi.org/10.5194/esurf-9-1399-2021, 2021
Short summary
Short summary
Reconstructing the growth and decay of past ice sheets is critical to understand relationships between global climate and sea-level change. We take advantage of large wind-farm datasets in the southern North Sea to investigate buried landscapes left by ice sheet advance and retreat occurring about 160 000 years ago. We demonstrate the utility of offshore wind-farm data in refining palaeo-ice sheet margin limits and providing insight into the processes influencing marginal ice sheet dynamics.
Tanya J. R. Lippmann, Michiel H. in 't Zandt, Nathalie N. L. Van der Putten, Freek S. Busschers, Marc P. Hijma, Pieter van der Velden, Tim de Groot, Zicarlo van Aalderen, Ove H. Meisel, Caroline P. Slomp, Helge Niemann, Mike S. M. Jetten, Han A. J. Dolman, and Cornelia U. Welte
Biogeosciences, 18, 5491–5511, https://doi.org/10.5194/bg-18-5491-2021, https://doi.org/10.5194/bg-18-5491-2021, 2021
Short summary
Short summary
This paper is a step towards understanding the basal peat ecosystem beneath the North Sea. Plant remains followed parallel sequences. Methane concentrations were low with local exceptions, with the source likely being trapped pockets of millennia-old methane. Microbial community structure indicated the absence of a biofilter and was diverse across sites. Large carbon stores in the presence of methanogens and in the absence of methanotrophs have the potential to be metabolized into methane.
Cited articles
Beets, D. J., Meijer, T., Beets, C. J., Cleveringa, P., Laban, C., and van der Spek, A. J.: Evidence for a Middle Pleistocene Glaciation of MIS 8 Age in the Southern North Sea, Quaternary International, 133–134, 7–19, https://doi.org/10.1016/j.quaint.2004.10.002, 2005. a
Bradley, S. L., Ely, J. C., Clark, C. D., Edwards, R. J., and Shennan, I.: Reconstruction of the Palaeo-Sea Level of Britain and Ireland Arising from Empirical Constraints of Ice Extent: Implications for Regional Sea Level Forecasts and North American Ice Sheet Volume, Journal of Quaternary Science, 38, 791–805, https://doi.org/10.1002/jqs.3523, 2023. a
Busschers, F., Kasse, C., Van Balen, R., Vandenberghe, J., Cohen, K., Weerts, H., Wallinga, J., Johns, C., Cleveringa, P., and Bunnik, F.: Late Pleistocene Evolution of the Rhine-Meuse System in the Southern North Sea Basin: Imprints of Climate Change, Sea-Level Oscillation and Glacio-Isostacy, Quaternary Science Reviews, 26, 3216–3248, https://doi.org/10.1016/j.quascirev.2007.07.013, 2007. a, b, c
Busschers, F. S., Van Balen, R. T., Cohen, K. M., Kasse, C., Weerts, H. J. T., Wallinga, J., and Bunnik, F. P. M.: Response of the Rhine–Meuse Fluvial System to Saalian Ice-sheet Dynamics, Boreas, 37, 377–398, https://doi.org/10.1111/j.1502-3885.2008.00025.x, 2008. a, b
Cameron, T. D. J., Crosby, A., Balson, P. S., Jeffery, D. H., Lott, G. K., Bulat, J., and Harrison, D. J.: United Kingdom Offshore Regional Report: The Geology of the Southern North Sea, HMSO for the British Geological Survey, London, ISBN 0-11-884492-X, 1992. a
Cartelle, V., Barlow, N. L. M., Hodgson, D. M., Busschers, F. S., Cohen, K. M., Meijninger, B. M. L., and van Kesteren, W. P.: Sedimentary architecture and landforms of the late Saalian (MIS 6) ice sheet margin offshore of the Netherlands, Earth Surf. Dynam., 9, 1399–1421, https://doi.org/10.5194/esurf-9-1399-2021, 2021. a, b, c, d, e
Cohen, K., Gibbard, P., and Weerts, H.: North Sea Palaeogeographical Reconstructions for the Last 1 Ma, Netherlands Journal of Geosciences – Geologie en Mijnbouw, 93, 7–29, https://doi.org/10.1017/njg.2014.12, 2014. a
