Workshop report: Exploring deep oceanic crust off Hawai`i
Susumu Umino
CORRESPONDING AUTHOR
School of Geosciences and Civil Engineering, College of Science and
Engineering, Kanazawa University, Kanazawa 920-1192, Japan
Gregory F. Moore
Department of Earth Sciences, University of Hawai`i at Mānoa,
Honolulu, HI 96822, USA
Brian Boston
Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA
Rosalind Coggon
School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton SO14 3ZH, UK
Laura Crispini
Department of Earth, Environment and Life Sciences, University of Genoa, 16126 Genoa, Italy
Steven D'Hondt
Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA
Michael O. Garcia
Department of Earth Sciences, University of Hawai`i at Mānoa,
Honolulu, HI 96822, USA
Takeshi Hanyu
Research Institute for Marine Geodynamics, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka 237-0061, Japan
Frieder Klein
Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
Nobukazu Seama
Department of Planetology, Graduate School of Science, Kobe Ocean-Bottom Exploration Center (KOBEC), Kobe University, Kobe 657-8501, Japan
Damon A. H. Teagle
School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton SO14 3ZH, UK
Masako Tominaga
Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
Mikiya Yamashita
Research Institute for Marine Geodynamics, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka 237-0061, Japan
Institute of Geology and Geoinformation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8567, Japan
Michelle Harris
School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth PL4 8AA, UK
Benoit Ildefonse
Geosciences Montpellier, University of Montpellier, CNRS, Montpellier, France
Ikuo Katayama
Department of Earth and Planetary System Sciences, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
Yuki Kusano
Research Institute of Earthquake and Volcano Geology, AIST, Tsukuba 305-8567, Japan
Yohey Suzuki
Department of Earth and Planetary Science, The University of Tokyo, Tokyo 113-0033, Japan
Elizabeth Trembath-Reichert
School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287-6004, USA
Yasuhiro Yamada
Mantle Drilling Promotion Office, Institute for Marine-Earth Exploration and Engineering (MarE3), JAMSTEC, Yokohama 236-0001, Japan
Natsue Abe
Mantle Drilling Promotion Office, Institute for Marine-Earth Exploration and Engineering (MarE3), JAMSTEC, Yokohama 236-0001, Japan
Nan Xiao
Mantle Drilling Promotion Office, Institute for Marine-Earth Exploration and Engineering (MarE3), JAMSTEC, Yokohama 236-0001, Japan
Mantle Drilling Promotion Office, Institute for Marine-Earth Exploration and Engineering (MarE3), JAMSTEC, Yokohama 236-0001, Japan
Related authors
Tomoaki Morishita, Susumu Umino, Jun-Ichi Kimura, Mikiya Yamashita, Shigeaki Ono, Katsuyoshi Michibayashi, Masako Tominaga, Frieder Klein, and Michael O. Garcia
Sci. Dril., 26, 47–58, https://doi.org/10.5194/sd-26-47-2019, https://doi.org/10.5194/sd-26-47-2019, 2019
Short summary
Short summary
The architecture, formation, and modification of oceanic plates are fundamental to our of understanding key geologic processes of the Earth. Geophysical surveys were conducted around a site near the Hawaiian Islands (northeastern Hawaiian North Arch region). This workshop report describes scientific targets for 2 km deep ocean drilling in the Hawaiian North Arch region in order to provide information about the lower crust from unrecovered age and spreading rate gaps in previous ocean drillings.
Americus Perez, Susumu Umino, Graciano P. Yumul Jr., and Osamu Ishizuka
Solid Earth, 9, 713–733, https://doi.org/10.5194/se-9-713-2018, https://doi.org/10.5194/se-9-713-2018, 2018
Short summary
Short summary
The occurrence of boninite in the northern Zambales ophiolite is reported. Boninite is a relatively rare high-magnesium andesite that is intimately associated with early arc volcanism and the initiation of subduction zones. Taken as a whole, the geological and geochemical characteristics of Zambales and Izu-Ogasawara–Mariana forearc volcanic sequences enables a refined geodynamic reconstruction of subduction initiation.
Luigi Massaro, Jürgen Adam, Elham Jonade, Silvia Negrão, and Yasuhiro Yamada
EGUsphere, https://doi.org/10.5194/egusphere-2024-3116, https://doi.org/10.5194/egusphere-2024-3116, 2024
Short summary
Short summary
In this manuscript, we investigated the kinematics and dynamics of strike-slip damage zones using laboratory mechanical tests and analogue modelling techniques. The results underline the importance of a multi-scale approach (from crustal to outcrop-scale) to improve the understanding of such deformation processes, deriving fundamental correlations with the physical and mechanical properties of the model materials applied in the experiments.
Sune G. Nielsen, Frieder Klein, Horst R. Marschall, Philip A. E. Pogge von Strandmann, and Maureen Auro
Solid Earth, 15, 1143–1154, https://doi.org/10.5194/se-15-1143-2024, https://doi.org/10.5194/se-15-1143-2024, 2024
Short summary
Short summary
Magnesium isotope ratios of arc lavas have been proposed as a proxy for serpentinite subduction, but uncertainties remain regarding their utility. Here we show that bulk serpentinite Mg isotope ratios are identical to the mantle, whereas the serpentinite mineral brucite is enriched in heavy Mg isotopes. Thus, Mg isotope ratios may only be used as serpentinite subduction proxies if brucite is preferentially mobilized from the slab at pressures and temperatures within the arc magma source region.
Silvia Fornasaro, Paola Comodi, Laura Crispini, Sandro Zappatore, Azzurra Zucchini, and Pietro Marescotti
Eur. J. Mineral., 35, 1091–1109, https://doi.org/10.5194/ejm-35-1091-2023, https://doi.org/10.5194/ejm-35-1091-2023, 2023
Short summary
Short summary
Using an innovative multi-analytical approach, we investigated the trace elements composition of spinel-group minerals in different ultramafic rocks from the Voltri Massif (Central Liguria, NW Italy). The knowledge of the trace elements within these minerals has an interesting implication both in petrological, mineralogical, and geochemical studies as well as environmental fields, since these elements can be potentially toxic and released into the environment during weathering processes.
