Geohazard detection using 3D seismic data to enhance offshore scientific drilling site selection
Department of Earth and Environmental Sciences, University of Manchester, Williamson Building, Oxford Road, Manchester, M13 9PL, UK
Paul C. Knutz
Geological Survey of Denmark and Greenland, Øster Voldgade 10,
1350 Copenhagen K, Denmark
D. Calvin Campbell
Geological Survey of Canada (Atlantic), Natural Resources Canada,
Dartmouth, Nova Scotia B2Y 4A2, Canada
John R. Hopper
Geological Survey of Denmark and Greenland, Øster Voldgade 10,
1350 Copenhagen K, Denmark
Andrew M. W. Newton
Department of Earth and Environmental Sciences, University of Manchester, Williamson Building, Oxford Road, Manchester, M13 9PL, UK
School of Natural and Built Environment, Elmwood Building, Queen's
University Belfast, University Road, UK, BT7 1NN, UK
Mads Huuse
Department of Earth and Environmental Sciences, University of Manchester, Williamson Building, Oxford Road, Manchester, M13 9PL, UK
Karsten Gohl
Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
Related authors
Andrew M. W. Newton, Mads Huuse, Paul C. Knutz, and David R. Cox
The Cryosphere, 14, 2303–2312, https://doi.org/10.5194/tc-14-2303-2020, https://doi.org/10.5194/tc-14-2303-2020, 2020
Short summary
Short summary
Seismic reflection data offshore northwest Greenland reveal buried landforms that have been interpreted as mega-scale glacial lineations (MSGLs). These have been formed by ancient ice streams that advanced hundreds of kilometres across the continental shelf. The stratigraphy and available chronology show that the MSGLs are confined to separate stratigraphic units and were most likely formed during several glacial maxima after the onset of the Middle Pleistocene Transition at ~ 1.3 Ma.
Catherine M. Collins, Nicolas Perdrial, Pierre-Henri Blard, Nynke Keulen, William C. Mahaney, Halley Mastro, Juliana Souza, Donna M. Rizzo, Yves Marrocchi, Paul C. Knutz, and Paul R. Bierman
EGUsphere, https://doi.org/10.5194/egusphere-2024-2194, https://doi.org/10.5194/egusphere-2024-2194, 2024
Short summary
Short summary
The Camp Century sub-glacial core stores information about past climates, glacial and interglacial processes in northwest Greenland. In this study, we investigated the core archive making large scale observations using CT scans and micron scale observation observing physical and chemical characteristics of individual grains. We find evidence of past ice-free conditions, weathering processes during warmer periods, and past glaciations.
Lara F. Pérez, Paul C. Knutz, John R. Hopper, Marit-Solveig Seidenkrantz, Matt O'Regan, and Stephen Jones
Sci. Dril., 33, 33–46, https://doi.org/10.5194/sd-33-33-2024, https://doi.org/10.5194/sd-33-33-2024, 2024
Short summary
Short summary
The Greenland ice sheet is highly sensitive to global warming and a major contributor to sea level rise. In Northeast Greenland, ice–ocean–tectonic interactions are readily observable today, but geological records that illuminate long-term trends are lacking. NorthGreen aims to promote scientific drilling proposals to resolve key scientific questions on past changes in the Northeast Greenland margin that further affected the broader Earth system.
William Colgan, Agnes Wansing, Kenneth Mankoff, Mareen Lösing, John Hopper, Keith Louden, Jörg Ebbing, Flemming G. Christiansen, Thomas Ingeman-Nielsen, Lillemor Claesson Liljedahl, Joseph A. MacGregor, Árni Hjartarson, Stefan Bernstein, Nanna B. Karlsson, Sven Fuchs, Juha Hartikainen, Johan Liakka, Robert S. Fausto, Dorthe Dahl-Jensen, Anders Bjørk, Jens-Ove Naslund, Finn Mørk, Yasmina Martos, Niels Balling, Thomas Funck, Kristian K. Kjeldsen, Dorthe Petersen, Ulrik Gregersen, Gregers Dam, Tove Nielsen, Shfaqat A. Khan, and Anja Løkkegaard
Earth Syst. Sci. Data, 14, 2209–2238, https://doi.org/10.5194/essd-14-2209-2022, https://doi.org/10.5194/essd-14-2209-2022, 2022
Short summary
Short summary
We assemble all available geothermal heat flow measurements collected in and around Greenland into a new database. We use this database of point measurements, in combination with other geophysical datasets, to model geothermal heat flow in and around Greenland. Our geothermal heat flow model is generally cooler than previous models of Greenland, especially in southern Greenland. It does not suggest any high geothermal heat flows resulting from Icelandic plume activity over 50 million years ago.
Andrew M. W. Newton and Donal J. Mullan
The Cryosphere, 15, 2211–2234, https://doi.org/10.5194/tc-15-2211-2021, https://doi.org/10.5194/tc-15-2211-2021, 2021
Short summary
Short summary
This paper investigates changes in the dates of ice freeze-up and breakup for 678 Northern Hemisphere lakes and rivers from 1931–2005. From 3510 time series, the results show that breakup dates have gradually occurred earlier through time, whilst freeze-up trends have tended to be significantly more variable. These data combined show that the number of annual open-water days has increased through time for most sites, with the magnitude of change at its largest in more recent years.