Cohen, K. M., MacDonald, K., Joordens, J. C., Roebroeks, W., and Gibbard, P. L.: The Earliest Occupation of North-West Europe: A Coastal Perspective, Quaternary International, 271, 70–83, https://doi.org/10.1016/j.quaint.2011.11.003, 2012. a
Cohen, K. M., Westley, K., Erkens, G., Hijma, M. P., and Weerts, H. J.: The North Sea, in: Submerged Landscapes of the European Continental Shelf, edited by: Flemming, N. C., Harff, J., Moura, D., Burgess, A., and Bailey, G. N., Wiley, 1st edn., 147–186, ISBN 978-1-118-92213-2, https://doi.org/10.1002/9781118927823.ch7, 2017. a
Cotterill, C. J., Phillips, E., James, L., Forsberg, C. F., Tjelta, T. I., Carter, G., and Dove, D.: The Evolution of the Dogger Bank, North Sea: A Complex History of Terrestrial, Glacial and Marine Environmental Change, Quaternary Science Reviews, 171, 136–153, https://doi.org/10.1016/j.quascirev.2017.07.006, 2017. a
Eaton, S., Barlow, N. L. M., Hodgson, D. M., Mellett, C. L., and Emery, A. R.: Landscape Evolution during Holocene Transgression of a Mid-Latitude Low-Relief Coastal Plain: The Southern North Sea, Earth Surface Processes and Landforms, 49, 3139–3157, https://doi.org/10.1002/esp.5880, 2024. a
Eaton, S. J., Hodgson, D. M., Barlow, N. L. M., Mortimer, E. E. J., and Mellett, C. L.: Palaeogeographical Changes in Response to Glacial–Interglacial Cycles, as Recorded in Middle and Late Pleistocene Seismic Stratigraphy, Southern North Sea, Journal of Quaternary Science, 35, 760–775, https://doi.org/10.1002/jqs.3230, 2020. a, b
Ehlers, J. and Gibbard, P. L. (Eds.): Quaternary Glaciations: Extent and Chronology, no. 2 in Developments in Quaternary Science, Elsevier, Amsterdam, San Diego, 1st edn., ISBN 978-0-444-51462-2, 2004. a
Emery, A. R., Hodgson, D. M., Barlow, N. L., Carrivick, J. L., Cotterill, C. J., Mellett, C. L., and Booth, A. D.: Topographic and Hydrodynamic Controls on Barrier Retreat and Preservation: An Example from Dogger Bank, North Sea, Marine Geology, 416, 105981, https://doi.org/10.1016/j.margeo.2019.105981, 2019a. a, b
Emery, A. R., Hodgson, D. M., Barlow, N. L., Carrivick, J. L., Cotterill, C. J., and Phillips, E.: Left High and Dry: Deglaciation of Dogger Bank, North Sea, Recorded in Proglacial Lake Evolution, Frontiers in Earth Science, 7, 1–27, https://doi.org/10.3389/feart.2019.00234, 2019b. a
Emery, A. R., Hodgson, D. M., Barlow, N. L. M., Carrivick, J. L., Cotterill, C. J., Richardson, J. C., Ivanovic, R. F., and Mellett, C. L.: Ice sheet and palaeoclimate controls on drainage network evolution: an example from Dogger Bank, North Sea, Earth Surf. Dynam., 8, 869–891, https://doi.org/10.5194/esurf-8-869-2020, 2020. a
Gaffney, V., Harding, R., Fitch, S., Walker, J., Boothby, V., and Fraser, A. I.: Winds of Change: Urgent Challenges and Emerging Opportunities in Submerged Prehistory, a Perspective from the North Sea, Heritage, 7, 1947–1968, https://doi.org/10.3390/heritage7040093, 2024. a
Gandy, N., Gregoire, L. J., Ely, J. C., Cornford, S. L., Clark, C. D., and Hodgson, D. M.: Collapse of the Last Eurasian Ice Sheet in the North Sea Modulated by Combined Processes of Ice Flow, Surface Melt, and Marine Ice Sheet Instabilities, Journal of Geophysical Research: Earth Surface, 126, e2020JF005755, https://doi.org/10.1029/2020JF005755, 2021. a
Gibbard, P. L. and Cohen, K. M.: Quaternary evolution of the North Sea and the English Channel, Proceedings of the Open University Geological Society, 1, 63–74, 2015. a
Graham, A. G., Stoker, M. S., Lonergan, L., Bradwell, T., and Stewart, M. A.: The Pleistocene Glaciations of the North Sea Basin, Developments in Quaternary Sciences, 15, 261–278, https://doi.org/10.1016/B978-0-444-53447-7.00021-0, 2011. a
