Comparison of sediment composition by smear slides to quantitative shipboard data: a case study on the utility of smear slide percent estimates, IODP Expedition 353, northern Indian Ocean
U.S. Geological Survey, Woods Hole, MA 02543, USA
Kate Littler
Camborne School of Mines and Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, UK
Related authors
No articles found.
Jack T. R. Wilkin, Sev Kender, Rowan Dejardin, Claire S. Allen, Victoria L. Peck, George E. A. Swann, Erin L. McClymont, James D. Scourse, Kate Littler, and Melanie J. Leng
J. Micropalaeontol., 43, 165–186, https://doi.org/10.5194/jm-43-165-2024, https://doi.org/10.5194/jm-43-165-2024, 2024
Short summary
Short summary
The sub-Antarctic island of South Georgia has a dynamic glacial history and is sensitive to climate change. Using benthic foraminifera and various geochemical proxies, we reconstruct inner–middle shelf productivity and infer glacial evolution since the late deglacial, identifying new mid–late-Holocene glacial readvances. Fursenkoina fusiformis acts as a good proxy for productivity.
Charlotte Beasley, Daniel B. Parvaz, Laura Cotton, and Kate Littler
J. Micropalaeontol., 39, 169–181, https://doi.org/10.5194/jm-39-169-2020, https://doi.org/10.5194/jm-39-169-2020, 2020
Short summary
Short summary
We compared three methods of breaking apart well-cemented carbonate rocks in order to obtain liberated fossiliferous material. The first two methods are
traditionaland the third is novel to this field. The novel technique (fragmentation using electric pulses, SELFRAG) proved to be the most efficient and effective at liberating microfossil material from surrounding rock. We suggest best practice for using this technique and further materials in which it could prove successful in future.
Erin L. McClymont, Heather L. Ford, Sze Ling Ho, Julia C. Tindall, Alan M. Haywood, Montserrat Alonso-Garcia, Ian Bailey, Melissa A. Berke, Kate Littler, Molly O. Patterson, Benjamin Petrick, Francien Peterse, A. Christina Ravelo, Bjørg Risebrobakken, Stijn De Schepper, George E. A. Swann, Kaustubh Thirumalai, Jessica E. Tierney, Carolien van der Weijst, Sarah White, Ayako Abe-Ouchi, Michiel L. J. Baatsen, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Ran Feng, Chuncheng Guo, Anna S. von der Heydt, Stephen Hunter, Xiangyi Li, Gerrit Lohmann, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Christian Stepanek, and Zhongshi Zhang
Clim. Past, 16, 1599–1615, https://doi.org/10.5194/cp-16-1599-2020, https://doi.org/10.5194/cp-16-1599-2020, 2020
Short summary
Short summary
We examine the sea-surface temperature response to an interval of climate ~ 3.2 million years ago, when CO2 concentrations were similar to today and the near future. Our geological data and climate models show that global mean sea-surface temperatures were 2.3 to 3.2 ºC warmer than pre-industrial climate, that the mid-latitudes and high latitudes warmed more than the tropics, and that the warming was particularly enhanced in the North Atlantic Ocean.
Christopher J. Hollis, Tom Dunkley Jones, Eleni Anagnostou, Peter K. Bijl, Marlow Julius Cramwinckel, Ying Cui, Gerald R. Dickens, Kirsty M. Edgar, Yvette Eley, David Evans, Gavin L. Foster, Joost Frieling, Gordon N. Inglis, Elizabeth M. Kennedy, Reinhard Kozdon, Vittoria Lauretano, Caroline H. Lear, Kate Littler, Lucas Lourens, A. Nele Meckler, B. David A. Naafs, Heiko Pälike, Richard D. Pancost, Paul N. Pearson, Ursula Röhl, Dana L. Royer, Ulrich Salzmann, Brian A. Schubert, Hannu Seebeck, Appy Sluijs, Robert P. Speijer, Peter Stassen, Jessica Tierney, Aradhna Tripati, Bridget Wade, Thomas Westerhold, Caitlyn Witkowski, James C. Zachos, Yi Ge Zhang, Matthew Huber, and Daniel J. Lunt
Geosci. Model Dev., 12, 3149–3206, https://doi.org/10.5194/gmd-12-3149-2019, https://doi.org/10.5194/gmd-12-3149-2019, 2019
Short summary
Short summary
The Deep-Time Model Intercomparison Project (DeepMIP) is a model–data intercomparison of the early Eocene (around 55 million years ago), the last time that Earth's atmospheric CO2 concentrations exceeded 1000 ppm. Previously, we outlined the experimental design for climate model simulations. Here, we outline the methods used for compilation and analysis of climate proxy data. The resulting climate
atlaswill provide insights into the mechanisms that control past warm climate states.