Mathieu Rospabé, Fatma Kourim, Akihiro Tamura, Eiichi Takazawa, Manolis Giampouras, Sayantani Chatterjee, Keisuke Ishii, Matthew J. Cooper, Marguerite Godard, Elliot Carter, Natsue Abe, Kyaw Moe, Damon A. H. Teagle, and Oman Drilling Project “ChikyuOman2018 Leg 3” Science
Team
Sci. Dril., 30, 75–99, https://doi.org/10.5194/sd-30-75-2022, https://doi.org/10.5194/sd-30-75-2022, 2022
Short summary
Short summary
During ChikyuOman2018 Leg3, we adapted a sample preparation and analytical procedure in order to analyse (ultra-)trace element concentrations using the D/V Chikyu on-board instrumentation. This dry (acid-free) and safe method has been developed for the determination of 37 elements (lowest reachable concentrations: 1–2 ppb) in igneous rocks from the oceanic lithosphere and could be adapted to other materials and/or chemicals of interest in the course of future ocean drilling operations.
Valentin Basch, Martyn R. Drury, Oliver Plumper, Eric Hellebrand, Laura Crispini, Fabrice Barou, Marguerite Godard, and Elisabetta Rampone
Eur. J. Mineral., 33, 463–477, https://doi.org/10.5194/ejm-33-463-2021, https://doi.org/10.5194/ejm-33-463-2021, 2021
Short summary
Short summary
This paper investigates the possibility for melts to migrate within extensively deformed crystals and assesses the impact of this intracrystalline melt percolation on the chemical composition of the deformed crystal. We here document that the presence of melt within a crystal greatly enhances chemical diffusive re-equilibration between the percolating melt and the mineral and that such a process occurring at crystal scale can impact the large-scale composition of the oceanic lithosphere.
Arianne J. Petley-Ragan, Oliver Plümper, Benoit Ildefonse, and Bjørn Jamtveit
Solid Earth, 12, 959–969, https://doi.org/10.5194/se-12-959-2021, https://doi.org/10.5194/se-12-959-2021, 2021
Short summary
Short summary
Earthquakes cause rapid deformation that has long-term effects on the Earth's crust. We studied the most abundant mineral, feldspar, in the vicinity of an earthquake to unravel its deformation history. With microscopy, we found internal nm-scale structures that indicate a history of high stress and destruction of atomic structure. This was quickly followed by high temperature and fluid introduction within seconds. Our findings illustrate the intense conditions imposed on rocks by earthquakes.
Hanaya Okuda, Ikuo Katayama, Hiroshi Sakuma, and Kenji Kawai
Solid Earth, 12, 171–186, https://doi.org/10.5194/se-12-171-2021, https://doi.org/10.5194/se-12-171-2021, 2021
Short summary
Short summary
Serpentinite, generated by the hydration of ultramafic rocks, is thought to be related to slow earthquakes at the subduction plate interface in the mantle wedge. We conducted friction experiments on brucite, one of the components of serpentinite, and found that wet brucite exhibits low and unstable friction under low effective normal stress conditions. This result suggests that wet brucite may be key for slow earthquakes at the subduction plate interface in a hydrated mantle wedge.
Yusuke Kubo, Fumio Inagaki, Satoshi Tonai, Go-Ichiro Uramoto, Osamu Takano, Yasuhiro Yamada, and the Expedition 910 Shipboard Scientific Party
Sci. Dril., 27, 25–33, https://doi.org/10.5194/sd-27-25-2020, https://doi.org/10.5194/sd-27-25-2020, 2020
Short summary
Short summary
The Chikyu Shallow Core Program (SCORE) has been started to provide more opportunities for scientific ocean drilling of shallow boreholes (up to 100 m) during a short-term expedition. The proposal flow is a simplified version of that of the International Ocean Discovery Program (IODP). Although there are several limitations for a SCORE project, the opportunity to retrieve 100 m of continuous core samples will be of interest for the scientific ocean drilling community in multiple disciplines.
Tomoaki Morishita, Susumu Umino, Jun-Ichi Kimura, Mikiya Yamashita, Shigeaki Ono, Katsuyoshi Michibayashi, Masako Tominaga, Frieder Klein, and Michael O. Garcia
Sci. Dril., 26, 47–58, https://doi.org/10.5194/sd-26-47-2019, https://doi.org/10.5194/sd-26-47-2019, 2019
Short summary
Short summary
The architecture, formation, and modification of oceanic plates are fundamental to our of understanding key geologic processes of the Earth. Geophysical surveys were conducted around a site near the Hawaiian Islands (northeastern Hawaiian North Arch region). This workshop report describes scientific targets for 2 km deep ocean drilling in the Hawaiian North Arch region in order to provide information about the lower crust from unrecovered age and spreading rate gaps in previous ocean drillings.
Christian Berndt, Sverre Planke, Damon Teagle, Ritske Huismans, Trond Torsvik, Joost Frieling, Morgan T. Jones, Dougal A. Jerram, Christian Tegner, Jan Inge Faleide, Helen Coxall, and Wei-Li Hong
Sci. Dril., 26, 69–85, https://doi.org/10.5194/sd-26-69-2019, https://doi.org/10.5194/sd-26-69-2019, 2019
Short summary
Short summary
The northeast Atlantic encompasses archetypal examples of volcanic rifted margins. Twenty-five years after the last ODP leg on these volcanic margins, the reasons for excess melting are still disputed with at least three competing hypotheses being discussed. We are proposing a new drilling campaign that will constrain the timing, rates of volcanism, and vertical movements of rifted margins.
