Advancing subsurface biosphere and paleoclimate research: ECORD–ICDP–DCO–J-DESC–MagellanPlus Workshop Series Program Report
H. J. Mills
CORRESPONDING AUTHOR
Division of Natural Sciences, University of Houston Clear Lake, Houston, TX, USA
J. de Leeuw
NIOZ Royal Netherlands Institute for Sea Research, the Netherlands
K.-U. Hinrichs
MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
F. Inagaki
Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kochi, Japan
J. Kallmeyer
GFZ German Research Centre for Geosciences, Potsdam, Germany
Related authors
No articles found.
Ellen Schnabel, Aurèle Vuillemin, Cédric C. Laczny, Benoit J. Kunath, André R. Soares, Rolando Di Primio, Jens Kallmeyer, and the PROSPECTOMICS Consortium
EGUsphere, https://doi.org/10.5194/egusphere-2024-1603, https://doi.org/10.5194/egusphere-2024-1603, 2024
Short summary
Short summary
This study analyzed marine sediment samples from areas with and without minimal hydrocarbon seepage from reservoirs underneath. Depth profiles of dissolved chemical components in the pore water as well as molecular biological data revealed differences in microbial community composition and activity. These results indicate that even minor hydrocarbon seepage affects sedimentary biogeochemical cycling in marine sediments, potentially providing a new tool for detection of hydrocarbon reservoirs.
Daniel Müller, Bo Liu, Walter Geibert, Moritz Holtappels, Lasse Sander, Elda Miramontes, Heidi Taubner, Susann Henkel, Kai-Uwe Hinrichs, Denise Bethke, Ingrid Dohrmann, and Sabine Kasten
EGUsphere, https://doi.org/10.5194/egusphere-2024-1632, https://doi.org/10.5194/egusphere-2024-1632, 2024
Short summary
Short summary
Coastal and shelf sediments are the most important sinks for organic carbon (OC) on Earth. We produced a new high-resolution sediment and pore-water dataset from the Helgoland Mud Area (HMA), North Sea, to determine, which depositional factors control the preservation of OC. The burial efficiency is highest in an area of high sedimentation and terrigenous OC. The HMA covers 0.09 % of the North Sea, but accounts for 0.76 % of its OC accumulation, highlighting the importance of the depocentre.
George Westmeijer, Cristina Escudero, Claudia Bergin, Stephanie Turner, Magnus Ståhle, Maliheh Mehrshad, Prune Leroy, Moritz Buck, Pilar López-Hernández, Jens Kallmeyer, Ricardo Amils, Stefan Bertilsson, and Mark Dopson
Biogeosciences, 21, 591–604, https://doi.org/10.5194/bg-21-591-2024, https://doi.org/10.5194/bg-21-591-2024, 2024
Short summary
Short summary
Rock cores down to 2250 m depth, groundwater-bearing fractures, and drilling fluid were sampled for DNA to characterize the subsurface microbial community. In general, microbial biomass was extremely low despite the employment of detection methods widespread in low-biomass environments. The described contamination control measures could support future sampling efforts, and our findings emphasize the use of sequencing extraction controls.
Steffen Kutterolf, Mark Brenner, Robert A. Dull, Armin Freundt, Jens Kallmeyer, Sebastian Krastel, Sergei Katsev, Elodie Lebas, Axel Meyer, Liseth Pérez, Juanita Rausch, Armando Saballos, Antje Schwalb, and Wilfried Strauch
Sci. Dril., 32, 73–84, https://doi.org/10.5194/sd-32-73-2023, https://doi.org/10.5194/sd-32-73-2023, 2023
Short summary
Short summary
The NICA-BRIDGE workshop proposes a milestone-driven three-phase project to ICDP and later ICDP/IODP involving short- and long-core drilling in the Nicaraguan lakes and in the Pacific Sandino Basin to (1) reconstruct tropical climate and environmental changes and their external controlling mechanisms over several million years, (2) assess magnitudes and recurrence times of multiple natural hazards, and (3) provide
baselineenvironmental data for monitoring lake conditions.