Daniel J. Lunt, Matthew Huber, Eleni Anagnostou, Michiel L. J. Baatsen, Rodrigo Caballero, Rob DeConto, Henk A. Dijkstra, Yannick Donnadieu, David Evans, Ran Feng, Gavin L. Foster, Ed Gasson, Anna S. von der Heydt, Chris J. Hollis, Gordon N. Inglis, Stephen M. Jones, Jeff Kiehl, Sandy Kirtland Turner, Robert L. Korty, Reinhardt Kozdon, Srinath Krishnan, Jean-Baptiste Ladant, Petra Langebroek, Caroline H. Lear, Allegra N. LeGrande, Kate Littler, Paul Markwick, Bette Otto-Bliesner, Paul Pearson, Christopher J. Poulsen, Ulrich Salzmann, Christine Shields, Kathryn Snell, Michael Stärz, James Super, Clay Tabor, Jessica E. Tierney, Gregory J. L. Tourte, Aradhna Tripati, Garland R. Upchurch, Bridget S. Wade, Scott L. Wing, Arne M. E. Winguth, Nicky M. Wright, James C. Zachos, and Richard E. Zeebe
Geosci. Model Dev., 10, 889–901, https://doi.org/10.5194/gmd-10-889-2017, https://doi.org/10.5194/gmd-10-889-2017, 2017
Short summary
Short summary
In this paper we describe the experimental design for a set of simulations which will be carried out by a range of climate models, all investigating the climate of the Eocene, about 50 million years ago. The intercomparison of model results is called 'DeepMIP', and we anticipate that we will contribute to the next IPCC report through an analysis of these simulations and the geological data to which we will compare them.
Related subject area
Location/Setting: Deep sea | Subject: Geology | Geoprocesses: Earth science methods
Coring tools have an effect on lithification and physical properties of marine carbonate sediments
Developing community-based scientific priorities and new drilling proposals in the southern Indian and southwestern Pacific oceans
David De Vleeschouwer, Theresa Nohl, Christian Schulbert, Or M. Bialik, and Gerald Auer
Sci. Dril., 32, 43–54, https://doi.org/10.5194/sd-32-43-2023, https://doi.org/10.5194/sd-32-43-2023, 2023
Short summary
Short summary
Differences exist in International Ocean Discovery Program (IODP) sediment lithification depending on the coring tool used. Advanced piston corers (APCs) display less pronounced lithification compared to extended core barrels (XCBs) of the same formation. The difference stems from the destruction of early cements between sediment grains and an
acoustic compactioncaused by the piston-core pressure wave. XCB cores provide a more accurate picture of the lithification of the original formation.
Robert McKay, Neville Exon, Dietmar Müller, Karsten Gohl, Michael Gurnis, Amelia Shevenell, Stuart Henrys, Fumio Inagaki, Dhananjai Pandey, Jessica Whiteside, Tina van de Flierdt, Tim Naish, Verena Heuer, Yuki Morono, Millard Coffin, Marguerite Godard, Laura Wallace, Shuichi Kodaira, Peter Bijl, Julien Collot, Gerald Dickens, Brandon Dugan, Ann G. Dunlea, Ron Hackney, Minoru Ikehara, Martin Jutzeler, Lisa McNeill, Sushant Naik, Taryn Noble, Bradley Opdyke, Ingo Pecher, Lowell Stott, Gabriele Uenzelmann-Neben, Yatheesh Vadakkeykath, and Ulrich G. Wortmann
Sci. Dril., 24, 61–70, https://doi.org/10.5194/sd-24-61-2018, https://doi.org/10.5194/sd-24-61-2018, 2018
Cited articles
Allen, J. A.: Estimation of percentages in thin sections; considerations of
visual psychology, J. Sediment. Res., 26, 160–161,
https://doi.org/10.1306/74D704F7-2B21-11D7-8648000102C1865D, 1956.
Barnet, J. S. K., Harper, D. T., LeVay, L. J., Edgar, K. M., Henehan, M. J.,
Babila, T. L., Ullmann, C. V., Leng, M. J., Kroon, D., Zachos, J. C., and
Littler, K.: Coupled evolution of temperature and carbonate chemistry during
the Paleocene–Eocene; new trace element records from the low latitude
Indian Ocean, Earth Planet. Sc. Lett., 545, 116414,
https://doi.org/10.1016/j.epsl.2020.116414, 2020.
Blum, P.: Physical properties handbook: a guide to the shipboard measurement
of physical properties of deep-sea cores, ODP Tech. Note, 26,
https://doi.org/10.2973/odp.tn.26.1997, 1997.
Carozzi, A. V.: Carbonate rock depositional models: A microfacies approach, Prentice Hall, Hoboken, New Jersey, USA, 604 pp., 1988.
Carozzi, A. V.: Sedimentary Petrography, Prentice Hall, Englewood Cliffs, USA, 263 pp., 1993.