Mathieu Soret, Philippe Agard, Benoît Ildefonse, Benoît Dubacq, Cécile Prigent, and Claudio Rosenberg
Solid Earth, 10, 1733–1755, https://doi.org/10.5194/se-10-1733-2019, https://doi.org/10.5194/se-10-1733-2019, 2019
Short summary
Short summary
This study sheds light on the mineral-scale mechanisms controlling the progressive deformation of sheared amphibolites from the Oman metamorphic sole during subduction initiation and unravels how strain is localized and accommodated in hydrated mafic rocks at high temperature conditions. Our results indicate how metamorphic reactions and pore-fluid pressures driven by changes in pressure–temperature conditions and/or water activity control the rheology of mafic rocks.
Elmar Albers, Wolfgang Bach, Frieder Klein, Catriona D. Menzies, Friedrich Lucassen, and Damon A. H. Teagle
Solid Earth, 10, 907–930, https://doi.org/10.5194/se-10-907-2019, https://doi.org/10.5194/se-10-907-2019, 2019
Short summary
Short summary
To understand the fate of carbon in subducted oceanic sediments and crust, we studied carbonate phases in rocks from the Mariana subduction zone. These show that carbon is liberated from the downgoing plate at depths less than 20 km. Some of the carbon is subsequently trapped in minerals and likely subducts to greater depths, whereas fluids carry the other part back into the ocean. Our findings imply that shallow subduction zone processes may play an important role in the deep carbon cycle.
Andrzej Górszczyk, Stéphane Operto, Laure Schenini, and Yasuhiro Yamada
Solid Earth, 10, 765–784, https://doi.org/10.5194/se-10-765-2019, https://doi.org/10.5194/se-10-765-2019, 2019
Short summary
Short summary
In order to broaden our knowledge about the deep lithosphere using seismic methods, we develop leading-edge imaging workflows integrating different types of data. Here we exploit the complementary information carried by seismic wavefields, which are fundamentally different in terms of acquisition setting. We cast this information into our processing workflow and build a detailed model of the subduction zone, which is subject to further geological interpretation.
Robert McKay, Neville Exon, Dietmar Müller, Karsten Gohl, Michael Gurnis, Amelia Shevenell, Stuart Henrys, Fumio Inagaki, Dhananjai Pandey, Jessica Whiteside, Tina van de Flierdt, Tim Naish, Verena Heuer, Yuki Morono, Millard Coffin, Marguerite Godard, Laura Wallace, Shuichi Kodaira, Peter Bijl, Julien Collot, Gerald Dickens, Brandon Dugan, Ann G. Dunlea, Ron Hackney, Minoru Ikehara, Martin Jutzeler, Lisa McNeill, Sushant Naik, Taryn Noble, Bradley Opdyke, Ingo Pecher, Lowell Stott, Gabriele Uenzelmann-Neben, Yatheesh Vadakkeykath, and Ulrich G. Wortmann
Sci. Dril., 24, 61–70, https://doi.org/10.5194/sd-24-61-2018, https://doi.org/10.5194/sd-24-61-2018, 2018
Nan Xiao, Naokazu Ahagon, Yusuke Kubo, and Hajimu Morioka
Sci. Dril., 24, 51–59, https://doi.org/10.5194/sd-24-51-2018, https://doi.org/10.5194/sd-24-51-2018, 2018
Short summary
Short summary
In this paper, we summarize the central points of the Nagoya Protocol on access and benefit-sharing arising from the utilization of genetic resources and discuss how it relates to ocean drilling research. We also address the challenges faced by ocean drilling in complying with this international convention. We hope this article will help principal investigators, researchers and also science operators to acquire the knowledge to smoothly manage drilling programs for deep biosphere research.
Americus Perez, Susumu Umino, Graciano P. Yumul Jr., and Osamu Ishizuka
Solid Earth, 9, 713–733, https://doi.org/10.5194/se-9-713-2018, https://doi.org/10.5194/se-9-713-2018, 2018
Short summary
Short summary
The occurrence of boninite in the northern Zambales ophiolite is reported. Boninite is a relatively rare high-magnesium andesite that is intimately associated with early arc volcanism and the initiation of subduction zones. Taken as a whole, the geological and geochemical characteristics of Zambales and Izu-Ogasawara–Mariana forearc volcanic sequences enables a refined geodynamic reconstruction of subduction initiation.
Christiane Uhlig, John B. Kirkpatrick, Steven D'Hondt, and Brice Loose
Biogeosciences, 15, 3311–3329, https://doi.org/10.5194/bg-15-3311-2018, https://doi.org/10.5194/bg-15-3311-2018, 2018
Short summary
Short summary
To improve global budgets of the greenhouse gas methane, we studied methane consumption in sea-ice-covered Arctic seawater. The microbes using methane were present in abundances < 1 % in the seawater and sea ice. They consumed methane at rates increasing with increasing methane concentrations. In addition, differences in the methane concentrations and in the types of microbes between the ice and water indicate different microbial or physical processes in the two environments.
Anne-Marie Boullier, Odile Robach, Benoît Ildefonse, Fabrice Barou, David Mainprice, Tomoyuki Ohtani, and Koichiro Fujimoto
Solid Earth, 9, 505–529, https://doi.org/10.5194/se-9-505-2018, https://doi.org/10.5194/se-9-505-2018, 2018
Short summary
Short summary
The paper describes microstructures in granitic rocks located 50 m away from the Nojima fault in Japan. Although macroscopically undeformed, the sample displays evidence for intense dynamic damage at the microscopic scale. Elastic strain and high residual stresses stored in quartz grains suggest that they were produced by propagating rupture fronts associated with M6 to M7 earthquakes and contributed to the widening of the damaged fault zone along the Nojima fault during the Paleocene.
