Coring tools have an effect on lithification and physical properties of marine carbonate sediments
David De Vleeschouwer
CORRESPONDING AUTHOR
Institute of Geology and Paleontology, University of Münster, Corrensstr. 24, 48149 Münster, Germany
Theresa Nohl
Institute of Geology and Paleontology, University of Münster, Corrensstr. 24, 48149 Münster, Germany
Institute of Palaeontology, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), 1090 Vienna, Austria
Christian Schulbert
Geozentrum Nordbayern, Section Palaeontology, Friedrich-Alexander University Erlangen–Nürnberg (FAU), Loewenichstr. 28, 91054 Erlangen, Germany
Or M. Bialik
Institute of Geology and Paleontology, University of Münster, Corrensstr. 24, 48149 Münster, Germany
Gerald Auer
University of Graz, Department of Earth Sciences, NAWI Graz Geocenter, Heinrichstraße 26, 8010 Graz, Austria
Related authors
Niklas Hohmann, David De Vleeschouwer, Sietske Batenburg, and Emilia Jarochowska
EGUsphere, https://doi.org/10.5194/egusphere-2024-2857, https://doi.org/10.5194/egusphere-2024-2857, 2024
This preprint is open for discussion and under review for Geochronology (GChron).
Short summary
Short summary
Age-depth models assign ages to sampling locations (e.g., in drill cores), making them crucial to determined timing and pace of past changes. We present two methods to estimate age-depth models from sedimentological and stratigraphic information, resulting in richer and more empirically realistic age-depth models. As a use case, we determine (1) the timing of the Frasnian-Famennian extinction and (2) examine the duration of PETM, an potential deep time analogue for anthropogenic climate change.
Nina M. A. Wichern, Or M. Bialik, Theresa Nohl, Lawrence M. E. Percival, R. Thomas Becker, Pim Kaskes, Philippe Claeys, and David De Vleeschouwer
Clim. Past, 20, 415–448, https://doi.org/10.5194/cp-20-415-2024, https://doi.org/10.5194/cp-20-415-2024, 2024
Short summary
Short summary
Middle–Late Devonian sedimentary rocks are often punctuated by anoxic black shales. Due to their semi-regular nature, anoxic events may be linked to periodic changes in the Earth’s climate caused by astronomical forcing. We use portable X-ray fluorescence elemental records, measured on marine sediments from Germany, to construct an astrochronological framework for the Kellwasser ocean anoxic Crisis. Results suggest that the Upper Kellwasser event was preceded by a specific orbital configuration.
David De Vleeschouwer, Marion Peral, Marta Marchegiano, Angelina Füllberg, Niklas Meinicke, Heiko Pälike, Gerald Auer, Benjamin Petrick, Christophe Snoeck, Steven Goderis, and Philippe Claeys
Clim. Past, 18, 1231–1253, https://doi.org/10.5194/cp-18-1231-2022, https://doi.org/10.5194/cp-18-1231-2022, 2022
Short summary
Short summary
The Leeuwin Current transports warm water along the western coast of Australia: from the tropics to the Southern Hemisphere midlatitudes. Therewith, the current influences climate in two ways: first, as a moisture source for precipitation in southwestern Australia; second, as a vehicle for Equator-to-pole heat transport. In this study, we study sediment cores along the Leeuwin Current pathway to understand its ocean–climate interactions between 4 and 2 Ma.
Sietske J. Batenburg, David De Vleeschouwer, Mario Sprovieri, Frederik J. Hilgen, Andrew S. Gale, Brad S. Singer, Christian Koeberl, Rodolfo Coccioni, Philippe Claeys, and Alessandro Montanari
Clim. Past, 12, 1995–2009, https://doi.org/10.5194/cp-12-1995-2016, https://doi.org/10.5194/cp-12-1995-2016, 2016
Short summary
Short summary
The relative contributions of astronomical forcing and tectonics to ocean anoxia in the Cretaceous are unclear. This study establishes the pacing of Late Cretaceous black cherts and shales. We present a 6-million-year astrochronology from the Furlo and Bottaccione sections in Italy that spans the Cenomanian–Turonian transition and OAE2. Together with a new radioisotopic age for the mid-Cenomanian event, we show that astronomical forcing determined the timing of these carbon cycle perturbations.