Kelly A. Hogan, Robert D. Larter, Alastair G. C. Graham, Robert Arthern, James D. Kirkham, Rebecca L. Totten, Tom A. Jordan, Rachel Clark, Victoria Fitzgerald, Anna K. Wåhlin, John B. Anderson, Claus-Dieter Hillenbrand, Frank O. Nitsche, Lauren Simkins, James A. Smith, Karsten Gohl, Jan Erik Arndt, Jongkuk Hong, and Julia Wellner
The Cryosphere, 14, 2883–2908, https://doi.org/10.5194/tc-14-2883-2020, https://doi.org/10.5194/tc-14-2883-2020, 2020
Short summary
Short summary
The sea-floor geometry around the rapidly changing Thwaites Glacier is a key control on warm ocean waters reaching the ice shelf and grounding zone beyond. This area was previously unsurveyed due to icebergs and sea-ice cover. The International Thwaites Glacier Collaboration mapped this area for the first time in 2019. The data reveal troughs over 1200 m deep and, as this region is thought to have only ungrounded recently, provide key insights into the morphology beneath the grounded ice sheet.
Andrew M. W. Newton, Mads Huuse, Paul C. Knutz, and David R. Cox
The Cryosphere, 14, 2303–2312, https://doi.org/10.5194/tc-14-2303-2020, https://doi.org/10.5194/tc-14-2303-2020, 2020
Short summary
Short summary
Seismic reflection data offshore northwest Greenland reveal buried landforms that have been interpreted as mega-scale glacial lineations (MSGLs). These have been formed by ancient ice streams that advanced hundreds of kilometres across the continental shelf. The stratigraphy and available chronology show that the MSGLs are confined to separate stratigraphic units and were most likely formed during several glacial maxima after the onset of the Middle Pleistocene Transition at ~ 1.3 Ma.
Robert McKay, Neville Exon, Dietmar Müller, Karsten Gohl, Michael Gurnis, Amelia Shevenell, Stuart Henrys, Fumio Inagaki, Dhananjai Pandey, Jessica Whiteside, Tina van de Flierdt, Tim Naish, Verena Heuer, Yuki Morono, Millard Coffin, Marguerite Godard, Laura Wallace, Shuichi Kodaira, Peter Bijl, Julien Collot, Gerald Dickens, Brandon Dugan, Ann G. Dunlea, Ron Hackney, Minoru Ikehara, Martin Jutzeler, Lisa McNeill, Sushant Naik, Taryn Noble, Bradley Opdyke, Ingo Pecher, Lowell Stott, Gabriele Uenzelmann-Neben, Yatheesh Vadakkeykath, and Ulrich G. Wortmann
Sci. Dril., 24, 61–70, https://doi.org/10.5194/sd-24-61-2018, https://doi.org/10.5194/sd-24-61-2018, 2018
Jan Erik Arndt, Robert D. Larter, Peter Friedl, Karsten Gohl, Kathrin Höppner, and the Science Team of Expedition PS104
The Cryosphere, 12, 2039–2050, https://doi.org/10.5194/tc-12-2039-2018, https://doi.org/10.5194/tc-12-2039-2018, 2018
Short summary
Short summary
The calving line location of the Pine Island Glacier did not show any trend within the last 70 years until calving in 2015 led to unprecedented retreat. In February 2017 we accessed this previously ice-shelf-covered area with RV Polarstern and mapped the sea-floor topography for the first time. Satellite imagery of the last decades show how the newly mapped shoals affected the ice shelf development and highlights that sea-floor topography is an important factor in initiating calving events.
K. Hochmuth, K. Gohl, G. Uenzelmann-Neben, and R. Werner
Solid Earth Discuss., https://doi.org/10.5194/sed-6-1863-2014, https://doi.org/10.5194/sed-6-1863-2014, 2014
Revised manuscript not accepted
F. O. Nitsche, K. Gohl, R. D. Larter, C.-D. Hillenbrand, G. Kuhn, J. A. Smith, S. Jacobs, J. B. Anderson, and M. Jakobsson
The Cryosphere, 7, 249–262, https://doi.org/10.5194/tc-7-249-2013, https://doi.org/10.5194/tc-7-249-2013, 2013
Cited articles
Acton, G.: Proceedings of the Baffin Bay Scientific Coring Program –
Expedition 344S, Reporting by company consortium with eight companies led by
Shell, The Hague, the Netherlands, 1–842, 2012.
Aird, P.: Assessing geo-hazards, BP Norge AS, Stavanger, Norway, 1–36, 2010.
Altenbernd, T., Jokat, W., Heyde, I., and Damm, V.: Geophysical evidence for
the extent of crustal types and the type of margin along a profile in the
northeastern Baffin Bay, J. Geophys. Res.-Sol. Ea., 120,
7337–7360, https://doi.org/10.1002/2015JB012307, 2015.