Tomáš Fischer, Pavla Hrubcová, Torsten Dahm, Heiko Woith, Tomáš Vylita, Matthias Ohrnberger, Josef Vlček, Josef Horálek, Petr Dědeček, Martin Zimmer, Martin P. Lipus, Simona Pierdominici, Jens Kallmeyer, Frank Krüger, Katrin Hannemann, Michael Korn, Horst Kämpf, Thomas Reinsch, Jakub Klicpera, Daniel Vollmer, and Kyriaki Daskalopoulou
Sci. Dril., 31, 31–49, https://doi.org/10.5194/sd-31-31-2022, https://doi.org/10.5194/sd-31-31-2022, 2022
Short summary
Short summary
The newly established geodynamic laboratory aims to develop modern, comprehensive, multiparameter observations at depth for studying earthquake swarms, crustal fluid flow, mantle-derived fluid degassing and processes of the deep biosphere. It is located in the West Bohemia–Vogtland (western Eger Rift) geodynamic region and comprises a set of five shallow boreholes with high-frequency 3-D seismic arrays as well as continuous real-time fluid monitoring at depth and the study of the deep biosphere.
Henning Lorenz, Jan-Erik Rosberg, Christopher Juhlin, Iwona Klonowska, Rodolphe Lescoutre, George Westmeijer, Bjarne S. G. Almqvist, Mark Anderson, Stefan Bertilsson, Mark Dopson, Jens Kallmeyer, Jochem Kück, Oliver Lehnert, Luca Menegon, Christophe Pascal, Simon Rejkjær, and Nick N. W. Roberts
Sci. Dril., 30, 43–57, https://doi.org/10.5194/sd-30-43-2022, https://doi.org/10.5194/sd-30-43-2022, 2022
Short summary
Short summary
The Collisional Orogeny in the Scandinavian Caledonides project provides insights into the deep structure and bedrock of a ca. 400 Ma old major orogen to study deformation processes that are hidden at depth from direct access in modern mountain belts. This paper describes the successful operations at the second site. It provides an overview of the retrieved geological section that differs from the expected and summarises the scientific potential of the accomplished data sets and drill core.
Susumu Umino, Gregory F. Moore, Brian Boston, Rosalind Coggon, Laura Crispini, Steven D'Hondt, Michael O. Garcia, Takeshi Hanyu, Frieder Klein, Nobukazu Seama, Damon A. H. Teagle, Masako Tominaga, Mikiya Yamashita, Michelle Harris, Benoit Ildefonse, Ikuo Katayama, Yuki Kusano, Yohey Suzuki, Elizabeth Trembath-Reichert, Yasuhiro Yamada, Natsue Abe, Nan Xiao, and Fumio Inagaki
Sci. Dril., 29, 69–82, https://doi.org/10.5194/sd-29-69-2021, https://doi.org/10.5194/sd-29-69-2021, 2021
Yusuke Kubo, Fumio Inagaki, Satoshi Tonai, Go-Ichiro Uramoto, Osamu Takano, Yasuhiro Yamada, and the Expedition 910 Shipboard Scientific Party
Sci. Dril., 27, 25–33, https://doi.org/10.5194/sd-27-25-2020, https://doi.org/10.5194/sd-27-25-2020, 2020
Short summary
Short summary
The Chikyu Shallow Core Program (SCORE) has been started to provide more opportunities for scientific ocean drilling of shallow boreholes (up to 100 m) during a short-term expedition. The proposal flow is a simplified version of that of the International Ocean Discovery Program (IODP). Although there are several limitations for a SCORE project, the opportunity to retrieve 100 m of continuous core samples will be of interest for the scientific ocean drilling community in multiple disciplines.
Aurèle Vuillemin, André Friese, Richard Wirth, Jan A. Schuessler, Anja M. Schleicher, Helga Kemnitz, Andreas Lücke, Kohen W. Bauer, Sulung Nomosatryo, Friedhelm von Blanckenburg, Rachel Simister, Luis G. Ordoñez, Daniel Ariztegui, Cynthia Henny, James M. Russell, Satria Bijaksana, Hendrik Vogel, Sean A. Crowe, Jens Kallmeyer, and the Towuti Drilling Project
Science team
Biogeosciences, 17, 1955–1973, https://doi.org/10.5194/bg-17-1955-2020, https://doi.org/10.5194/bg-17-1955-2020, 2020
Short summary
Short summary
Ferruginous lakes experience restricted primary production due to phosphorus trapping by ferric iron oxides under oxic conditions. We report the presence of large crystals of vivianite, a ferrous iron phosphate, in sediments from Lake Towuti, Indonesia. We address processes of P retention linked to diagenesis of iron phases. Vivianite crystals had light Fe2+ isotope signatures and contained mineral inclusions consistent with antecedent processes of microbial sulfate and iron reduction.