Matthias Sinnesael, Miroslav Zivanovic, David De Vleeschouwer, Philippe Claeys, and Johan Schoukens
Geosci. Model Dev., 9, 3517–3531, https://doi.org/10.5194/gmd-9-3517-2016, https://doi.org/10.5194/gmd-9-3517-2016, 2016
Short summary
Short summary
Classical spectral analysis often relies on methods based on (Fast) Fourier Transformation. This technique has no unique solution separating variations in amplitude and frequency. This drawback is circumvented by using a polynomial approach (ACE v.1 model) to estimate instantaneous amplitude and frequency in orbital components. The model is illustrated and validated using a synthetic insolation signal and tested on two case studies: a benthic δ18O record and a magnetic susceptibility record.
Mathieu Martinez, Sergey Kotov, David De Vleeschouwer, Damien Pas, and Heiko Pälike
Clim. Past, 12, 1765–1783, https://doi.org/10.5194/cp-12-1765-2016, https://doi.org/10.5194/cp-12-1765-2016, 2016
Short summary
Short summary
Identification of Milankovitch cycles within the sedimentary record depends on spectral analyses, but these can be biased because there are always slight uncertainties in the sample position within a sedimentary column. Here, we simulate uncertainties in the sample position and show that a tight control on the inter-sample distance together with a density of 6–12 samples per precession cycle are needed to accurately reconstruct the contribution of the orbital forcing on past climate changes.
Arianna V. Del Gaudio, Aaron Avery, Gerald Auer, Werner E. Piller, and Walter Kurz
Clim. Past, 20, 2237–2266, https://doi.org/10.5194/cp-20-2237-2024, https://doi.org/10.5194/cp-20-2237-2024, 2024
Short summary
Short summary
The Benguela Upwelling System is a region in the SE Atlantic Ocean of high biological productivity. It comprises several water masses such as the Benguela Current, South Atlantic Central Water, and Indian Ocean Agulhas waters. We analyzed planktonic foraminifera from IODP Sites U1575 and U1576 to characterize water masses and their interplay in the Pleistocene. This defined changes in the local thermocline, which were linked to long-term Benguela Niño- and Niña-like and deglaciation events.
Niklas Hohmann, David De Vleeschouwer, Sietske Batenburg, and Emilia Jarochowska
EGUsphere, https://doi.org/10.5194/egusphere-2024-2857, https://doi.org/10.5194/egusphere-2024-2857, 2024
This preprint is open for discussion and under review for Geochronology (GChron).
Short summary
Short summary
Age-depth models assign ages to sampling locations (e.g., in drill cores), making them crucial to determined timing and pace of past changes. We present two methods to estimate age-depth models from sedimentological and stratigraphic information, resulting in richer and more empirically realistic age-depth models. As a use case, we determine (1) the timing of the Frasnian-Famennian extinction and (2) examine the duration of PETM, an potential deep time analogue for anthropogenic climate change.
Benjamin Fredericks Petrick, Lars Reuning, Miriam Pfeiffer, Gerald Auer, and Lorenz Schwark
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-28, https://doi.org/10.5194/cp-2024-28, 2024
Revised manuscript accepted for CP
Short summary
Short summary
It is known that there was a lack of coral reefs in the Central Indo-Pacific during the Pliocene. The cause of this is unknown. This study uses a new SST record biased on biomarkers from the Coral Sea between 11–2 Ma to demonstrate a 2-degree cooling in the Central Indo-Pacific as part of the Late Miocene Cooling. When combined with other impacts associated with this event, this might explain the collapse of coral reefs. The new data shows the importance of SST changes in Coral Reef loss.
Nina M. A. Wichern, Or M. Bialik, Theresa Nohl, Lawrence M. E. Percival, R. Thomas Becker, Pim Kaskes, Philippe Claeys, and David De Vleeschouwer
Clim. Past, 20, 415–448, https://doi.org/10.5194/cp-20-415-2024, https://doi.org/10.5194/cp-20-415-2024, 2024
Short summary
Short summary
Middle–Late Devonian sedimentary rocks are often punctuated by anoxic black shales. Due to their semi-regular nature, anoxic events may be linked to periodic changes in the Earth’s climate caused by astronomical forcing. We use portable X-ray fluorescence elemental records, measured on marine sediments from Germany, to construct an astrochronological framework for the Kellwasser ocean anoxic Crisis. Results suggest that the Upper Kellwasser event was preceded by a specific orbital configuration.