Anderson, R., Ratcliffe, I., Greenwell, H., Williams, P., Cliffe, S., and
Coveney, P.: Clay swelling – a challenge in the oilfield, Earth-Sci.
Rev., 98, 201–216, https://doi.org/10.1016/j.earscirev.2009.11.003, 2010.
Andresen, K. J., Huuse, M., Schødt, N. H., Clausen, L. F., and Seidler,
L.: Hydrocarbon plumbing systems of salt minibasins offshore Angola revealed
by three-dimensional seismic analysis, AAPG bulletin, 95, 1039–1065,
https://doi.org/10.1306/12131010046, 2011.
Austin Jr., J. A., Christie-Blick, N., and Malone, M. J.: Leg 174A
Preliminary Report - Continuing the New Jersey Mid-Atlantic sea-level
transect, Ocean Drilling Program, College Station, Texas, USA, 97 pp., 1998.
Badley, M. E.: Practical seismic interpretation, Prentice Hall, Englewood
Cliffs, N.J., USA, 1107 pp., 1985.
Bangs, N., Moore, G., Gulick, S., Pangborn, E., Tobin, H., Kuramoto, S., and
Taira, A.: Broad, weak regions of the Nankai Megathrust and implications for
shallow coseismic slip, Earth Planet. Sc. Lett., 284, 44–49,
https://doi.org/10.1016/j.epsl.2009.04.026, 2009.
Bennett, R., Campbell, D. C., Furze, M. F., and Haggart, J. W.: The shallow
stratigraphy and geohazards of the Northeast Baffin Shelf and Lancaster
Sound, B. Can. Petrol. Geol., 62, 217–231, https://doi.org/10.2113/gscpgbull.62.4.217, 2014.
Berndt, C., Bunz, S., Clayton, T., Mienert, J., and Saunders, M.: Seismic
character of bottom simulating reflectors: examples from the mid-Norwegian
margin, Mar. Petrol. Geol., 21, 723–733, https://doi.org/10.1016/j.marpetgeo.2004.02.003, 2004.
Bickle, M., Arculus, R., Barrett, P., DeConto, R., Camoin, G., Edwards, K.,
Fisher, F., Inagaki, F., Kodaira, S., and Ohkouchi, N.: Illuminating Earth's
Past, Present and Future The Science Plan for the International Ocean
Discovery Program 2013–2023, International Ocean Discovery Program,
Washington, USA, 1–92, 2011.
Bojesen-Koefoed, J. A.: West Greenland Petroleum Systems – an Overview of
Source Rocks and Oil Seepages and Their Implications for Offshore Petroleum
Exploration, The Geological Survey of Denmark and Greenland, Copenhagen, Denmark, vol. 42, 49 pp.,
2011.
Bojesen-Koefoed, J. A., Nytoft, H. P., and Christiansen, F. G.: Age of oils
in West Greenland: Was there a Mesozoic seaway between Greenland and Canada,
Geol. Surv. Den. Greenl., 4, 49–52, https://doi.org/10.34194/geusb.v4.4783, 2004.
Brown, C. S., Newton, A. M., Huuse, M., and Buckley, F.: Iceberg scours,
pits, and pockmarks in the North Falkland Basin, Mar. Geol., 386,
140–152, https://doi.org/10.1016/j.margeo.2017.03.001, 2017.
Cartwright, J.: Polygonal Faults and Seal Integrity, Sixth EAGE Shale
Workshop, 28 April 2019, Bordeaux, France, 2019, 1–4, 2019.
Cartwright, J. A., Huuse, M., and Aplin, A.: Seal Bypass Systems, AAPG
Bulletin, 91, 1141–1166, https://doi.org/10.1306/04090705181,
2007.
Castagna, J. P. and Swan, H. W.: Principles of AVO crossplotting, The
Leading Edge, 16, 337–344, 1997.
Christ, A. J., Bierman, P. R., Knutz, P. C., Corbett, L. B., Fosdick, J. C.,
Thomas, E. K., Cowling, O. C., Hidy, A. J., and Caffee, M. W.: The
northwestern Greenland Ice Sheet during the Early Pleistocene was similar to
today, Geophys. Res. Lett., 47, 1–9, https://doi.org/10.1029/2019GL085176, 2020.
Cox, D. R., Huuse, M., Newton, A. M. W., Gannon, P., and Clayburn, J.: Slip
Sliding Away: Enigma of Large Sandy Blocks within a Gas Bearing Mass
Transport Deposit, Offshore NW Greenland, AAPG Bulletin, 104, 1011–1043,
https://doi.org/10.1306/10031919011, 2020a.
Cox, D. R., Huuse, M., Newton, A. M. W., Sarkar, A. D., and Knutz, P. C.: Shallow gas and gas hydrate occurrences on the northwest Greenland shelf margin, Mar. Geol., accepted, 2020b.