Sarah Coffinet, Travis B. Meador, Lukas Mühlena, Kevin W. Becker, Jan Schröder, Qing-Zeng Zhu, Julius S. Lipp, Verena B. Heuer, Matthew P. Crump, and Kai-Uwe Hinrichs
Biogeosciences, 17, 317–330, https://doi.org/10.5194/bg-17-317-2020, https://doi.org/10.5194/bg-17-317-2020, 2020
Short summary
Short summary
This study deals with two membrane lipids called BDGTs and PDGTs. Membrane lipids are molecules forming the cell envelope of all organisms. Different organisms produce different lipids thus they can be used to detect the presence of specific organisms in the environment. We analyzed the structure of these new lipids and looked for potential producers. We found that they are likely made by microbes emitting methane below the sediment surface and could be used to track these specific microbes.
Julia Mitzscherling, Fabian Horn, Maria Winterfeld, Linda Mahler, Jens Kallmeyer, Pier P. Overduin, Lutz Schirrmeister, Matthias Winkel, Mikhail N. Grigoriev, Dirk Wagner, and Susanne Liebner
Biogeosciences, 16, 3941–3958, https://doi.org/10.5194/bg-16-3941-2019, https://doi.org/10.5194/bg-16-3941-2019, 2019
Short summary
Short summary
Permafrost temperatures increased substantially at a global scale, potentially altering microbial assemblages involved in carbon mobilization before permafrost thaws. We used Arctic Shelf submarine permafrost as a natural laboratory to investigate the microbial response to long-term permafrost warming. Our work shows that millennia after permafrost warming by > 10 °C, microbial community composition and population size reflect the paleoenvironment rather than a direct effect through warming.
Florence Schubotz, Sitan Xie, Julius S. Lipp, Kai-Uwe Hinrichs, and Stuart G. Wakeham
Biogeosciences, 15, 6481–6501, https://doi.org/10.5194/bg-15-6481-2018, https://doi.org/10.5194/bg-15-6481-2018, 2018
Short summary
Short summary
Organisms living in natural environments have to cope with constantly fluctuating conditions in order to compete and survive. Hereby, membrane lipids may play an integral role. This study demonstrates that the lipid repertoire and lipid modifications in marine picoplankton living in oxygen minimum zones may be larger than previously thought. The abundant presence of non-phosphorus lipids hint at nutrient limitation within deeper depths of the ocean, even though these are not considered as such.
Robert McKay, Neville Exon, Dietmar Müller, Karsten Gohl, Michael Gurnis, Amelia Shevenell, Stuart Henrys, Fumio Inagaki, Dhananjai Pandey, Jessica Whiteside, Tina van de Flierdt, Tim Naish, Verena Heuer, Yuki Morono, Millard Coffin, Marguerite Godard, Laura Wallace, Shuichi Kodaira, Peter Bijl, Julien Collot, Gerald Dickens, Brandon Dugan, Ann G. Dunlea, Ron Hackney, Minoru Ikehara, Martin Jutzeler, Lisa McNeill, Sushant Naik, Taryn Noble, Bradley Opdyke, Ingo Pecher, Lowell Stott, Gabriele Uenzelmann-Neben, Yatheesh Vadakkeykath, and Ulrich G. Wortmann
Sci. Dril., 24, 61–70, https://doi.org/10.5194/sd-24-61-2018, https://doi.org/10.5194/sd-24-61-2018, 2018
James M. Russell, Satria Bijaksana, Hendrik Vogel, Martin Melles, Jens Kallmeyer, Daniel Ariztegui, Sean Crowe, Silvia Fajar, Abdul Hafidz, Doug Haffner, Ascelina Hasberg, Sarah Ivory, Christopher Kelly, John King, Kartika Kirana, Marina Morlock, Anders Noren, Ryan O'Grady, Luis Ordonez, Janelle Stevenson, Thomas von Rintelen, Aurele Vuillemin, Ian Watkinson, Nigel Wattrus, Satrio Wicaksono, Thomas Wonik, Kohen Bauer, Alan Deino, André Friese, Cynthia Henny, Imran, Ristiyanti Marwoto, La Ode Ngkoimani, Sulung Nomosatryo, La Ode Safiuddin, Rachel Simister, and Gerald Tamuntuan
Sci. Dril., 21, 29–40, https://doi.org/10.5194/sd-21-29-2016, https://doi.org/10.5194/sd-21-29-2016, 2016
Short summary
Short summary
The Towuti Drilling Project seeks to understand the long-term environmental and climatic history of the tropical western Pacific and to discover the unique microbes that live in metal-rich sediments. To accomplish these goals, in 2015 we carried out a scientific drilling project on Lake Towuti, located in central Indonesia. We recovered over 1000 m of core, and our deepest core extended 175 m below the lake floor and gives us a complete record of the lake.