Hijma, M. P., Cohen, K. M., Roebroeks, W., Westerhoff, W. E., and Busschers, F. S.: Pleistocene Rhine–Thames Landscapes: Geological Background for Hominin Occupation of the Southern North Sea Region, Journal of Quaternary Science, 27, 17–39, https://doi.org/10.1002/jqs.1549, 2012. a, b, c, d
King, E., Haflidason, H., Sejrup, H., and Løvlie, R.: Glacigenic Debris Flows on the North Sea Trough Mouth Fan during Ice Stream Maxima, Marine Geology, 152, 217–246, https://doi.org/10.1016/S0025-3227(98)00072-3, 1998. a
Kuhlmann, G. and Wong, T. E.: Pliocene Paleoenvironment Evolution as Interpreted from 3D-seismic Data in the Southern North Sea, Dutch Offshore Sector, Marine and Petroleum Geology, 25, 173–189, https://doi.org/10.1016/j.marpetgeo.2007.05.009, 2008. a, b, c
Lamb, R. M., Harding, R., Huuse, M., Stewart, M., and Brocklehurst, S. H.: The Early Quaternary North Sea Basin, Journal of the Geological Society, 175, 275–290, https://doi.org/10.1144/jgs2017-057, 2018. a, b, c
Lauer, T. and Weiss, M.: Timing of the Saalian- and Elsterian glacial cycles and the implications for Middle – Pleistocene hominin presence in central Europe, Scientific Reports, 8, 5111, https://doi.org/10.1038/s41598-018-23541-w, 2018. a
Long, A. J., Barlow, N. L. M., Busschers, F. S., Cohen, K. M., Gehrels, W. R., and Wake, L. M.: Near-Field Sea-Level Variability in Northwest Europe and Ice Sheet Stability during the Last Interglacial, Quaternary Science Reviews, 126, 26–40, https://doi.org/10.1016/j.quascirev.2015.08.021, 2015. a
McGuire, A., Cartelle, V., Rush, G., Busschers, F., Cohen, K., Hodgson, D., and Barlow, N.: The RISeR cores: core imaging and laminography, Zenodo [data set], https://doi.org/10.5281/zenodo.15584040, 2025. a, b
McGuire, A. M., Waajen, I. M., and Barlow, N. L.: Advancing Chronologies for Last Interglacial Sequences, Journal of Quaternary Science, https://doi.org/10.1002/jqs.3641, 2024. a, b
Mellett, C. L., Phillips, E., Lee, J. R., Cotterill, C. J., Tjelta, T. I., James, L., and Duffy, C.: Elsterian Ice-Sheet Retreat in the Southern North Sea: Antecedent Controls on Large-Scale Glaciotectonics and Subglacial Bed Conditions, Boreas. Münstersche Beiträge zur Archäologie, 49, 129–151, https://doi.org/10.1111/bor.12410, 2020. a
Ottesen, D., Dowdeswell, J. A., and Bugge, T.: Morphology, Sedimentary Infill and Depositional Environments of the Early Quaternary North Sea Basin (56°–62° N), Marine and Petroleum Geology, 56, 123–146, https://doi.org/10.1016/j.marpetgeo.2014.04.007, 2014. a, b, c
Peeters, J., Busschers, F. S., and Stouthamer, E.: Fluvial Evolution of the Rhine during the Last Interglacial-Glacial Cycle in the Southern North Sea Basin: A Review and Look Forward, Quaternary International, 357, 176–188, https://doi.org/10.1016/j.quaint.2014.03.024, 2015. a
Peeters, J., Busschers, F. S., Stouthamer, E., Bosch, J. H. A., Van den Berg, M. W., Wallinga, J., Versendaal, A. J., Bunnik, F. P. M., and Middelkoop, H.: Sedimentary Architecture and Chronostratigraphy of a Late Quaternary Incised-Valley Fill: A Case Study of the Late Middle and Late Pleistocene Rhine System in the Netherlands, Quaternary Science Reviews, 131, 211–236, https://doi.org/10.1016/j.quascirev.2015.10.015, 2016. a, b
Phillips, E., Hodgson, D. M., and Emery, A. R.: The Quaternary Geology of the North Sea Basin, Journal of Quaternary Science, 32, 117–126, https://doi.org/10.1002/jqs.2932, 2017. a
Preece, R. C.: Introduction – Island Britain: A Quaternary Perspective, Geological Society, London, Special Publications, 96, 1–2, https://doi.org/10.1144/GSL.SP.1995.096.01.01, 1995. a
Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G., Bronk Ramsey, C., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., Palmer, J. G., Pearson, C., Van Der Plicht, J., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Turney, C. S. M., Wacker, L., Adolphi, F., Büntgen, U., Capano, M., Fahrni, S. M., Fogtmann-Schulz, A., Friedrich, R., Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M., Sookdeo, A., and Talamo, S.: The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 Cal kBP), Radiocarbon, 62, 725–757, https://doi.org/10.1017/RDC.2020.41, 2020. a
Scheidt, S., Hambach, U., and Rolf, C.: A Consistent Magnetic Polarity Stratigraphy of Late Neogene to Quaternary Fluvial Sediments from the Heidelberg Basin (Germany): A New Time Frame for the Plio–Pleistocene Palaeoclimatic Evolution of the Rhine Basin, Global and Planetary Change, 127, 103–116, https://doi.org/10.1016/j.gloplacha.2015.01.004, 2015. a
Scourse, J., Ansari, M., Wingfield, R., Harland, R., and Balson, P.: A Middle Pleistocene Shallow Marine Interglacial Sequence, Inner Silver Pit, Southern North Sea, Quaternary Science Reviews, 17, 871–900, https://doi.org/10.1016/S0277-3791(98)00023-7, 1998. a
Thompson, R., Cameron, T. D. J., Schwarz, C., Jensen, K. A., Maenhaut Lemberge, V. V., and Sha, L. P.: The Magnetic Properties of Quaternary and Tertiary Sediments in the Southern North Sea, Journal of Quaternary Science, 7, 319–334, https://doi.org/10.1002/jqs.3390070407, 1992. a
Turner, C. and West, R. G.: The subdivision and zonation of interglacial periods, E&G Quaternary Sci. J., 19, 93–101, https://doi.org/10.3285/eg.19.1.06, 1968. a
van Heteren, S.: We@Sea project 2005-005. Analysis of seabed and soil quality required for wind farms., Tech. Rep. Final Report, TNO-Geological Survey of the Netherlands, 2010. a
Van Heteren, S., Meekes, J. A., Bakker, M. A., Gaffney, V., Fitch, S., Gearey, B. R., and Paap, B. F.: Reconstructing North Sea Palaeolandscapes from 3D and High-Density 2D Seismic Data: An Overview, Geologie en Mijnbouw/Netherlands Journal of Geosciences, 93, 31–42, https://doi.org/10.1017/njg.2014.4, 2014. a
Velenturf, A. P. M., Emery, A. R., Hodgson, D. M., Barlow, N. L. M., Mohtaj Khorasani, A. M., Van Alstine, J., Peterson, E. L., Piazolo, S., and Thorp, M.: Geoscience Solutions for Sustainable Offshore Wind Development, Earth Science, Systems and Society, 1, 10042, https://doi.org/10.3389/esss.2021.10042, 2021. a
Waajen, I. M., Busschers, F. S., Donders, T. H., Van Heteren, S., Plets, R., Wallinga, J., Hennekam, R., Reichart, G.-J., Kinnaird, T., and Wagner-Cremer, F.: Late MIS5a in the Southern North Sea: New Chronostratigraphic Insights from the Brown Bank Formation, Journal of Quaternary Science, 39, 408–420, https://doi.org/10.1002/jqs.3592, 2024. a, b
West, R.: Interglacial Deposits at Bobbitshole, Ipswich, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 241, 1–31, https://doi.org/10.1098/rstb.1957.0006, 1957. a
Zagwijn, W. H.: Sea-Level Changes in The Netherlands during the Eemian, Geologie en Mijnbouw, 62, 437–450, 1983. a
Zagwijn, W. H.: An Outline of the Quaternary Stratigraphy of the Netherlands, Geologie en Mijnbouw, 64, 17–24, 1985. a
Short summary
We present five new sediment cores, the Rates of Interglacial Sea-level Change and Responses (RISeR) cores, extracted from the southern North Sea. The cores will allow us to study the evolution of the basin in the Quaternary (the last 2.58 million years). The cores reveal widespread soil, wetland, and river deposits, reflecting a lost, predominantly terrestrial, landscape that now sits around 20 m below sea level. Understanding these landscapes is vital, as they form the foundations for a rapidly growing offshore wind industry.
We present five new sediment cores, the Rates of Interglacial Sea-level Change and...