Fumio Inagaki, Kai-Uwe Hinrichs, Yusuke Kubo, and the IODP Expedition 337 Scientists
Sci. Dril., 21, 17–28, https://doi.org/10.5194/sd-21-17-2016, https://doi.org/10.5194/sd-21-17-2016, 2016
H. J. Mills, J. de Leeuw, K.-U. Hinrichs, F. Inagaki, and J. Kallmeyer
Sci. Dril., 20, 59–65, https://doi.org/10.5194/sd-20-59-2015, https://doi.org/10.5194/sd-20-59-2015, 2015
Short summary
Short summary
Proceedings and results are presented from the Seoul 2014 Advancing Subsurface Biosphere and Paleoclimate Research workshop. Participants discussed past and present directions of IODP and ICDP subsurface research, including efforts with DCO and IMPRESS. Discussions led to the formation of a level-based communication system with the goal of improving communication and expectations between all drilling disciplines. The production of a biology-themed handbook to guide surface research is planned.
Y. Kubo, Y. Mizuguchi, F. Inagaki, and K. Yamamoto
Sci. Dril., 17, 37–43, https://doi.org/10.5194/sd-17-37-2014, https://doi.org/10.5194/sd-17-37-2014, 2014
G. F. Moore, K. Kanagawa, M. Strasser, B. Dugan, L. Maeda, S. Toczko, and the IODP Expedition 338 Scientific Party
Sci. Dril., 17, 1–12, https://doi.org/10.5194/sd-17-1-2014, https://doi.org/10.5194/sd-17-1-2014, 2014
D. de Beer, M. Haeckel, J. Neumann, G. Wegener, F. Inagaki, and A. Boetius
Biogeosciences, 10, 5639–5649, https://doi.org/10.5194/bg-10-5639-2013, https://doi.org/10.5194/bg-10-5639-2013, 2013
Related subject area
Location/Setting: Deep sea | Subject: Geophysics/Seismology | Geoprocesses: Tectonic processes
IODP workshop: Core-Log Seismic Investigation at Sea – Integrating legacy data to address outstanding research questions in the Nankai Trough Seismogenic Zone Experiment
Anna Cerchiari, Rina Fukuchi, Baiyuan Gao, Kan-Hsi Hsiung, Dominik Jaeger, Shunya Kaneki, Jonas Keller, Gaku Kimura, Szu-Ting Kuo, Gaël Lymer, Tatiana Maison, Ginta Motohashi, Christine Regalla, Drake Singleton, and Suguru Yabe
Sci. Dril., 24, 93–107, https://doi.org/10.5194/sd-24-93-2018, https://doi.org/10.5194/sd-24-93-2018, 2018
Short summary
Short summary
Subduction zones can potentially generate disastrous earthquakes and tsunamis in populated coastal areas. This report summarizes the research activity of a team of 14 early-career scientists who met during IODP Expedition 380 onboard D/V Chikyu (January–February 2018). The goal of this Core-Log-Seismic Integration at Sea workshop was to leverage IODP archives to address the mechanisms of tsunamigenic earthquakes at one of the most active subduction zones offshore southwestern Japan.
Cited articles
Alt, J. C. and Teagle, D. A. H.: The uptake of carbon during alteration of
ocean crust, Geochim. Cosmochim. Ac., 63, 1527–1535,
https://doi.org/10.1016/S0016-7037(99)00123-4, 1999.
Alt, J. C.: Subseafloor Processes in Mid-Ocean Ridge Hydrothennal Systems, Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions, 91, 85–114, https://doi.org/10.1029/GM091p0085, 1995.
Alt, J. C., Kinoshita, H., Stokking, L. B., and Shipboad Scientific Party: Initial Reports, College Station, TX (Ocean Drilling Program), Proc. ODP, Init. Repts., 148, https://doi.org/10.2973/odp.proc.ir.148.1993, 1993.
Alt, J. C., Kinoshita, H., Stokking, L. B., and Michael, P. J. (Eds.): Scientific Results, College Station, TX (Ocean Drilling Program), Proc. ODP, Sci. Results, 148, https://doi.org/10.2973/odp.proc.sr.148.1996, 1996.
Alt, J. C., Shanks, W. C., Bach, W., Holger, P., Garrido, C. J., and Beaudoin, G.: Hydrothermal alteration and microbial sulfate reduction in peridotite and gabbro exposed by detachment faulting at the Mid-Atlantic Ridge, 15∘20′ N (ODP Leg 209): A sulfur and
oxygen isotope study, Geochem. Geophy. Geosy., 8, Q08002,
https://doi.org/10.1029/2007GC001617, 2007.
Bach, W. and Edwards, K. J.: Iron and sulfide oxidation within the basaltic
ocean crust: implications for chemolithoautotrophic microbial biomass
production, Geochim. Cosmochim. Ac., 67, 3871–3887,
https://doi.org/10.1016/S0016-7037(03)00304-1, 2003.
Berner, R. A., Lasaga, A. C., and Garrels, R. M.: The carbonate-silicate
geochemical cycle and its effect on atmospheric carbon dioxide over the past
100 million years, Am. J. Sci., 283, 641–683,
https://doi.org/10.2475/ajs.283.7.641, 1983.
Bickle, M. J. and Teagle, D. A. H.: Strontium alteration in the Troodos
ophiolite: implications for fluid fluxes and geochemical transport in
mid-ocean ridge hydrothermal systems, Earth Planet. Sc. Lett.,
113, 219–237, https://doi.org/10.1016/0012-821X(92)90221-G, 1992.
Brocher, T. M. and ten Brink, U. S.: Variations in oceanic layer 2 elastic
velocities near Hawaii and their correlation to lithospheric flexure,
J. Geophys. Res.-Atmos., 92, 2647–2661,
https://doi.org/10.1029/JB092iB03p02647, 1987.