Cox, D. R., Newton, A. M. W., and Huuse, M.: An introduction to seismic
reflection data: acquisition, processing and interpretation, in: Regional
Geology and Tectonics – Principles of Geologic Analysis, edited by:
Scarselli, N., Adam, J., and Chiarella, D., Elsevier, Amsterdam,
the Netherlands, 571–603, 2020c.
Dan, G., Cauquil, E., and Bouroullec, J.-L.: 3D seismic and AUV data
integration for deepwater geohazard assessment: Application to offshore
northwest Borneo, Brunei, Offshore Technology Conference-Asia, 25–28 March 2014, Kuala Lumpur, Malaysia, 1–9,
2014.
Dickens, G. R. and Quinby-Hunt, M. S.: Methane hydrate stability in
seawater, Geophys. Res. Lett., 21, 2115–2118, https://doi.org/10.1029/94GL01858, 1994.
Dutta, N. C.: Deepwater geohazard prediction using prestack inversion of
large offset P-wave data and rock model, The Leading Edge, 21, 193–198,
https://doi.org/10.1190/1.1452612, 2002.
Dutta, N. C., Utech, R. W., and Shelander, D.: Role of 3D seismic for
quantitative shallow hazard assessment in deepwater sediments, The Leading
Edge, 29, 930–942, https://doi.org/10.1190/1.3480006, 2010.
Eriksen, F. N., Assad, M., Eriksen, O. K., Stokke, H. H., and Planke, S.:
HiRes P-Cable 3D data for shallow reservoir mapping and geohazard
predictions – case examples from the Barents Sea, Near Surface Geoscience
2014 – 20th European Meeting of Environmental and Engineering Geophysics, 14–18 September 2014, Athens, Greece, 2014, 1–5, 2014.
Ewing, J. I. and Hollister, C. H.: Regional aspects of deep sea drilling in
the western North Atlantic, Deep sea drilling project intial reports, 11,
951–973, https://doi.org/10.2973/dsdp.proc.11.132.1972, 1972.
Field, M. E. and Kvenvolden, K. A.: Gas hydrates on the northern California
continental margin, Geology, 13, 517–520, https://doi.org/10.1130/0091-7613(1985)13<517:GHOTNC>2.0.CO;2, 1985.
Fjeldskaar, W. and Amantov, A.: Effects of glaciations on sedimentary
basins, J. Geodyn., 118, 66–81, 2018.
Francis, A.: A simple guide to seismic amplitudes and detuning, GEO ExPro,
12, 68–72, 2015.
Frey-Martínez, J.: 3D seismic interpretation of mass transport
deposits: Implications for basin analysis and geohazard evaluation, in:
Submarine mass movements and their consequences, edited by: Mosher, D. C.,
Moscardelli, L., Shipp, R. C., Chaytor, J. D., Baxter, C. D. P., Lee, H. J.,
and Urgeles, R., Springer, Dordrecht, the Netherlands, 553–568, 2010.
Frydman, M., Holzberg, B., Pastor, J., Salies, J., and Pedroso, C.: Reducing
Fault Reactivation Risk on Deepwater Drilling, SPE Latin America and
Caribbean Petroleum Engineering Conference, 17–19 May 2017, Buenos Aires, Argentina, 1–15, 2017.
Galavazi, M., Moore, R., Lee, M., Brunsden, D., and Austin, B.: Quantifying
the impact of deepwater geohazards, Offshore Technology Conference, 1–4 May 2006, Houston, Texas, USA, 1–5, 2006.
Games, K. P. and Self, E.: HRS 3D data – a fundamental change in site
survey geohazard interpretation, First Break, 35, 39–47, https://doi.org/10.3997/1365-2397.2017008, 2017.
Gehrmann, R., Müller, C., Schikowsky, P., Henke, T., Schnabel, M., and
Bönnemann, C.: Model-based identification of the base of the Gas hydrate
stability zone in multichannel reflection seismic data, Offshore Costa Rica,
Int. J. Geophys., 2009, 1–9, https://doi.org/10.1155/2009/812713, 2009.
Gohl, K., Wellner, J. S., and Klaus, A.: Expedition 379 Preliminary Report:
Amundsen Sea West Antarctic Ice Sheet History, International Ocean Discovery
Program, https://doi.org/10.14379/iodp.pr.379.2019, 2019.
Goulty, N.: Geomechanics of polygonal fault systems: a review, Petrol.
Geosci., 14, 389–397, https://doi.org/10.1144/1354-079308-781, 2008.
Grecula, M., Wadsworth, S., Maloney, D., Lauferts, H., Cooke, G., Jones, A.,
and Stevanovic, S.: Baffin Bay Elusive Plays: Geological Surprises of an
Arctic Exploration Campaign, American Association of Petroleum Geology
International Conference and Exhibition (ICE), 15–18 October 2017, London, UK, 1–20, 2018.
Gregersen, U., Hopper, J. R., and Knutz, P. C.: Basin seismic stratigraphy
and aspects of prospectivity in the NE Baffin Bay, Northwest Greenland,
Mar. Petrol. Geol., 46, 1–18, 2013.