Gerald Auer, Or M. Bialik, Mary-Elizabeth Antoulas, Noam Vogt-Vincent, and Werner E. Piller
Clim. Past, 19, 2313–2340, https://doi.org/10.5194/cp-19-2313-2023, https://doi.org/10.5194/cp-19-2313-2023, 2023
Short summary
Short summary
We provided novel insights into the behaviour of a major upwelling cell between 15 and 8.5 million years ago. To study changing conditions, we apply a combination of geochemical and paleoecological parameters to characterize the nutrient availability and subsequent utilization by planktonic primary producers. These changes we then juxtapose with established records of contemporary monsoon wind intensification and changing high-latitude processes to explain shifts in the plankton community.
David De Vleeschouwer, Marion Peral, Marta Marchegiano, Angelina Füllberg, Niklas Meinicke, Heiko Pälike, Gerald Auer, Benjamin Petrick, Christophe Snoeck, Steven Goderis, and Philippe Claeys
Clim. Past, 18, 1231–1253, https://doi.org/10.5194/cp-18-1231-2022, https://doi.org/10.5194/cp-18-1231-2022, 2022
Short summary
Short summary
The Leeuwin Current transports warm water along the western coast of Australia: from the tropics to the Southern Hemisphere midlatitudes. Therewith, the current influences climate in two ways: first, as a moisture source for precipitation in southwestern Australia; second, as a vehicle for Equator-to-pole heat transport. In this study, we study sediment cores along the Leeuwin Current pathway to understand its ocean–climate interactions between 4 and 2 Ma.
Sietske J. Batenburg, David De Vleeschouwer, Mario Sprovieri, Frederik J. Hilgen, Andrew S. Gale, Brad S. Singer, Christian Koeberl, Rodolfo Coccioni, Philippe Claeys, and Alessandro Montanari
Clim. Past, 12, 1995–2009, https://doi.org/10.5194/cp-12-1995-2016, https://doi.org/10.5194/cp-12-1995-2016, 2016
Short summary
Short summary
The relative contributions of astronomical forcing and tectonics to ocean anoxia in the Cretaceous are unclear. This study establishes the pacing of Late Cretaceous black cherts and shales. We present a 6-million-year astrochronology from the Furlo and Bottaccione sections in Italy that spans the Cenomanian–Turonian transition and OAE2. Together with a new radioisotopic age for the mid-Cenomanian event, we show that astronomical forcing determined the timing of these carbon cycle perturbations.
Matthias Sinnesael, Miroslav Zivanovic, David De Vleeschouwer, Philippe Claeys, and Johan Schoukens
Geosci. Model Dev., 9, 3517–3531, https://doi.org/10.5194/gmd-9-3517-2016, https://doi.org/10.5194/gmd-9-3517-2016, 2016
Short summary
Short summary
Classical spectral analysis often relies on methods based on (Fast) Fourier Transformation. This technique has no unique solution separating variations in amplitude and frequency. This drawback is circumvented by using a polynomial approach (ACE v.1 model) to estimate instantaneous amplitude and frequency in orbital components. The model is illustrated and validated using a synthetic insolation signal and tested on two case studies: a benthic δ18O record and a magnetic susceptibility record.
Mathieu Martinez, Sergey Kotov, David De Vleeschouwer, Damien Pas, and Heiko Pälike
Clim. Past, 12, 1765–1783, https://doi.org/10.5194/cp-12-1765-2016, https://doi.org/10.5194/cp-12-1765-2016, 2016
Short summary
Short summary
Identification of Milankovitch cycles within the sedimentary record depends on spectral analyses, but these can be biased because there are always slight uncertainties in the sample position within a sedimentary column. Here, we simulate uncertainties in the sample position and show that a tight control on the inter-sample distance together with a density of 6–12 samples per precession cycle are needed to accurately reconstruct the contribution of the orbital forcing on past climate changes.
G. Auer, W. E. Piller, and M. Harzhauser
Clim. Past, 11, 283–303, https://doi.org/10.5194/cp-11-283-2015, https://doi.org/10.5194/cp-11-283-2015, 2015
Short summary
Short summary
High-resolution analyses of paleoecological and geochemical proxies give insight into environmental processes and climate variations in the past on a timescale that is relevant for humans. This study, as the first of its kind, aims to resolve cyclic variations of nannofossil assemblages on a decadal to centennial scale in a highly sensitive Early Miocene (~17Ma) shallow marine setting. Our results indicate that solar variation played a major role in shaping short-term climate variability.