Carlson, R. L.: How crack porosity and shape control seismic velocities in
the upper oceanic crust: Modeling downhole logs from Holes 504B and 1256D,
Geochem. Geophy. Geosy., 11, Q04007,
https://doi.org/10.1029/2009GC002955, 2010.
Christeson, G. L., Goff, J. A., and Reece, R. S.: Synthesis of oceanic
crustal structure from two-dimensional seismic profiles, Rev.
Geophys., 57, 504–529, https://doi.org/10.1029/2019RG000641, 2019.
Coggon, R. M. and Teagle, D. A. H.: Hydrothermal calcium-carbonate veins
reveal past ocean chemistry, TrAC-Trend. Anal. Chem., 30,
1252–1268, https://doi.org/10.1016/j.trac.2011.02.011, 2011.
Coggon, R. M., Teagle, D. A. H., Smith-Duque, C. E., Alt, J. C., and Cooper,
M. J.: Reconstructing past seawater Mg/Ca and Sr/Ca from mid-ocean ridge
flank calcium carbonate veins, Science, 327, 1114–1117,
https://doi.org/10.1126/science.1182252, 2010.
Coggon, R. M., Teagle, D. A. H., Harris, M., Davidson, G. J., Alt, J. C.,
and Brewer, T. S.: Hydrothermal contributions to global biogeochemical
cycles: Insights from the Macquarie Island ophiolite, Lithos, 264, 329–347,
https://doi.org/10.1016/j.lithos.2016.08.024, 2016.
Coogan, L. A.: Reconciling temperatures of metamorphism, fluid fluxes, and
heat transport in the upper crust at intermediate to fast spreading
mid-ocean ridges, Geochem. Geophy. Geosy., 9 Q02013,
https://doi.org/10.1029/2007GC001787, 2008.
Coogan, L. A., Parrish, R. R., and Roberts, N. M. W.: Early hydrothermal
carbon uptake by the upper oceanic crust: Insight from in situ U-Pb dating,
Geology, 44, 147–150, https://doi.org/10.1130/G37212.1, 2016.
Cowen, J. P., Giovannoni, S. J., Kenig, F., Johnson, H. P., Butterfield, D.,
Rappé, M. S., Hutnak, M., and Lam, P.: Fluids from aging ocean crust
that support microbial life, Science, 299, 120–123,
https://doi.org/10.1126/science.1075653, 2003.
Dasgupta, R. and Hirschmann, M. M.: The deep carbon cycle and melting in
Earth's interior, Earth Planet. Sc. Lett., 298, 1–13,
https://doi.org/10.1016/j.epsl.2010.06.039, 2010.
Davis, A. C., Bickle, M. J., and Teagle, D. A. H.: Imbalance in the oceanic
strontium budget, Earth Planet. Sci. Lett., 211, 173–187,
https://doi.org/10.1016/S0012-821X(03)00191-2, 2003.
Detrick, R., Collins, J., Stephen, R., and Swift, S.: In situ evidence for
the nature of the seismic layer 2/3 boundary in oceanic crust, Nature, 370,
288–290, https://doi.org/10.1038/370288a0, 1994.
D'Hondt, S., Jørgensen, B. B., Miller, D. J., Batzke, A., Blake, R.,
Cragg, B. A., Cypionka, H., Dickens, G. R., Ferdelman, T., Hinrichs, K-U.,
Holm, N. G., Mitterer, R., Spivack, A., Wang, G., Bekins, B., Engelen, B.,
Ford, K., Gettemy, G., Rutherford, S. D., Sass, H., Skilbeck, C. G., Aiello,
I. W., Guerin, G., House, C., Inagaki, F., Meister, P., Naehr, T., Niitsuma,
S., Parkes, R. J., Schippers, A., Smith, D. C., Teske, A., Wiegel, J.,
Padilla, C. N., and Acosta, J. L. S.: Distributions of metabolic activities
in deep subseafloor sediments, Science, 306, 2216–2201,
https://doi.org/10.1126/science.1101155, 2004.
D'Hondt, S., Pockalny, R., Fulfer, V. M., and Spivack, A. J.: Subseafloor
life and its biogeochemical impacts, Nat. Commun., 10, 3519,
https://doi.org/10.1038/s41467-019-11450-z, 2019.
Dzaugis, M. E., Spivack, A. J., Dunlea, A. G., Murray, R. W., and D'Hondt,
S.: Radiolytic hydrogen production in the subseafloor basaltic aquifer,
Front. Microbiol., 7, 76, https://doi.org/10.3389/fmicb.2016.00076,
2016.
Engelhardt, T., Kallmeyer, J., Cypionka, H., and Engelen, B.: High
virus-to-cell ratios indicate ongoing production of viruses in deep
subsurface sediments, ISME J,, 8, 1503–1509,
https://doi.org/10.1038/ismej.2013.245, 2014.
Gilbert, L. A. and Salisbury, M. H.: Oceanic crustal velocities from
laboratory and logging measurements of Integrated Ocean Drilling Program
Hole 1256D, Geochem. Geophy. Geosy., 12, Q09001,
https://doi.org/10.1029/2011GC003750, 2011.
Gregg, T. K. P. and Fink, J. H.: Quantification of sub-marine lava-flow
morphology through analog experiments, Geology, 23, 73–76,
https://doi.org/10.1130/0091-7613(1995)023<0073:QOSLFM>2.3.CO;2, 1995.
Gregory, R. T. and Taylor, H. P.: An oxygen isotope profile in a section of
Cretaceous oceanic crust, Samail Ophiolite, Oman: Evidence for δ18O buffering of the oceans by deep (> 5 km)
seawater-hydrothermal circulation at mid-ocean ridges, J. Geophys. Res.-Sol. Ea., 86, 2737–2755,
https://doi.org/10.1029/JB086iB04p02737, 1981.