Clemens, S. C., Kuhnt, W., LeVay, L. J., Anand, P., Ando, T., Bartol, M.,
Bolton, C. T., Ding, X., Gariboldi, K., Giosan, L., Hathorne, E. C., Huang,
Y., Jaiswal, P., Kim, S., Kirkpatrick, J. B., Littler, K., Marino, G.,
Martinez, P., Naik, D., Peketi, A., Phillips, S. C., Robinson, M. M., Romero,
O. E., Sagar, N., Taladay, K. B., Taylor, S. N., Thirumalai, K., Uramoto, G.,
Usui, Y., Wang, J., Yamamoto, M., and Zhou, L.: Expedition 353 summary, in:
Indian Monsoon Rainfall, edited by: Clemens, S. C., Kuhnt, W., LeVay, L. J., and the Expedition 353 Scientists, Proceedings of the International Ocean Discovery Program, International Ocean Discovery Program, College Station, TX, USA, 353, https://doi.org/10.14379/iodp.proc.353.101.2016, 2016a.
Clemens, S. C., Kuhnt, W., LeVay, L. J., Anand, P., Ando, T., Bartol, M.,
Bolton, C. T., Ding, X., Gariboldi, K., Giosan, L., Hathorne, E. C., Huang,
Y., Jaiswal, P., Kim, S., Kirkpatrick, J. B., Littler, K., Marino, G.,
Martinez, P., Naik, D., Peketi, A., Phillips, S. C., Robinson, M. M., Romero,
O. E., Sagar, N., Taladay, K. B., Taylor, S. N., Thirumalai, K., Uramoto, G.,
Usui, Y., Wang, J., Yamamoto, M., and Zhou, L.: Site U1443, in: Indian
Monsoon Rainfall, edited by: Clemens, S. C., Kuhnt, W., LeVay, L. J., and the Expedition 353 Scientists, Proceedings of the International Ocean Discovery Program, International Ocean Discovery Program, College Station, TX, USA, 353, https://doi.org/10.14379/iodp.proc.353.103.2016, 2016b.
Clemens, S. C., Kuhnt, W., LeVay, L. J., Anand, P., Ando, T., Bartol, M.,
Bolton, C. T., Ding, X., Gariboldi, K., Giosan, L., Hathorne, E. C., Huang,
Y., Jaiswal, P., Kim, S., Kirkpatrick, J. B., Littler, K., Marino, G.,
Martinez, P., Naik, D., Peketi, A., Phillips, S. C., Robinson, M. M., Romero,
O. E., Sagar, N., Taladay, K. B., Taylor, S. N., Thirumalai, K., Uramoto, G.,
Usui, Y., Wang, J., Yamamoto, M., and Zhou, L.: Site U1446, in: Indian
Monsoon Rainfall, edited by: Clemens, S. C., Kuhnt, W., LeVay, L. J., and the Expedition 353 Scientists, Proceedings of the International Ocean Discovery Program, International Ocean Discovery Program, College Station, TX, USA, 353, https://doi.org/10.14379/iodp.proc.353.106.2016, 2016c.
Clemens, S.C., Kuhnt, W., LeVay, L.J., Anand, P., Ando, T., Bartol, M.,
Bolton, C.T., Ding, X., Gariboldi, K., Giosan, L., Hathorne, E.C., Huang,
Y., Jaiswal, P., Kim, S., Kirkpatrick, J.B., Littler, K., Marino, G.,
Martinez, P., Naik, D., Peketi, A., Phillips, S.C., Robinson, M.M., Romero,
O.E., Sagar, N., Taladay, K.B., Taylor, S.N., Thirumalai, K., Uramoto, G.,
Usui, Y., Wang, J., Yamamoto, M., and Zhou, L.: Site U1448, in: Indian
Monsoon Rainfall, edited by: Clemens, S. C., Kuhnt, W., LeVay, L. J., and the Expedition 353 Scientists, Proceedings of the International Ocean Discovery Program, International Ocean Discovery Program, College Station, TX, USA, 353, https://doi.org/10.14379/iodp.proc.353.108.2016, 2016d.
Clemens, S. C., Kuhnt, W., LeVay, L. J., Anand, P., Ando, T., Bartol, M.,
Bolton, C. T., Ding, X., Gariboldi, K., Giosan, L., Hathorne, E. C., Huang,
Y., Jaiswal, P., Kim, S., Kirkpatrick, J. B., Littler, K., Marino, G.,
Martinez, P., Naik, D., Peketi, A., Phillips, S. C., Robinson, M. M., Romero,
O. E., Sagar, N., Taladay, K. B., Taylor, S. N., Thirumalai, K., Uramoto, G.,
Usui, Y., Wang, J., Yamamoto, M., and Zhou, L.: Expedition 353 methods, in: Indian Monsoon Rainfall, edited by: Clemens, S. C., Kuhnt, W., LeVay, L. J., and the Expedition 353 Scientists, Proceedings of the International Ocean Discovery Program, International Ocean Discovery Program, College Station, TX, USA, 353, https://doi.org/10.14379/iodp.proc.353.102.2016, 2016e.