Related subject area
Location/Setting: Deep sea | Subject: Geology | Geoprocesses: Earth science methods
Comparison of sediment composition by smear slides to quantitative shipboard data: a case study on the utility of smear slide percent estimates, IODP Expedition 353, northern Indian Ocean
Developing community-based scientific priorities and new drilling proposals in the southern Indian and southwestern Pacific oceans
Stephen C. Phillips and Kate Littler
Sci. Dril., 30, 59–74, https://doi.org/10.5194/sd-30-59-2022, https://doi.org/10.5194/sd-30-59-2022, 2022
Short summary
Short summary
Smear slides are a method of estimating sediment composition that is widely used as part of scientific drilling expeditions. These estimates are frequently used to classify sediments but are often not used in further analysis. We show that smear slide estimates, even if not highly accurate, track well with downcore physical property and elemental analyses. This work gives confidence in smear slide estimates in characterizing trends and cycles in sediment composition.
Robert McKay, Neville Exon, Dietmar Müller, Karsten Gohl, Michael Gurnis, Amelia Shevenell, Stuart Henrys, Fumio Inagaki, Dhananjai Pandey, Jessica Whiteside, Tina van de Flierdt, Tim Naish, Verena Heuer, Yuki Morono, Millard Coffin, Marguerite Godard, Laura Wallace, Shuichi Kodaira, Peter Bijl, Julien Collot, Gerald Dickens, Brandon Dugan, Ann G. Dunlea, Ron Hackney, Minoru Ikehara, Martin Jutzeler, Lisa McNeill, Sushant Naik, Taryn Noble, Bradley Opdyke, Ingo Pecher, Lowell Stott, Gabriele Uenzelmann-Neben, Yatheesh Vadakkeykath, and Ulrich G. Wortmann
Sci. Dril., 24, 61–70, https://doi.org/10.5194/sd-24-61-2018, https://doi.org/10.5194/sd-24-61-2018, 2018
Cited articles
Bathurst, R. G. C.: Carbonate sediments and their diagenesis, Developments in sedimentology, Elsevier, 658 pp., ISBN 978-0-444-40891-4, 1972.
Bathurst, R. G. C.: Marine diagenesis of shallow water calcium carbonate sediments, Annu. Rev. Earth Pl. Sci., 2, 257–274, 1974.
Bathurst, R. G. C.: Lithification of carbonate sediments, Sci. Prog., 66, 451–471, 1980.
Berner, R. A.: Early diagenesis: A theoretical approach, 1, Princeton University Press, ISBN 9780691082608, 256 pp., 1980.
Blum, P.: Physical properties handbook: A guide to the shipboard measurement of physical properties of deep-sea cores, ODP Tech. Note, 26, 113 pp., https://doi.org/10.2973/odp.tn.26.1997, 1997.
Budd, D. A.: Cenozoic dolomites of carbonate islands: Their attributes and origin, Earth-Sci. Rev., 42, 1–47, https://doi.org/10.1016/S0012-8252(96)00051-7, 1997.
Buryakovsky, L., Chilingar, G. V., Rieke, H. H., and Shin, S.: Fundamentals of the petrophysics of oil and gas reservoirs, John Wiley & Sons, ISBN 978-1-118-34447-7, 400 pp., 2012.
Christensen, B. A., Renema, W., Henderiks, J., De Vleeschouwer, D., Groeneveld, J., Castañeda, I. S., Reuning, L., Bogus, K., Auer, G., Ishiwa, T., McHugh, C. M., Gallagher, S. J., Fulthorpe, C. S., and Scientists, I. E.: Indonesian throughflow drove australian climate from humid pliocene to arid pleistocene, Geophys. Res. Lett., 44, 6914–6925, https://doi.org/10.1002/2017GL072977, 2017.
De Vleeschouwer, D., Nohl, T., Schulbert, C., Bialik, O. M., and Auer, G.: Coring tools have an effect on lithification and physical properties of marine carbonate sediments, Zenodo [data set], https://doi.org/10.5281/zenodo.8319206, 2023.
Columbia University: Division of Marine and Large Programs, Search Logging Data, Columbia University [data set], https://mlp.ldeo.columbia.edu/logdb/ (last access: 10 September 2023), 2023.
Fabricius, I. L.: How burial diagenesis of chalk sediments controls sonic velocity and porosity, AAPG Bull., 87, 1755–1778, https://doi.org/10.1306/06230301113, 2003.