Hoshino, T., Doi, H., Uramoto, G.-I., Wömer, L., Adhikari, R. R., Xiao,
N., Morono, Y., D'Hondt, S., Hinrichs, K.-U., and Inagaki, F.: Global
diversity of microbial communities in marine sediment, P. Natl. Acad. Sci. USA, 117, 27587–27597,
https://doi.org/10.1073/pnas.1919139117, 2020.
Huber, J. A., Johnson, H. P., Butterfield, D. A., and Baross, J. A.:
Microbial life in ridge flank crustal fluids, Environ. Microbiol.,
8, 88–99, https://doi.org/10.1111/j.1462-2920.2005.00872.x, 2006.
Ildefonse, B., Abe, N., Blackman, D. K., Pablo Canales, J., Isozaki, Y., Kodaira, S., Myers, G., Nakamura, K., Nedimovic, M., Skinner, A. C., Seama, N., Takazawa, E., Teagle, D. A. H., Tominaga, M., Umino, S., Wilson, D. S., and Yamao, M.: The MoHole: A Crustal Journey and Mantle Quest, Workshop in Kanazawa, Japan, 3–5 June 2010, Sci. Dril., 10, 56–63, https://doi.org/10.2204/iodp.sd.10.07.2010, 2010.
Inagaki, F., Nunoura, T., Nakagawa, S., Teske, A., Lever, M., Lauer, A.,
Suzuki, M., Takai, K., Delwiche, M., Colwell, F. S., Nealson, K. H.,
Horikoshi, K., D'Hondt, S., and Jørgensen, B. B.: Biogeographical
distribution and diversity of microbes in methane hydrate-bearing deep
marine sediments on the Pacific Ocean Margin, P. Natl. Acad. Sci. USA, 103, 2815–2820,
https://doi.org/10.1073/pnas.0511033103, 2006.
Inagaki, F., Hinrichs, K.-U., Kubo, Y., Bowles, M. W., Heuer, V. B., Hong,
W.-L., Hoshino, T., Ijiri, A., Imachi, H., Ito, M., Kaneko, M., Lever, M.
A., Lin, Y.-S., Methé, B. A., Morita, S., Morono, Y., Tanikawa, W.,
Bihan, M., Bowden, S. A., Elvert, M., Glombitza, C., Gross, D., Harrington,
G. J., Hori, T., Li, K., Limmer, D., Liu, C.-H., Murayama, M., Ohkouchi, N.,
Ono, S., Park, Y.-S., Phillips, S. C., Prieto-Mollar, X., Purkey, M.,
Riedinger, N., Sanada, Y., Sauvage, J., Snyder, G., Susilawati, R., Takano,
Y., Tasumi, E., Terada, T., Tomaru, H., Trembath-Reichert, E., Wang, D. T.,
and Yamada, Y.: Exploring deep microbial life down to ∼ 2.5 km
below the ocean floor, Science, 349, 420–424,
https://doi.org/10.1126/science.aaa6882, 2015.
Ivarsson, M., Bengtson, S., and Neubeck, A.: The igneous oceanic crust –
Earth's largest fungal habitat?, Fungal Ecol., 20, 249–255,
https://doi.org/10.1016/j.funeco.2016.01.009, 2016.
Jørgensen, S. L. and Zhao, R.: Microbial inventory of deeply buried oceanic crust from a young ridge flank, Front. Microbiol., 7, 820,
https://doi.org/10.3389/fmicb.2016.00820, 2016.
Kelemen, P. B., Matter, J. M., Teagle, D. A. H., Coggon, J. A., and the Oman
Drilling Project Science Team: College Station, TX (International Ocean
Discovery Program), Proceedings of the Oman Drilling Project,
https://doi.org/10.14379/OmanDP.proc.2020, 2020.
Kendrick, M. A., Hemond, C., Kamenetsky, V. S., Danyushevsky, L., Devey, C.
W., Rodemann, T., Jackson, M. G., and Perfit, M. R.: Seawater cycled
throughout Earth's mantle in partially serpentinized lithosphere, Nat. Geosci., 10, 222–228, https://doi.org/10.1038/ngeo2902, 2017.
Klein, F., Humphris, S. E., Guo, W., Schubotz, F., Schwarzenbach, E. M., and
Orsi W. D.: Fluid mixing and the deep biosphere of a fossil Lost City-type
hydrothermal system at the Iberia Margin, P. Natl. Acad. Sci. USA, 112, 12036–12041,
https://doi.org/10.1073/pnas.1504674112, 2015.
Klein, F., Grozeva, N. G., and Seewald, J. S.: Abiotic methane synthesis and
serpentinization in olivine-hosted fluid inclusions,
P. Natl. Acad. Sci. USA, 116, 17666–17672,
https://doi.org/10.1073/pnas.1907871116, 2019.
Koppers, A. A. P. and Coggon, R. (Eds): Exploring Earth by Scientific Ocean
Drilling: 2050 Science Framework, 124 pp., https://doi.org/10.6075/J0W66J9H,
2020.
Labonté, J. M., Lever, M. A., Edwards, K. J., and Orcutt, B. N.:
Influence of igneous basement on deep sediment microbial diversity on the
eastern Juan de Fuca ridge flank, Front. Microbiol., 8, 1434,
https://doi.org/10.3389/fmicb.2017.01434, 2017.
Laske, G., Markee, A., Orcutt, J. A., Wolfe, C. J., Collins, J. A., Solomon,
S. C., Detrick, R. S., Bercovici, D., and Hauri, E. H.: Asymmetric shallow
mantle structure beneath the Hawaiian Swell-evidence from Rayleigh waves
recorded by the PLUME network, Geophys. J. Int., 187,
1725–1742, https://doi.org/10.1111/j.1365-246X.2011.05238.x, 2011.
Leahy, G. M., Collins, J. A., Wolfe, C. J., Laske, G., and Solomon, S. C.:
Underplating of the Hawaiian Swell: evidence from teleseismic receiver
functions, Geophys. J. Int., 183, 313–329,
https://doi.org/10.1111/j.1365-246X.2010.04720.x, 2010.