Clemens, S. C., Kuhnt, W., LeVay, L. J., Anand, P., Ando, T., Bartol, M.,
Bolton, C. T., Ding, X., Gariboldi, K., Giosan, L., Hathorne, E. C., Huang,
Y., Jaiswal, P., Kim, S., Kirkpatrick, J. B., Littler, K., Marino, G.,
Martinez, P., Naik, D., Peketi, A., Phillips, S. C., Robinson, M. M., Romero,
O. E., Sagar, N., Taladay, K. B., Taylor, S. N., Thirumalai, K., Uramoto, G.,
Usui, Y., Wang, J., Yamamoto, M., and Zhou, L.: Site U1447, in: Indian
Monsoon Rainfall, edited by: Clemens, S. C., Kuhnt, W., LeVay, L. J., and the Expedition 353 Scientists, Proceedings of the International Ocean Discovery Program, International Ocean Discovery Program, College Station, TX, USA, 353, https://doi.org/10.14379/iodp.proc.353.107.2016, 2016f.
Clemens, S. C., Kuhnt, W., LeVay, L. J., Anand, P., Ando, T., Bartol, M.,
Bolton, C. T., Ding, X., Gariboldi, K., Giosan, L., Hathorne, E. C., Huang,
Y., Jaiswal, P., Kim, S., Kirkpatrick, J. B., Littler, K., Marino, G.,
Martinez, P., Naik, D., Peketi, A., Phillips, S. C., Robinson, M. M., Romero,
O. E., Sagar, N., Taladay, K. B., Taylor, S. N., Thirumalai, K., Uramoto, G.,
Usui, Y., Wang, J., Yamamoto, M., and Zhou, L.: Site U1445, in: Indian
Monsoon Rainfall, edited by: Clemens, S. C., Kuhnt, W., LeVay, L. J., and the Expedition 353 Scientists, Proceedings of the International Ocean Discovery Program, International Ocean Discovery Program, College Station, TX, USA, 353, https://doi.org/10.14379/iodp.proc.353.105.2016, 2016g.
Collett, T., Riedel, M., Cochran, J., Boswell, R., Presley, J., Kumar, P.,
Sathe, A., Sethi, A., Lall, M., and the NGHP Expedition Scientists: Indian
National Gas Hydrate Program Expedition 01 report: U.S. Geological Survey
Scientific Investigations Report 2012–5054, 1442 pp.,
https://doi.org/10.3133/sir20125054, 2015.
Croudace, I. W., Rindby, A., and Rothwell, R. G.: ITRAX: description and
evaluation of a new multi-function X-ray core scanner, in: New Techniques in Sediment Core Analysis, edited by: Rothwell, R. G., Geological Society of
London Special Publications, 267, 51–63, https://doi.org/10.1144/GSL.SP.2006.267.01.04,
2006.
Da Silva, R., Mazumdar, A., Mapder, T., Peketi, A., Joshi, R. K., Shaji, A.,
Mahalakshmi, P., Sawant, B., Naik, B. G., Carvalho, M. A., and Molletti, S.
K: Salinity stratification controlled productivity variation over 300 ky in
the Bay of Bengal, Sci. Rep., 7, 14439,
https://doi.org/10.1038/s41598-017-14781-3, 2017.
Davies, T. A., Musich, L. F., and Woodbury, P. B.: Automated classification of deep-sea sediments, J. Sediment. Petrol., 47, 650–656,
https://doi.org/10.1306/212F720C-2B24-11D7-8648000102C1865D, 1977.
Dean, W. E., Leinen, M., and Stow, D. W.: Classification of deep-sea,
fine-grained sediments, J. Sediment. Petrol., 55, 250–256,
https://doi.org/10.1306/212F868E-2B24-11D7-8648000102C1865D, 1985.
DeFoe, O. K. and Compton, A. H.: The density of rock salt and calcite,
Phys. Rev., 25, 618–620, https://doi.org/10.1103/PhysRev.25.618, 1925.
De Vleeschouwer, D.: Natural Gamma Radiation-derived K, U and Th contents of
marine sediments obtained during IODP Expeditions with DV JOIDES Resolution,
Version 1.0, Interdisciplinary Earth Data Alliance (IEDA) [data set],
https://doi.org/10.1594/IEDA/100668, 2017.
De Vleeschouwer, D., Dunlea, A. G., Auer, G., Anderson, C. H., Brumsack, H.,
de Loach, A., Gurnis, M. C., Huh, Y., Ishiwa, T., Jang, K., Kominz, M. A.,
März, C., Schnetger, B., Murray, R. W., Pälike, H., and Expedition
356 shipboard scientists: Quantifying K, U, and Th contents of marine
sediments using shipboard natural gamma radiation spectra measured on DV
JOIDES Resolution, Geochem. Geophy. Geosy., 18, 1053–1064,
https://doi.org/10.1002/2016GC006715, 2017.
Drake, M. K., Aiello, I. W., and Ravelo, A. C.: New method for the quantitative analysis of smear slides in pelagic and hemi-pelagic sediments of the Bering Sea, American Geophysical Union, Fall Meeting 2014, 18 December 2014, San Francisco, California, USA, abstract PP43B-1460, 2014.