Gregersen, U., Knutz, P. C., and Hopper, J. R.: New geophysical and
geological mapping of the eastern Baffin Bay region, offshore West
Greenland, Geol. Surv. Den. Greenl., 35, 83–86,
https://doi.org/10.34194/geusb.v35.4945, 2017.
Gregersen, G., Knutz, P. C., Nøhr-Hansen, H., Sheldon, E., and Hopper, J.
R.: Tectonostratigraphy and evolution of the West Greenland continental
margin, B. Geol. Soc. Denmark, 67, 1–21, https://doi.org/10.37570/bgsd-2019-67-01, 2019.
Haneberg, W. C., Kelly, J. T., Graves, H. L., and Dan, G.: A GIS-based
decision-support approach to deepwater drilling-hazard maps, The Leading
Edge, 34, 398–404, https://doi.org/10.1190/tle34040398.1, 2015.
Hasle, J. R., Kjellén, U., and Haugerud, O.: Decision on oil and gas
exploration in an Arctic area: case study from the Norwegian Barents Sea,
Safety Sci., 47, 832–842, https://doi.org/10.1016/j.ssci.2008.10.019, 2009.
Heggland, R., Nygaard, E. T., and Gallagher, J.: Techniques and experiences
using exploration 3D seismic data to map drilling hazards, Offshore
Technology Conference, 6–9 May 1996, Houston, Texas, USA, 1–9, 1996.
Henriksen, N., Higgins, A. K., Kalsbeek, F., Christopher, T., and
Pulvertaft, R.: Greenland from Archaean to Quaternary: Descriptive text to
the 1995 Geological map of Greenland, 1 : 2 500 000, Geol. Surv. Den. Greenl., 18, 1–126, https://doi.org/10.34194/ggub.v185.5197, 2009.
Hill, A. W.: The use of exploration 3D data in geohazard assessment: where
does the future lie?, Offshore Technology Conference, Houston, Texas, USA,
1996, 1-5, 1996.
Hill, A. W., Hampson, K. M., Hill, A. J., Golightly, C., Wood, G. A.,
Sweeney, M., and Smith, M. M.: ACG field geohazards management: unwinding
the past, securing the future, Offshore Technology Conference, 4–7 May 2015, Houston, Texas, USA, 1–22,
2015.
Hilterman, F. J.: Seismic Amplitude Interpretation, Distinguished Instructor
Series No. 4, Society of Exploration Geophysicists, Tulsa, OK, USA, 1–244, 2001.
Holland, P.: Offshore blowouts: causes and control, Gulf Publishing Company,
Houston, Texas, USA, 1–176, 1997.
Hovland, M., Francis, T. J. G., Claypool, G. E., and Ball, M. M.: Strategy
for scientific drilling of marine gas hydrates, JOIDES Journal, 25, 20–24,
1998.
Huuse, M. and Feary, D. A.: Seismic inversion for acoustic impedance and
porosity of Cenozoic cool-water carbonates on the upper continental slope of
the Great Australian Bight, Mar. Geol., 215, 123–134, https://doi.org/10.1016/j.margeo.2004.12.005, 2005.
Jeanjean, P., Liedtke, E., Clukey, E. C., Hampson, K., and Evans, T.: An
operator's perspective on offshore risk assessment and geotechnical design
in geohazard-prone areas, Frontiers in Offshore Geotechnics: Proceedings of
the International Symposium on Frontiers in Offshore Geotechnics (IS-FOG
2005), 19–21 September 2005, Perth, WA, Australia, 115–143, 2005.
Jensen, P. J. and Cauquil, E.: Guidelines for the conduct of offshore
drilling hazard site surveys, International Association of Oil & Gas
Producers, London, UK, 1–46, 2013.
Khabibullin, T., Falcone, G., and Teodoriu, C.: Drilling through gas-hydrate
sediments: Managing wellbore-stability risks, SPE Drill. Completion,
26, 287–294, https://doi.org/10.2118/131332-PA, 2011.
Khan, F. A., Zohdi, S. B. M., Beng, Q. K., Mohamed, H. B., and Yahya, M. A.
M.: High-resolution pseudo 3D seismic data for shallow marine exploration
and geohazard assessment in Offshore Malaysia, 80th EAGE Conference and
Exhibition 2018, 11–14 June 2018, Copenhagen, Denmark, 1–5, 2018.
Knutz, P. C., Hopper, J. R., Gregersen, U., Nielsen, T., and Japsen, P.: A
contourite drift system on the Baffin Bay–West Greenland margin linking
Pliocene Arctic warming to poleward ocean circulation, Geology, 43, 907–910,
https://doi.org/10.1130/G36927.1, 2015.