Flügel, E.: Microfacies analysis of limestones, Springer Berlin, Heidelberg, 634 pp., https://doi.org/10.1007/978-3-642-68423-4, 1982.
Folk, R. L., Pray, L. C., and Murray, R. C.: Some aspects of recrystallization in ancient limestones, in: Dolomitization and limestone diagenesis, SEPM Society for Sedimentary Geology, 13, 14–48, https://doi.org/10.2110/pec.65.07.0014, 1965.
Friedman, G. M.: Early diagenesis and lithification in carbonate sediments, J. Sediment Res., 34, 777–813, https://doi.org/10.1306/74d71195-2b21-11d7-8648000102c1865d, 1964.
Froelich, P. N., Klinkhammer, G. P., Bender, M. L., Luedtke, N. A., Heath, G. R., Cullen, D., Dauphin, P., Hammond, D., Hartman, B., and Maynard, V.: Early oxidation of organic matter in pelagic sediments of the eastern equatorial atlantic: Suboxic diagenesis, Geochim. Cosmochim. Ac., 43, 1075–1090, https://doi.org/10.1016/0016-7037(79)90095-4, 1979.
Gallagher, S., Fulthorpe, C., Bogus, K., Auer, G., Baranwal, S., Castañeda, I., Christensen, B., Vleeschouwer, D. D., Franco, D., and Groeneveld, J.: Expedition 356 summary, 43 pp., https://doi.org/10.14379/iodp.proc.356.101.2017, 2017a.
Gallagher, S. J., Fulthorpe, C. S., Bogus, K., Auer, G., Baranwal, S., Castañeda, I. S., Christensen, B. A., De Vleeschouwer, D., Franco, D. R., Groeneveld, J., Gurnis, M., Haller, C., He, Y., Henderiks, J., Himmler, T., Ishiwa, T., Iwatani, H., Jatiningrum, R. S., Kominz, M. A., Korpanty, C. A., Lee, E. Y., Levin, E., Mamo, B. L., McGregor, H. V., McHugh, C. M., Petrick, B. F., Potts, D. C., Rastegar Lari, A., Renema, W., Reuning, L., Takayanagi, H., and Zhang, W.: Expedition 356 methods, in: Indonesian throughflow, edited by: Gallagher, S. J., Fulthorpe, C. S., Bogus, K., and the Expedition 356 Scientists, Proceedings of the International Ocean Discovery Program, College Station, TX, https://doi.org/10.14379/iodp.proc.356.102.2017, 2017b.
Gallagher, S. J., Fulthorpe, C. S., Bogus, K., Auer, G., Baranwal, S., Castañeda, I. S., Christensen, B. A., De Vleeschouwer, D., Franco, D. R., Groeneveld, J., Gurnis, M., Haller, C., He, Y., Henderiks, J., Himmler, T., Ishiwa, T., Iwatani, H., Jatiningrum, R. S., Kominz, M. A., Korpanty, C. A., Lee, E. Y., Levin, E., Mamo, B. L., McGregor, H. V., McHugh, C. M., Petrick, B. F., Potts, D. C., Rastegar Lari, A., Renema, W., Reuning, L., Takayanagi, H., and Zhang, W.: Site u1463, in: Indonesian throughflow, edited by: Gallagher, S. J., Fulthorpe, C. S., Bogus, K., and the Expedition 356 Scientists, Proceedings of the International Ocean Discovery Program, College Station, TX, https://doi.org/10.14379/iodp.proc.356.108.2017, 2017c.
Garrison, R. E. and Kennedy, W. J.: Origin of solution seams and flaser structure in upper cretaceous chalks of southern england, Sediment Geol., 19, 107–137, https://doi.org/10.1016/0037-0738(77)90027-6, 1977.
Ge, Y., Pederson, C. L., Lokier, S. W., Traas, J. P., Nehrke, G., Neuser, R. D., Goetschl, K. E., and Immenhauser, A.: Late holocene to recent aragonite-cemented transgressive lag deposits in the abu dhabi lagoon and intertidal sabkha, Sedimentology, 67, 2426–2454, https://doi.org/10.1111/sed.12707, 2020.
Harris, P. M., Kendall, C. G. S. C., Lerche, I., Schneidermann, N., and Harris, P. M.: Carbonate cementation – a brief review, in: Carbonate cements: Based on a symposium sponsored by the society of economic paleontologists and mineralogists, SEPM Society for Sedimentary Geology, 36, 79–96, https://doi.org/10.2110/pec.85.36.0079, 1985.