Dunlea, A. G., Murray, R. W., Harris, R. N., Vasiliev, M. A., Evans, H., Spivack, A. J., and D'Hondt, S.: Assessment and Use of NGR Instrumentation on the JOIDES Resolution to Quantify U, Th, and K Concentrations in Marine Sediment, Sci. Dril., 15, 57–63, https://doi.org/10.2204/iodp.sd.15.05.2013, 2013.
Engleman, E. E., Jackson, L. L., and Norton, D. R.: Determination of carbonate carbon in geological materials by coulometric titration, Chem. Geol., 53, 125–128, https://doi.org/10.1016/0009-2541(85)90025-7, 1985.
Expedition 320/321 Scientists: Site U1333, in: Proc. IODP, 320/321: Tokyo, edited by: Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, Integrated Ocean Drilling Program Management International, Inc., https://doi.org/10.2204/iodp.proc.320321.105.2010,
2010.
Expedition 324 Scientists: Site U1346, in: Proc. IODP, 324: Tokyo, edited by: Sager, W. W., Sano, T., Geldmacher, J., and the Expedition 324 Scientists Scientists, Integrated Ocean Drilling Program Management International, Inc., https://doi.org/10.2204/iodp.proc.324.103.2010, 2010.
Expedition 330 Scientists: Methods, in: Proc. IODP, 330: Tokyo, edited by: Koppers, A. A. P., Yamazaki, T., Geldmacher, J., and the Expedition 330 Scientists, Integrated Ocean Drilling Program Management International, Inc.,
https://doi.org/10.2204/iodp.proc.330.102.2012, 2012.
Expedition 337 Scientists: Methods, in: Proc. IODP, 337: Tokyo, edited by: Inagaki, F., Hinrichs, K.-U., Kubo, Y., and the Expedition 337 Scientists, Integrated Ocean Drilling Program Management International, Inc., https://doi.org/10.2204/iodp.proc.337.102.2013, 2013.
Expedition 339 Scientists: Site U1385, in: Proc. IODP, 339: Tokyo, edited by: Stow, D. A. V., Hernández-Molina, F. J., Alvarez Zarikian, C. A., and the Expedition 339 Scientists, Integrated Ocean Drilling Program
Management International, Inc., https://doi.org/10.2204/iodp.proc.339.103.2013, 2013a.
Expedition 339 Scientists: Methods, in: Proc. IODP,
339: Tokyo, edited by: Stow, D. A. V., Hernández-Molina, F. J., Alvarez Zarikian, C. A., and the Expedition 339 Scientists, Integrated Ocean Drilling Program Management International, Inc., https://doi.org/10.2204/iodp.proc.339.102.2013, 2013b.
Fisher, A. T. and Underwood, M. B.: Calibration of an X-ray diffraction
method to determine relative mineral abundances in bulk powders using matrix
singular value decomposition: a test from the Barbados accretionary complex,
in: Proc. ODP, edited by: Shipley, T. H., Ogawa, Y., and Blum, P., Init. Repts, 156, 29–37, https://doi.org/10.2973/odp.proc.ir.156.103.1995, 1995.
Flügel, E.: Microfacies Analysis: Methods, in: Microfacies of Carbonate
Rocks, Springer, Berlin, Heidelberg, Germany, https://doi.org/10.1007/978-3-642-03796-2_3, 2010.
Folk, R. L.: A comparison chart for visual percentage estimation, J.
Sediment. Petrol., 21, 32–33, https://doi.org/10.1306/D4269413-2B26-11D7-8648000102C1865D, 1951.
Folk, R. L.: The distinction between grain size and mineral composition in
sedimentary-rock nomenclature, J. Geol., 62, 344–359, 1954.
Gallagher, S. J., Fulthorpe, C. S., Bogus, K., Auer, G., Baranwal, S.,
Castañeda, I. S., Christensen, B. A., De Vleeschouwer, D., Franco, D. R.,
Groeneveld, J., Gurnis, M., Haller, C., He, Y., Henderiks, J., Himmler, T.,
Ishiwa, T., Iwatani, H., Jatiningrum, R. S., Kominz, M. A., Korpanty, C. A.,
Lee, E. Y., Levin, E., Mamo, B. L., McGregor, H. V., McHugh, C. M., Petrick,
B. F., Potts, D. C., Rastegar Lari, A., Renema, W., Reuning, L., Takayanagi,
H., and Zhang, W.: Site U1459, in: Indonesian Throughflow, edited by: Gallagher, S. J., Fulthorpe, C. S., Bogus, K., and the Expedition 356 Scientists, Proceedings of the International Ocean Discovery Program, International Ocean Discovery Program, College Station, TX, USA, 356,
https://doi.org/10.14379/iodp.proc.356.104.2017, 2017.
Gibbs, R. J.: Error due to segregation in quantitative clay mineral X-ray
diffraction mounting techniques, Am. Mineral., 50, 741–751, 1965.
Gibbs, R. J.: Clay mineral segregation in the marine environment, J.
Sediment. Petrol., 47, 237–243, https://doi.org/10.1306/212F713A-2B24-11D7-8648000102C1865D, 1977.