Lever, M. A., Rouxel, O. J., Alt, J., Shimizu, N., Ono, S., Coggon, R. M.,
Shanks III, W. C., Lapham, L., Elvert, M., Prieto-Mollar, X., Hinrichs,
K.-U., Inagaki, F., and Teske, A.: Evidence for microbial carbon and sulfur
cycling in deeply buried ridge flank basalt, Science, 339, 1305–1308,
https://doi.org/10.1126/science.1229240, 2013.
Li, J., Paraskevi, M., Schubotz, F., Sylvan, J. B., Burgaud, G., Klein, F.,
Beaudoin, D., Wee, S. Y., Dick, H. J. B., Lott, S., Cox, R., Meyer, L. A.
E., Quemener, M., Blackman, D. K., and Edgcomb, V. P.: Recycling and
metabolic flexibility dictate life in the lower oceanic crust, Nature, 579, 250–255, https://doi.org/10.1038/s41586-020-2075-5, 2020.
Liu, C.-H., Huang, X., Xie, T.-N., Duan, N., Xue, Y.-R., Zhao, T.-X., Lever,
M. A., Hinrichs, K.-U., and Inagaki, F.: Exploration of cultivable fungal
communities in deep coal-bearing sediments from ∼ 1.3 to 2.5 km below the ocean floor, Environ. Microbiol., 19, 803–818,
https://doi.org/10.1111/1462-2920.13653, 2017.
Majumdar, A. S., Ray, D., and Shukla, A. D.: Serpentinization of
olivine–gabbro in Central Indian ridge: Insights into H2 production
during alteration in lower oceanic crust and sustenance of life at
slow–spreading ridges, Lithos, 374–375, 105730,
https://doi.org/10.1016/j.lithos.2020.105730, 2020.
Mason, O. U., Nakagawa, T., Rosner, M., Van Nostrand, J. D., Zhou, J.,
Maruyama, A., Fisk, M. R., and Giovannoni, S. J.: First investigation of the
microbiology of the deepest layer of ocean crust, PLoS One, 5, e15399,
https://doi.org/10.1371/journal.pone.0015399, 2010.
Ménez, B., Pisapia, C., Andreani, M., Jamme, F., Vanbellingen, Q. P.,
Brunelle, A., Richard, L., Dumas, P., and Réfrégiers, M.: Abiotic
synthesis of amino acids in the recesses of the oceanic lithosphere,
Nature, 564, 59–63,
https://doi.org/10.1038/s41586-018-0684-z, 2018.
Meyer, J. L., Jaekel, U., Tully, B. J., Glazer, B. T., Wheat, C. G., Lin,
H.-T., Hsieh, C.-C., Cowen, J. P., Hulme, S. M., Girguis, P. R., and Huber,
J. A.: A distinct and active bacterial community in cold oxygenated fluids
circulating beneath the western flank of the Mid-Atlantic ridge, Sci.
Rep., 6, 22541, https://doi.org/10.1038/srep22541, 2016.
Morishita, T., Umino, S., Kimura, J.-I., Yamashita, M., Ono, S., Michibayashi, K., Tominaga, M., Klein, F., and Garcia, M. O.: Workshop report on hard-rock drilling into mid-Cretaceous Pacific oceanic crust on the Hawaiian North Arch, Sci. Dril., 26, 47–58, https://doi.org/10.5194/sd-26-47-2019, 2019.
Müller, R. D., Sdrolias, M., Gaina, C., and Roest, W. R.: Age, spreading
rates, and spreading asymmetry of the world's ocean crust, Geochem. Geophy. Geosy., 9, Q04006, https://doi.org/10.1029/2007GC001743, 2008.
National Research Council: The AMSOC Project to Drill a Hole to the
Mohorovicic Discontinuity, Prepared for the AMSOC committee by H. H. Hess,
Division of Earth Sciences, Washington, D.C., USA, 5 pp., 1957.
Nigro, O. D., Jungbluth, S. P., Lin, H.-T., Hsieh, C.-C., Miranda, J. A.,
Schvarcz, C. R., Rappé, M. S., and Steward, G. F.: Viruses in the
oceanic basement, mBio, 8, e02129-16,
https://doi.org/10.1128/mBio.02129-16, 2017.
Ohira, A., Kodaira, S., Moore, G. F., Yamashita, M., Fujiwara, T., Kaiho,
Y., Miura, S., and Fujie, G.: Active-source seismic survey on the
northeastern Hawaiian Arch: insights into crustal structure and mantle
reflectors, Earth Planets Space, 70, 121,
https://doi.org/10.1186/s40623-018-0891-8, 2018.
Orsi, W. D., Edgcomb, V. P., Christman, G. D., and Biddle, J. F.: Gene
expression in the deep biosphere, Nature, 499, 205–208,
https://doi.org/10.1038/nature12230, 2013.
Phipps Morgan, J. and Chen, Y. J.: The genesis of oceanic crust: magma
injection, hydrothermal circulation, and crustal flow, J. Geophys. Res.-Sol. Ea., 98, 6283–6297,
https://doi.org/10.1029/92JB02650, 1993.
Quemener, M., Mara, P., Schubotz, F., Beaudoin, D., Li, W., Pachiadaki, M.,
Sehein, T. R., Sylvan, J. B., Li, J., Barbier, G., Edgcomb, V., and Burgaud,
G.: Meta-omics highlights the diversity, activity and adaptations of fungi
in deep oceanic crust, Environ. Microbiol., 22, 3950–3967,
https://doi.org/10.1111/1462-2920.15181, 2020.
Sano, T., Miyoshi, M., Ingle, S., Banerjee, N. R., Ishimoto, M., and
Fukuoka, T.: Boron and chlorine contents of upper oceanic crust: Basement
samples from IODP Hole 1256D, Geochem. Geophy. Geosy., 9,
Q12O15, https://doi.org/10.1029/2008GC002182, 2008.