Knutz, P. C., Campbell, D. C., Bierman, P. R., de Vernal, A., Huuse, M.,
Jennings, A., Cox, D. R., DeConto, R., Gohl, K., Hogan, K., Hopper, J. R.,
Keisling, B., Newton, A. M. W., Perez, L., Rebschläger, J., Sliwinska,
K. K., Thomas, E., Willerslev, E., Xuan, C., and Stoner, J.: Cenozoic
evolution of the northern Greenland Ice Sheet exposed by transect drilling
in northeast Baffin Bay (CENICE), International Ocean Discovery Program,
Online, 5, available at: https://docs.iodp.org/Proposal_Cover_Sheets/909-Full2_Knutz_cover.pdf (last access: 27 October 2020), 2018.
Knutz, P. C., Newton, A. M. W., Hopper, J. R., Huuse, M., Gregersen, U.,
Sheldon, E., and Dybkjær, K.: Eleven phases of Greenland Ice Sheet
shelf-edge advance over the past 2.7 million years, Nat. Geosci., 12,
361–368, https://doi.org/10.1038/s41561-019-0340-8, 2019.
Knutz, P. C., Harrison, C., Brent, T. A., Gregersen, G., and Hopper, J. R.:
Baffin Bay Tectono-Sedimentary Element, in: Arctic Sedimentary Basins,
edited by: Drachev, S., and Moore, T. E., Geological Society London, London,
submitted, 2020.
Kvenvolden, K. A.: A primer on gas hydrates, in: The Future of Energy Gases,
edited by: Howell, D. G., Wiese, K., Fanelli, M., Zink, L. L., and Cole, F.,
USGS, Washington DC, USA, 279–291, 1993.
Kvenvolden, K. A., Ginsburg, G. D., and Soloviev, V. A.: Worldwide
distirbution of subaquatic gas hydrates, Geo-Mar. Lett., 13, 32–40,
https://doi.org/10.1007/BF01204390, 1993.
Lancelot, Y. and Seibold, E.: The evolution of the central Northeastern
Atlantic – Summary of results of DSDP Leg 41, in: Initial reports of the
DSDP, edited by: Lancelot, Y., Seibold, E., and Gardner, J. V., U.S.
Government Printing Office, Washington, USA, 1215–1245, 1977.
Li, P., Cai, Q., Lin, W., Chen, B., and Zhang, B.: Offshore oil spill
response practices and emerging challenges, Mar. Pollut. Bull., 110,
6–27, https://doi.org/10.1016/j.marpolbul.2016.06.020, 2016.
Marzec, P. and Pietsch, K. M.: Thin-bedded strata and tuning effect as
causes of seismic data anomalies in the top part of the Cenomanian sandstone
in the Grobla–Rajsko–Rylowa area (Carpathian foreland, Poland), Geol.
Q., 56, 690–710, https://doi.org/10.7306/gq.1050, 2012.
Mearns, K. and Flin, R.: Risk perception and attitudes to safety by
personnel in the offshore oil and gas industry: a review, J. Loss
Prevent. Proc., 8, 299–305, https://doi.org/10.1016/0950-4230(95)00032-V, 1995.
Minshull, T. A., Marín-Moreno, H., Betlem, P., Bialas, J., Bünz,
S., Burwicz, E., Cameselle, L., Cifci, G., Giustinaini, M., Hillman, J. I.
T., Hölz, S., Hopper, J. R., Ion, G., León, R., Magalhaes, V.,
Makovsky, Y., Mata, M., Max, M. D., Nielsen, T., Okay, S., Ostrovsky, I.,
O'Neil, N., Pinheiro, L. M., Plaza-Faverola, A., Rey, D., Roy, S.,
Schwalenberg, K., Senger, K., Vadakkepuliyambatta, S., Vasilev, A., and
Vázquez, J. T.: Hydrate occurrence in Europe: A review of available
evidence, Mar. Petrol. Geol., 111, 735–764, https://doi.org/10.1016/j.marpetgeo.2019.08.014, 2020.
Mitchell, J., Marcel, V., and Mitchell, B.: What next for the oil and gas
industry?, Chatham House, London, UK, 128 pp., 2012.
Moore, R., Ushet, N., and Evans, T.: Integrated multidisciplinary assessment
and mitigation of West Nile Delta geohazards, Offshore Site Investigation
and Geotechnics, Confronting New Challenges and Sharing Knowledge, London,
UK, 1–10, 2007.
Muller, S., Reinhardt, L., Franke, D., Gaedicke, C., and Winsemann, J.:
Shallow gas accumulations in the German North Sea, Mar. Petrol. Geol., 91, 139–151, https://doi.org/10.1016/j.marpetgeo.2017.12.016, 2018.
Nadim, F. and Kvalstad, T. J.: Risk assessment and management for offshore
geohazards, Proceedings of the ISGSR, 18–19 October 2007, Shanghai, China, 159–173, 2007.
Nanda, N. C.: Direct Hydrocarbon Indicators (DHI), in: Seismic Data
Interpretation and Evaluation for Hydrocarbon Exploration and Production,
Springer, Cham, Switzerland, 103–113, 2016.
National Research Council: Scientific ocean drilling: accomplishments and
challenges, The National Academies Press, Washington, DC, USA, 1–158, 2011.