Giosan, L., Flood, R. D., and Aller, R. C.: Paleoceanographic significance of
sediment color on western North Atlantic drifts: I. Origin of color, Mar.
Geol., 189, 25–41, https://doi.org/10.1016/S0025-3227(02)00321-3, 2002.
Griffiths, J. C. and Rosenfeld, M. A.: Operator variation in experimental
research, J. Geol., 62, 74–91,
https://doi.org/10.1306/74D704F7-2B21-11D7-8648000102C1865D, 1954.
Hall, I. R., Hemming, S. R., LeVay, L. J., Barker, S., Berke, M. A., Brentegani, L., Caley, T., Cartagena-Sierra, A., Charles, C. D., Coenen, J. J., Crespin, J. G., Franzese, A. M., Gruetzner, J., Han, X., Hines, S. K. V., Jimenez Espejo, F. J., Just, J., Koutsodendris, A., Kubota, K., Lathika, N., Norris, R. D., Periera dos Santos, T., Robinson, R., Rolinson, J. M., Simon, M. H., Tangunan, D., van der Lubbe, J. J. L., Yamane, M., and Zhang, H.: Site U1474, in: South African Climates (Agulhas LGM Density Profile), edited by: Hall, I. R., Hemming, S. R., LeVay, L. J., and the Expedition 361 Scientists, Proceedings of the International Ocean Discovery Program, International Ocean Discovery Program, College Station, TX, USA, 361, https://doi.org/10.14379/iodp.proc.361.103.2017, 2017.
Integrated Ocean Drilling Program Depth Scale Task Force: IODP Depth Scales
Terminology, available at:
https://www.iodp.org/policies-and-guidelines/142-iodp-depth-scales-terminology-april-2011/file (last access: 6 December 2021),
2011.
International Ocean Discovery Program JOIDES Resolution Science Operator: LIMS Reports, Texas A&M University, College Station, TX, USA, available at: https://web.iodp.tamu.edu/LORE/, last access: 6 December 2021.
Jansen, E., Mayer, L., and Shipboard Scientific Party: GRAPE density
records and density cyclicity, in: Proc. ODP, Init. Repts., edited by: Kroenke, L. W., Berger, W. H., Janecek, T. R., and Shipboard Scientific Party, Ocean Drilling Program, College Station, TX, USA, 130, 553–556, https://doi.org/10.2973/odp.proc.ir.130.113.1991, 1991.
Johnson, J. E., Phillips, S. C., Torres, M. E., Piñero, E., Rose, K. K., and Giosan, L.: Influence of total organic carbon deposition on the inventory of gas hydrate in the Indian continental margins, Mar. Petrol. Geol.,
58, 406–424, https://doi.org/10.1016/j.marpetgeo.2014.08.021, 2014.
Lee, J., Kim, S., Lee, J. I., Cho, H. G., Phillips, S. C., and Khim, B.-K.:
Monsoon-influenced variation of clay mineral compositions and detrital Nd-Sr
isotopes in the western Andaman Sea (IODP Site U1447) since the late
Miocene, Palaeogeogr. Palaeocl., 538, 109339,
https://doi.org/10.1016/j.palaeo.2019.109339, 2020.
Lübbers, J., Kuhnt, Holburn, A. E., Bolton, C. T., Gray, E., Usui, U.,
Kochhann, K. G. D., Beil, S., and Andersen, N.: The middle to late Miocene
“Carbonate Crash” in the equatorial Indian Ocean, Paleoceanography and
Paleoclimatology, 34, 813–832, https://doi.org/10.1029/2018PA003482, 2019.
Marsaglia, K., Milliken, K., and Doran, L.: IODP Smear Slide Digital
Reference for Sediment Analysis of Marine Mud: Part 1: Methodology and Atlas
of Siliciclastic and Volcanogenic Components, Integrated Ocean Drilling
Program Technical Note 1, https://doi.org/10.2204/iodp.tn.1.2013, 2013.
Marsaglia, K., Milliken, K., Leckie, R. M., Tentori, D., and Doran, L.: IODP
Smear Slide Digital Reference for Sediment Analysis of Marine Mud: Part 2:
Methodology and Atlas of Biogenic Components, International Ocean Discovery
Program Technical Note 2, https://doi.org/10.2204/iodp.tn.2.2015, 2015.
Mayer, L. A.: Extraction of high resolution carbonate data for paleoclimate
reconstruction, Nature, 352, 148–150, 1991.
Mazzullo, J. and Graham, A. G.: Handbook for shipboard sedimentologists, ODP
Tech. Note 8, https://doi.org/10.2973/odp.tn.8.1988, 1988.
Mazzullo, J. M., Meyer, A., and Kidd, R. B.: New sediment classification
scheme for the Ocean Drilling Program, in: Handbook for shipboard sedimentologists, edited by: Mazzullo, J. M. and Graham, A. G., ODP Tech. Note, 8, 45–67, https://doi.org/10.2973/odp.tn.8.1988, 1988.