Shah-Walter, S. R., Jaekel, U., Osterholz, H., Fisher, A. T., Huber, J. A.,
Pearson, A., Dittmar, T., and Girguis, P. R.: Microbial decomposition of
marine dissolved organic matter in cool oceanic crust, Nat. Geosci.,
11, 334–339, https://doi.org/10.1038/s41561-018-0109-5, 2018.
Shor, G. G. and Pollard, D. D.: Mohole site selection studies north of
Maui, J. Geophys. Res., 69, 1627–1637, https://doi.org/10.1029/JZ069i008p01627, 1964.
Spinelli, G. A., Giambalvo, E. R., and Fisher, A. F.: Sediment permeability,
distribution, and influence on fluxes in oceanic basement, in: Hydrogeology of the Oceanic Lithosphere, edited by: Davis, E. E. and Elderfield, H., Cambridge Univ. Press, New York, USA, 151–188, 2004.
Staudigel, H., Hart, S. R., Schmincke, H.-U., and Smith, B. M.: Cretaceous ocean
crust at DSDP sites 417 and 418: carbon uptake from weathering versus loss
by magmatic outgassing, Geochim. Cosmochim. Ac., 53, 3091–3094,
https://doi.org/10.1016/0016-7037(89)90189-0, 1989.
Stein, C. A. and Stein, S.: Constraints on hydrothermal heat flux through
the oceanic lithosphere from global heat flow, J. Geophys. Res.-Sol. Ea., 99, 3081–3095,
https://doi.org/10.1029/93JB02222, 1994.
Suzuki, Y., Yamashita, S., Kouduka, M., Ao, Y., Mukai, H., Mitsunobu, S.,
Kagi, H., D'Hondt, S., Inagaki, F., Morono, Y., Hoshino, T., Tomioka, N.,
and Ito, M.: Deep microbial proliferation at the basalt interface in aged
oceanic crust, Communications Biology, 3, 136,
https://doi.org/10.1038/s42003-020-0860-1, 2020.
Teagle, D. and Ildefonse, B.: Journey to the mantle of the Earth, Nature,
471, 437–439, https://doi.org/10.1038/471437a, 2011.
Teagle, D. A. H., Alt, J. C., Umino, S., Miyashita, S., Banerjee, N. R.,
Wilson, D. S., and the Expedition 309/312 Scientists: Proc. IODP, 309/312,
Washington, DC (Integrated Ocean Drilling Program Management International,
Inc.), https://doi.org/10.2204/iodp.pr.312.2006, 2006.
Ten Brink, U. S. and Brocher, T. M.: Multichannel seismic evidence for a
subcrustal intrusive complex under Oahu and a model for Hawaiian volcanism,
J. Geophys. Res., 92, 13687–13707,
https://doi.org/10.1029/JB092iB13p13687, 1987.
Ten Brink, U. S. and Brocher, T. M.: Multichannel seismic evidence for
variations in crustal thickness across the Molokai Fracture Zone in the
Mid-Pacific, J. Geophys. Res., 93, 1119–1130,
https://doi.org/10.1029/JB093iB02p01119, 1988.
Thorseth, I. H., Torsvik, T., Furnes, H., and Muehlenbachs, K.: Microbes
play an important role in the alteration of oceanic crust, Chem. Geol.,
126, 137–146, https://doi.org/10.1016/0009-2541(95)00114-8, 1995.
Tully, B. J., Wheat, C. G., Glazer, B. T., and Huber, J. A.: A dynamic
microbial community with high functional redundancy inhabits the cold, oxic
subseafloor aquifer, ISME J,, 12, 1–16,
https://doi.org/10.1038/ismej.2017.187, 2018.
Umino, S., Miyashita, S., Hotta, F., and Adachi, Y.: Along-strike variation
of the sheeted dike complex in the Oman Ophiolite: Insights into subaxial
ridge segment structures and the magma plumbing system,
Geochem. Geophy. Geosy., 4, 8618, https://doi.org/10.1029/2001GC000233, 2003.
Umino, S., Nealson, K., and Wood, B.: Drilling to Earth's mantle, Phys.
Today, 66, 36–41, https://doi.org/10.1063/PT.3.2082, 2013.
Vance, D., Teagle, D. A. H., and Foster, G. L.: Variable Quaternary chemical
weathering fluxes and imbalances in marine geochemical budgets, Nature,
458, 493–496, https://doi.org/10.1038/?nature07828, 2009.
Watts, A. B. and ten Brink, U. S.: Crustal structure, flexure, and
subsidence history of the Hawaiian Islands, J. Geophys. Res.-Sol. Ea., 94, 10473–10500, https://doi.org/10.1029/JB094iB08p10473,
1989.
Watts, A. B., ten Brink, U. S., Buhl, P., and Brocher, T. M.: A Multichannel
seismic study of lithospheric flexure across the Hawaiian-Emperor Seamount
Chain, Nature, 315, 105–111, https://doi.org/10.1038/315105a0, 1985.
Wolfe, C. J., Solomon, S. C., Laske, G., Collins, J. A., Detrick, R. S.,
Orcutt, J. A., Bercovici, D., and Hauri, E. H.: Mantle shear-wave velocity
structure beneath the Hawaiian hot spot, Science, 326, 1388–1390,
https://doi.org/10.1126/science.1180165, 2009.
Zucca, J. J. and Hill, D. P.: Crustal structure of the southeast flank of
Kilauea volcano, Hawaii, from seismic refraction measurements,
B. Seismol. Soc. Am., 70, 1149–1159, 1980.
Zucca, J. J., Hill, D. P., and Kovach, R. L.: Crustal structure of Mauna Loa
volcano, Hawaii, from seismic refraction and gravity data, B. Seismol. Soc. Am., 72, 1535–1550, 1982.