Newton, A. M. W., Knutz, P. C., Huuse, M., Gannon, P., Brocklehurst, S. H.,
Clausen, O. R., and Gong, Y.: Ice stream reorganization and glacial retreat
on the northwest Greenland shelf, Geophys. Res. Lett., 44,
7826–7835, https://doi.org/10.1002/2017GL073690, 2017.
Newton, A. M. W., Huuse, M., Knutz, P. C., and Cox, D. R.: Repeated ice streaming on the northwest Greenland continental shelf since the onset of the Middle Pleistocene Transition, The Cryosphere, 14, 2303–2312, https://doi.org/10.5194/tc-14-2303-2020, 2020.
Nøhr-Hansen, H., Pedersen, G. K., Knutz, P. C., Bojesen-Koefoed, J. A.,
Sliwinska, K. K., and Hovikoski, J.: Potential Cretaceous source-rocks from
the north-east Baffin Bay, West Greenland, AAPG Europe Regional Conference –
Global Analogues of the Atlantic Margin, 2–3 May 2018, Lisbon, Portugal, 2018.
Núñez-Betelu, L. K.: Rock-Eval/TOC pyrolysis data from the Kanguk
Formation (Upper Cretaceous), Axel Heiberg and Ellesmere Islands, Canadian
Arctic, Geological Survey of Canada, Calgary, Alberta, Canada, 29 pp., 1993.
Oakey, G. N. and Chalmers, J. A.: A new model for the Paleogene motion of
Greenland relative to North America: Plate reconstructions of the Davis
Strait and Nares Strait regions between Canada and Greenland, J.
Geophys. Res., 117, 1–28, https://doi.org/10.1029/2011JB008942, 2012.
Ostanin, I., Anka, Z., and Di Primio, R.: Role of faults in Hydrocarbon
Leakage in the Hammerfest Basin, SW Barents Sea: Insights from seismic data
and numerical modelling, Geosciences, 7, 28, https://doi.org/10.3390/geosciences7020028, 2017.
Oukili, J., Gruffeille, J.-P., Otterbein, C., and Loidl, B.: Can
high-resolution reprocessed data replace the traditional 2D high-resolution
seismic data acquired for site surveys?, First Break, 37, 49–54, https://doi.org/10.3997/1365-2397.n0052, 2019.
Parkinson, R.: High-resolution site surveys, CRC Press, London, UK, 2000.
Pearce, C., Knutz, P. C., and Party, S. S.: Baffin Bay Ice-Ocean-Sediment
Interactions (BIOS) cruise report, available at: https://geo.au.dk/fileadmin/ingen_mappe_valgt/Paleoceanography_group/LAKO_BIOS19_cruise_report.pdf (last access: 27 October 2020), 2019.
Planke, S., Symonds, P. A., Alvestad, E., and Skogseis, J.: Mid-Cretaceous
source rock subcropping in the Baffin Bay, GEO ExPro, 6, 1–8, 2009.
Poppel, B.: Arctic Oil & Gas Development: The Case of Greenland, Arctic
Yearbook 2018, 32 pp., available at: https://arcticyearbook.com/images/yearbook/2018/Scholarly_Papers/19_AY2018_Poppel.pdf (last access: 27 October 2020), 2018.
Prince, P. K.: Current drilling practices and the occurrence of shallow gas,
in: Safety in offshore drilling, edited by: Ardus, D. A., and Green, C. D.,
Springer, Dordrecht, the Netherlands, 3–25, 1990.
Raef, A., Totten, M., Vohs, A., and Linares, A.: 3D Seismic Reflection
Amplitude and Instantaneous Frequency Attributes in Mapping Thin Hydrocarbon
Reservoir Lithofacies: Morrison NE Field and Morrison Field, Clark County,
KS, Pure Appl. Geophys., 174, 4379–4394, https://doi.org/10.1007/s00024-017-1664-1, 2017.
Rebesco, M., Hernández-Molina, F. J., Van Rooij, D., and Wåhlin, A.:
Contourites and associated sediments controlled by deep-water circulation
processes: state-of-the-art and future considerations, Mar. Geol., 352,
111–154, https://doi.org/10.1016/j.margeo.2014.03.011, 2014.
Roberts, H. H., Doyle, E. H., Booth, J. R., Clark, B. J., Kaluza, M. J., and
Hartsook, A.: 3D-Seismic Amplitude Analysis of the Sea Flooc An Important
Interpretive Method for Improved Geohazards Evaluations, Offshore Technology
Conference, Houston, Texas, USA, 1996,
Ruppel, C. D.: The US Geological Survey's Gas Hydrates Project, US
Geological Survey, Reston, VA, USA, 1–4, 2018.
Ruppel, C., Boswell, R., and Jones, E.: Scientific results from Gulf of
Mexico gas hydrates Joint Industry Project Leg 1 drilling: introduction and
overview, Mar. Petrol. Geol., 25, 819–829, https://doi.org/10.1016/j.marpetgeo.2008.02.007, 2008.