Fumio Inagaki, Kai-Uwe Hinrichs, Yusuke Kubo, and the IODP Expedition 337 Scientists
Sci. Dril., 21, 17–28, https://doi.org/10.5194/sd-21-17-2016, https://doi.org/10.5194/sd-21-17-2016, 2016
T. L. Kieft, T. C. Onstott, L. Ahonen, V. Aloisi, F. S. Colwell, B. Engelen, S. Fendrihan, E. Gaidos, U. Harms, I. Head, J. Kallmeyer, B. Kiel Reese, L.-H. Lin, P. E. Long, D. P. Moser, H. Mills, P. Sar, D. Schulze-Makuch, H. Stan-Lotter, D. Wagner, P.-L. Wang, F. Westall, and M. J. Wilkins
Sci. Dril., 19, 43–53, https://doi.org/10.5194/sd-19-43-2015, https://doi.org/10.5194/sd-19-43-2015, 2015
R. Zhu, Y.-S. Lin, J. S. Lipp, T. B. Meador, and K.-U. Hinrichs
Biogeosciences, 11, 4869–4880, https://doi.org/10.5194/bg-11-4869-2014, https://doi.org/10.5194/bg-11-4869-2014, 2014
Y. Kubo, Y. Mizuguchi, F. Inagaki, and K. Yamamoto
Sci. Dril., 17, 37–43, https://doi.org/10.5194/sd-17-37-2014, https://doi.org/10.5194/sd-17-37-2014, 2014
D. de Beer, M. Haeckel, J. Neumann, G. Wegener, F. Inagaki, and A. Boetius
Biogeosciences, 10, 5639–5649, https://doi.org/10.5194/bg-10-5639-2013, https://doi.org/10.5194/bg-10-5639-2013, 2013
Related subject area
Location/Setting: Drilling technologies | Subject: Microbiology | Geoprocesses: Deep biosphere
Corganiser: a web-based software tool for planning time-sensitive sampling of whole rounds during scientific drilling
I. P. G. Marshall
Sci. Dril., 18, 1–4, https://doi.org/10.5194/sd-18-1-2014, https://doi.org/10.5194/sd-18-1-2014, 2014
Cited articles
Colwell, F. S. and D'Hondt, S.: Nature and Exteme of the Deep Biosphere, in: Carbon in Earth. Mineralogical Society of America and Geochemical Society, Reviews in Mineralogy and Geochemistry, edited by: Hazen, R. H., Jones, A. P., and Baross, J. A., 75, 547–566, https://doi.org/10.2138/rmg.2013.75.17, 2013.
Heim, C.: Terrestrial deep biosphere, in: Encyclopedia of geobiology, edited by: Reitner, J. and Thiel, V., Dordrecht, The Netherlands, Springer ScienceCBusiness Media B.V., 871–876, 2011.
Horsfield, B., Kieft, T., Amann, H., Franks, S., Kallmeyer, S., Mangelsdorf, K., Parkes, J., Wagner, W., Wilkes, H., and Zink, K.-G.: The GeoBiosphere, edited by: Harms, U., Koeberl, C., and Zoback, M. D., Continental Scientific Drilling: A Decade of Progress and Challenges for the Future, Berlin-Heidelberg (Springer), 163–211, 2007.
ICDP: Unraveling the complexities of planet earth: science plan for 2014–2019, edited by: Horsfield, B., Knebel, C., Ludden, J., and Hyndman, R, International Continental Scientific Drilling Program, Potsdam, Germany, 2014.
IODP: Science plan for 2013–2023: Illuminating earth's past, present and future, Integrated Ocean Drilling Program Management International, Washington DC, 2011.
Kieft, T. L., Onstott, T. C., Ahonen, L., Aloisi, V., Colwell, F. S., Engelen, B., Fendrihan, S., Gaidos, E., Harms, U., Head, I., Kallmeyer, J., Kiel Reese, B., Lin, L.-H., Long, P. E., Moser, D. P., Mills, H., Sar, P., Schulze-Makuch, D., Stan-Lotter, H., Wagner, D., Wang, P.-L., Westall, F., and Wilkins, M. J.: Workshop to develop deep-life continental scientific drilling projects, Sci. Dril., 19, 43–53, https://doi.org/10.5194/sd-19-43-2015, 2015.