Milliken, K.: A compositional classification for grain assemblages in
fine-grained sediments and sedimentary rocks, J. Sediment. Res., 84,
1185–1199, https://doi.org/10.2110/jsr.2014.92, 2014.
Musich, L.: Sediment smear slides: Preparation and handling, in:
Sedimentology, Physical Properties, and Geochemistry in the Initial Reports
of the Deep Sea Drilling Project, Volumes 1–44: An Overview, edited by: Heath, G. R., National Geophysical Data Center, Boulder, Colorado, USA, 63–70, 1984.
Myrbo, A., Morrison, A., and McEwan, R: Tool for Microscopic Identification
(TMI), available at: http://tmi.laccore.umn.edu (last access: 6 December 2021), 2011.
Ortiz, J., Mix, A., Harris, S., and O'Connell, S.: Diffuse spectral
reflectance as a proxy for percent carbonate content in North Atlantic
sediments, Paleoceanography, 14, 171–186, https://doi.org/10.1029/1998PA900021, 1999.
Ota, Y., Kuroda, J., Yamaguchi, A., Suzuki, A., Araoka, D., Ishimura, T.,
Team, N. E. J. S., and Kawahata, H.: Monsoon-influenced variations in
plankton community structure and upperwater column stratification in the
western Bay of Bengal during the past 80 ky, Palaeogeogr. Palaeocl., 521, 138–150, https://doi.org/10.1016/j.palaeo.2019.02.020, 2019.
Phillips, S. C., Johnson, J. E., Giosan, L., and Rose, K.:
Monsoon-influenced variation in productivity and lithogenic sediment flux
since 110 ka in the offshore Mahanadi Basin, northern Bay of Bengal, Mar. Petrol. Geol., 58, 502–525, https://doi.org/10.1016/j.marpetgeo.2014.05.007,
2014a.
Phillips, S. C., Johnson, J. E., Underwood, M. B., Guo, J., Giosan, L., and
Rose, K.: Long-timescale variation in bulk and clay mineral composition of
Indian continental margin sediments in the Bay of Bengal, Arabian Sea, and
Andaman Sea, Mar. Petrol. Geol., 58A, 118–138,
https://doi.org/10.1016/j.marpetgeo.2014.06.018, 2014b.
Pimmel, A. and Claypool, G.: Introduction to Shipboard Organic Geochemistry on the JOIDES Resolution, ODP Technical Note 30, https://doi.org/10.2973/odp.tn.30.2001, 2001.
Reid, J. C.: Comparison chart for estimating volume percentages of
constituents in rocks and concentrates in the range of 1.0 to 0.1 volume
percent, Am. Mineral., 70, 1318–1319, 1985.
Rothwell, R. G.: Minerals and Mineraloids in Marine Sediments: An Optical
Identification Guide, Springer Netherlands, 279 pp.,
https://doi.org/10.1007/978-94-009-1133-8, 1989.
Schultheiss, P. J. and McPhail, S. D.: An automated P-wave logger for
recording fine-scale compressional wave velocity structures in sediments, in:
Proc. ODP, Sci. Results, edited by: Ruddiman, W., Sarnthein, M., and Shipboard Scientific Party, 108, 407–413, Ocean Drilling Program, College Station, TX, USA,
https://doi.org/10.2973/odp.proc.sr.108.157.1989, 1989.
Shepard, F. P.: Nomenclature based on sand-silt-clay ratios, J. Sediment.
Petrol., 24, 151–158, https://doi.org/10.1306/D4269774-2B26-11D7-8648000102C1865D, 1954.
Shipboard Scientific Party: Explanatory notes, in: Proc. ODP, Init. Repts., edited by: Kastens, K. A., Mascle, J., Auroux, C., and Shipboard Scientific Party, Ocean Drilling Program, College Station, TX, USA, 107, 65–88, https://doi.org/10.2973/odp.proc.ir.107.104.1987, 1987.
Shipboard Scientific Party: Site 758, in: Proc. ODP, Init. Repts, edited by: Peirce, J., Weissel, J., and Shipboard Scientific Party, 121, 359–453, https://doi.org/10.2973/odp.proc.ir.121.112.1989, 1989.
Shipboard Scientific Party: Site 803, in: Proc. ODP, Init. Repts., edited by: Kroenke, L. W., Berger, W. H., Janecek, T. R., and Shipboard Scientific Party, Ocean Drilling Program, College Station, TX, USA, 130, 101–176, https://doi.org/10.2973/odp.proc.ir.130.105.1991, 1991.
Shipboard Scientific Party: Site 892, in: Proc. ODP, Init. Repts., edited by: Westbrook, G. K., Carson, B., Musgrave, R. J., and Shipboard Scientific Party, Ocean Drilling Program, College Station, TX, USA, 146 (Pt. 1), 301–378, https://doi.org/10.2973/odp.proc.ir.146-1.010.1994, 1994a.
Shipboard Scientific Party: Site 902, in: Proc. ODP, Init. Repts., edited by: Mountain, G. S., Miller, K. G., Blum, P., and Shipboard Scientific Party, Ocean Drilling Program, College Station, TX, USA, 150, 63–127, https://doi.org/10.2973/odp.proc.ir.150.106.1994, 1994b.