Ruppelt, A. U. and West, C. L.: Shallow Water Flow Geopressures Arising From Confined Subsurface Slumps, SPE Annual Technical Conference and Exhibition, 26–29 September 2004, Houston, Texas, USA, 1–8, https://doi.org/10.2118/90980-MS, 2004.
Saini, J., Stein, R., Fahl, K., Weiser, J., Hebbeln, D., Hillaire-Marcel,
C., and de Vernal, A.: Holocene variability in sea ice and primary
productivity in the northeastern Baffin Bay, Arktos, 1–19, https://doi.org/10.1007/s41063-020-00075-y, 2020.
Sangree, J. B. and Widmier, J. M.: Interpretation of depositional facies
from seismic data, Geophysics, 44, 131–160, https://doi.org/10.1190/1.1440957, 1979.
Scherwath, M., Riedel, M., Spence, G., and Hyndman, R.: Data report: seismic
structure beneath the north Cascadia drilling transect of IODP Expedition
311, Proceedings of the Integrated Ocean Drilling Program: Scientific
Results, 311, 1–25, 2006.
Selvage, J., Jones, C., and Edgar, J.: Maximizing the value of 3D seismic
data for shallow geohazard identification, First Break, EAGE, Houten, the Netherlands, 30, 73–83, ISSN 0263-5046, 2012.
Sharp, A. and Badalini, G.: Using 3D seismic data to map shallow-marine
geohazards: a case study from the Santos Basin, Brazil, Petrol.
Geosci., 19, 157–167, https://doi.org/10.1144/petgeo2011-063, 2013.
Sharp, A. and Samuel, A.: An example study using conventional 3D seismic
data to delineate shallow gas drilling hazards from the West Delta Deep
Marine Concession, offshore Nile Delta, Egypt, Petrol. Geosci., 10,
121–129, https://doi.org/10.1144/1354-079303-588, 2004.
Smith, P., Milne, R., Vey, G., Apeland, G., and Way, S.: Can Shallow Hazard
3D Seismic Cubes Enable Leaner Exploration Workflows?, 81st EAGE Conference
and Exhibition, 3–6 June 2019, London, UK, 1–5, 2019.
Stewart, F. S. and Stoker, M. S.: Problems associated with seismic facies
analysis of diamicton-dominated, shelf glacigenic sequences, Geo-Mar.
Lett., 10, 151–156, https://doi.org/10.1007/BF02085930, 1990.
Suicmez, V. S.: Future Direction in Oil and Gas Exploration and Production,
in: Exploration and Production of Petroleum and Natural Gas, edited by:
Riazi, M., ASTM International, West Conshohocken, PA, USA, 693–710, 2016.
Vanneste, M., Sultan, N., Garziglia, S., Forsberg, C. F., and L'Heureux,
J.-S.: Seafloor instabilities and sediment deformation processes: The need
for integrated, multi-disciplinary investigations, Mar. Geol., 352,
183–214, https://doi.org/10.1016/j.margeo.2014.01.005, 2014.
Wei, J., Liang, J., Lu, J., Zhang, W., and He, Y.: Characteristics and
dynamics of gas hydrate systems in the northwestern South China Sea-Results
of the fifth gas hydrate drilling expedition, Mar. Petrol. Geol.,
110, 287–298, https://doi.org/10.1016/j.marpetgeo.2019.07.028,
2019.
Weimer, P. and Pettingill, H. S.: Deep-water exploration and production: A
global overview, in: Atlas of deep-water outcrops: AAPG Studies in Geology,
edited by: Nilsen, T. H., Shew, R. D., Steffens, G. S., and Studlick, J. R.
J., AAPG and Shell Exploration & Production, Tulsa, OK, USA, CD-ROM, 1–29, 2007.
Weitemeyer, K., Constable, S., and Key, K.: Marine EM techniques for
gas-hydrate detection and hazard mitigation, The Leading Edge, 25, 629–632,
https://doi.org/10.1190/1.2202668, 2006.
Whittaker, R. C., Hamann, R. E., and Pulvertaft, T. C. R.: A New Frontier
Province Offshore Northwest Greenland: Structure, Basin Development, and
Petroleum Potential of the Melville Bay Area, AAPG Bull., 81, 978–998,
1997.
Williams, J. P. and Andresen, P. C.: Application of conventional 3D data to
geohazard assessment, Offshore Technology Conference, 6–9 May 1996, Houston, Texas, USA, 1–7, 1996.
Wood, G. A. and Hamilton, I. W.: Current geohazard problems and their
geophysical interpretation-An international overview, Offshore Technology
Conference, 6–9 May 2002, Houston, Texas, USA, 1–9, 2002.
Short summary
A workflow is presented that uses 3D subsurface image (seismic) data to identify and avoid potential geological hazards, in order to increase safety and minimize the risk associated with selecting offshore scientific drilling locations. The workflow has been implemented for a scientific drilling expedition proposal within a challenging region offshore north-western Greenland and resulted in an improved understanding of subsurface hazards and a reduction of risk across all selected drill sites.
A workflow is presented that uses 3D subsurface image (seismic) data to identify and avoid...