Lau, M. C. Y., Cameron, C., Magnabosco, C., Brown, C. T., Schilkey, F., Grim, S., Hendrickson, S., Pullin, M., Sherwood Lollar, B., van Heerden, E., Kieft, T. L., and Onstott, T. C.: Phylogeny and phylogeography of functional genes shared among seven terrestrial subsurface metagenomes reveal N-cycling and microbial evolutionary relationships, Front. Microbiol., 5, 531, https://doi.org/10.3389/fmicb.2014.00531, 2014.
Lloyd, K. G., May, M. K., Kevorkian, R. T., and Steen, A. D.: Meta-analysis of quantification methods shows that archaea and bacteria have similar abundances in the subseafloor, Appl. Environ. Microbiol., 79, 7790–7799, 2013.
Mangelsdorf, K. and Kallmeyer, J.: Integration of Deep Biosphere Research into the International Continental Scientific Drilling Program, Sci. Dril., 10, 46–55, https://doi.org/10.5194/sd-10-46-2010, 2010.
Mills, H. J., Reese, B. K., Shepard, A. K., Riedinger, N., Murano, Y., and Inagaki, F.: Characterization of the metabolically active bacterial populations in subseafloor Nankai Trough sediments above, within and below the sulfate-methane transition zone, Front. Microbiol., 3, 113, https://doi.org/10.3389/fmicb.2012.00113, 2012a.
Mills, H. J., Reese, B. K., and St. Peter, C.: Characterization of microbial population shifts during sample storage, Front. Microbiol., 3, 49, https://doi.org/10.3389/fmicb.2012.00049, 2012b.
Mills, H. J., de Leeuw, J., Kinrichs, K. U., Inagaki, F., and Kallmeyer, J.: Advancing Sub-Surface Biosphere and Paleoclimate Research MagellanPlus Workshop – 21–23 August 2014, Seoul (South Korea), ECORD Newsletter, 23, p. 21, 2014.
Morono, Y., Terada, T., Masui, N., and Inagaki, F.: Improved and automated cell count system for rapid enumeration of microbial cells in the deep subsurface, Geochem. Cosmochim. Ac., 72, A651–A651, 2008.
Morono, Y., Terada, T., Nishizawa, M., Ito, M., Hillion, F., Takahata, N., Sano, Y., and Inagaki, F.: Carbon and nitrogen assimilation in deep subseafloor microbial cells, P. Natl. Acad. Sci. USA, 108, 18295–18300, 2011.
Morono, Y., Terada, T., Kallmeyer, J., and Inagaki, F.: An improved cell separation technique for marine subsurface sediments: applications for high-throughput analysis using flow cytometry and cell sorting, Environ. Microbiol., 15, 2841–2849, https://doi.org/10.1111/1462-2920.12153, 2013.
Morono, Y., Terada, T., Yamamoto, Y., Xiao, N., Hirose, T., Sugeno, M., Ohwada, N., and Inagaki, F.: Intact preservation of environmental samples by freezing under an alternating magnetic field, Environ. Microbio. Rep., 7, 243–251, https://doi.org/10.1111/1758-2229.12238, 2015.
Orcutt, B. N., LaRowe, D. E., Biddle, J. E., Colwell, F. S., Glazer, B. T., Reese, B. K., Kirkpatrick, J. B., Lapham, L. L., Mills, H. J., Sylvan, J. B., Wankel, S. D., and Wheat, C. G.: Microbial activity in the marine deep biosphere: progress and prospects, Front. Microbiol., 4, 1–14, https://doi.org/10.3389/fmicb.2013.00189, 2013.
Parkes, R. J., Webster, G., Cragg, B. A., Weightman, A. J., Newberry, C. J., Ferdelman, T. G., Kallmeyer, J., Jørgensen, B. B., Aiello, I. W., and Fry, J. C.: Deep sub-seafloor prokaryotes stimulated at interfaces over geologic time, Nature, 436, 390–394, 2005.
Schippers, A., Neretin, L. N., Kallmeyer, J., Ferdelman, T. G., Cragg, B. A., Parkes, R. J., and Jørgensen, B. B.: Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria, Nature, 433, 861–864, 2005.
Short summary
Proceedings and results are presented from the Seoul 2014 Advancing Subsurface Biosphere and Paleoclimate Research workshop. Participants discussed past and present directions of IODP and ICDP subsurface research, including efforts with DCO and IMPRESS. Discussions led to the formation of a level-based communication system with the goal of improving communication and expectations between all drilling disciplines. The production of a biology-themed handbook to guide surface research is planned.
Proceedings and results are presented from the Seoul 2014 Advancing Subsurface Biosphere and...