Shipboard Scientific Party: Site 907, in: Proc. ODP, Init. Repts., edited by: Myhre, A. M., Thiede, J., Firth, J. V., and Shipboard Scientific Party, Ocean Drilling Program, College Station, TX, USA, 151, 57–111, https://doi.org/10.2973/odp.proc.ir.151.105.1995, 1995a.
Shipboard Scientific Party:. Explanatory notes, in: Proc. ODP, Init. Repts., edited by: Curry, W. B., Shackleton, N. J., Richter, C., and Shipboard Scientific Party, Ocean Drilling Program, College Station, TX, USA, 154, 11–38, https://doi.org/10.2973/odp.proc.ir.154.102.1995,
1995b.
Shipboard Scientific Party: Site 959, in: Proc. ODP, Init. Repts., edited by: Mascle, J., Lohmann, G. P., Clift, P. D., and Shipboard Scientific Party, Ocean Drilling Program, College Station, TX, USA, 159, 65–150, https://doi.org/10.2973/odp.proc.ir.159.105.1996, 1996a.
Shipboard Scientific Party: Site 974, in: Proc. ODP, Init. Repts., edited by: Comas, M. C., Zahn, R., Klaus, A., and Shipboard Scientific Party, Ocean Drilling Program, College Station, TX, USA, 161, 55–111, https://doi.org/10.2973/odp.proc.ir.161.104.1996, 1996b.
Shipboard Scientific Party: Explanatory notes, in: Proc. ODP, Init. Repts., edited by: Jansen, E., Raymo, M. E., Blum, P., and Shipboard Scientific Party, Ocean Drilling Program, College Station, TX, USA, 162, 21–45, https://doi.org/10.2973/odp.proc.ir.162.102.1996, 1996c.
Shipboard Scientific Party: Explanatory notes, in: Proc. ODP, Init. Repts., eduted by: Kimura, G., Silver, E., Blum, P., and Shipboard Scientific Party, Ocean Drilling Program, College Station, TX, USA, 170, 19–42, https://doi.org/10.2973/odp.proc.ir.170.102.1997, 1997.
Shipboard Scientific Party: Site 1168, in: Proc. ODP, Init. Repts., edited by: Exon, N. F., Kennett, J. P., Malone, M. J., and Shipboard Scientific Party, 189, 1–170, https://doi.org/10.2973/odp.proc.ir.189.103.2001, 2001.
Stokke, P. R. and Carson, B.: Variation in clay mineral X-Ray diffraction
results with the quantity of sample mounted, J. Sediment. Res.,
43, 957–964, https://doi.org/10.1306/74D728C4-2B21-11D7-8648000102C1865D, 1973.
Terry, R. D. and Chilingar, G. V.: Summary of “Concerning some additional
aids in studying sedimentary formations” by M. S. Shvetsov, J. Sediment.
Petrol., 25, 229–234, https://doi.org/10.1306/74D70466-2B21-11D7-8648000102C1865D, 1955.
Thomas, A. R. and Murray, H. H.: Clay mineral segregation by flocculation in
the Porters Creek Formation, Clay. Clay Miner., 37, 179–184, https://doi.org/10.1346/CCMN.1989.0370210, 1989.
Vasiliev, M. A., Blum, P., Chubarian, G., Olsen, R., Bennight, C., Cobine,
T., Fackler, D., Hastedt, M., Houpt, D., Mateo, Z., and Vasilieva, Y. B.: A new natural gamma radiation measurement system for marine sediment and rock
analysis, J. Appl. Geophys., 75, 455–463, https://doi.org/10.1016/j.jappgeo.2011.08.008, 2011.
Verardo, D. J., Froelich, P. N., and McIntyre, A.: Determination of organic
carbon and nitrogen in marine sediments using the Carlo Erba NA-1500 Analyzer, Deep-Sea Res., 37, 157–165,
https://doi.org/10.1016/0198-0149(90)90034-S, 1990.
Weaver, P. P. E. and Schultheiss, P. J.: Current methods for obtaining,
logging and splitting marine sediment cores, Mar. Geophys. Res., 12, 85–100,
https://doi.org/10.1007/BF00310565, 1990.
Weber, M. E., Niessen, F., Kuhn, G., and Wiedicke, M.: Calibration and
application of marine sedimentary physical properties using a multi-sensor
core logger, Mar. Geol., 136, 151–172, https://doi.org/10.1016/S0025-3227(96)00071-0, 1997.
Short summary
Smear slides are a method of estimating sediment composition that is widely used as part of scientific drilling expeditions. These estimates are frequently used to classify sediments but are often not used in further analysis. We show that smear slide estimates, even if not highly accurate, track well with downcore physical property and elemental analyses. This work gives confidence in smear slide estimates in characterizing trends and cycles in sediment composition.
Smear slides are a method of estimating sediment composition that is widely used as part of...