Hendy, A. J.: Taphonomic overprints on phanerozoic trends in biodiversity: Lithification and other secular megabiases, in: Taphonomy. Aims & scope topics in geobiology book series, edited by: Allison, P. A. and Bottjer, D. J., Springer, Dordrecht, 19–77, https://doi.org/10.1007/978-90-481-8643-3_2, 2011.
Herbert, T. D.: Differential compaction in lithified deep-sea sediments is not evidence for “diagenetic unmixing”, Sediment Geol., 84, 115–122, https://doi.org/10.1016/0037-0738(93)90049-B, 1993.
JOIDES Resolution Science Operator: Coring tools and technology: https://iodp.tamu.edu/tools/index.html (last access: 8 August 2023), 2014.
JOIDES Resolution Science Operator: IODP LIMS database, https://web.iodp.tamu.edu/LORE/ (last access: 10 September 2023), 2023.
Jutzeler, M., White, J. D. L., Talling, P. J., McCanta, M., Morgan, S., Le Friant, A., and Ishizuka, O.: Coring disturbances in iodp piston cores with implications for offshore record of volcanic events and the missoula megafloods, Geochem. Geophy. Geosy., 15, 3572–3590, https://doi.org/10.1002/2014GC005447, 2014.
Mavromatis, V., Meister, P., and Oelkers, E. H.: Using stable mg isotopes to distinguish dolomite formation mechanisms: A case study from the peru margin, Chem. Geol., 385, 84–91, https://doi.org/10.1016/j.chemgeo.2014.07.019, 2014.
MCKenzie, J. A. and Vasconcelos, C.: Dolomite mountains and the origin of the dolomite rock of which they mainly consist: Historical developments and new perspectives, Sedimentology, 56, 205–219, https://doi.org/10.1111/j.1365-3091.2008.01027.x, 2009.
Moore, C. H. and Wade, W. J.: Chapter 5 – carbonate diagenesis: Introduction and tools, in: Developments in sedimentology, edited by: Moore, C. H., and Wade, W. J., Elsevier, 67–89, https://doi.org/10.1016/B978-0-444-53831-4.00005-7, 2013.
Munnecke, A.: Bildung mikritischer kalke im silur auf gotland, Cour Forsch Senck, 198, 1–131, 1997.
Munnecke, A. and Samtleben, C.: The formation of micritic limestones and the development of limestone-marl alternations in the silurian of gotland, sweden, Facies, 34, 159–176, https://doi.org/10.1007/BF02546162, 1996.
Munnecke, A., Wright, V. P., and Nohl, T.: The origins and transformation of carbonate mud during early marine burial diagenesis and the fate of aragonite: A stratigraphic sedimentological perspective, Earth-Sci. Rev., 239, 104366, https://doi.org/10.1016/j.earscirev.2023.104366, 2023.
Nawrot, R.: Decomposing lithification bias: Preservation of local diversity structure in recently cemented storm-beach carbonate sands, san salvador island, bahamas, Palaios, 27, 190–205, https://doi.org/10.2110/palo.2011.p11-028r, 2012.
Nohl, T., Jarochowska, E., and Munnecke, A.: Revealing the genesis of limestone-marl alternations: A taphonomic approach, Palaios, 34, 15–31, https://doi.org/10.2110/palo.2018.062, 2019.
Nohl, T., Steinbauer, M. J., Sinnesael, M., and Jarochowska, E.: Detecting initial aragonite and calcite variations in limestone–marl alternations, Sedimentology, 68, 3102–3115, https://doi.org/10.1111/sed.12885, 2021.
Reid, R. P., Visscher, P. T., Decho, A. W., Stolz, J. F., Bebout, B. M., Dupraz, C., Macintyre, I. G., Paerl, H. W., Pinckney, J. L., Prufert-Bebout, L., Steppe, T. F., and DesMarais, D. J.: The role of microbes in accretion, lamination and early lithification of modern marine stromatolites, Nature, 406, 989–992, https://doi.org/10.1038/35023158, 2000.
Reuning, L., Deik, H., Petrick, B., Auer, G., Takayanagi, H., Iryu, Y., Courtillat, M., and Bassetti, M.-A.: Contrasting intensity of aragonite dissolution and dolomite cementation in glacial versus interglacial intervals of a subtropical carbonate succession, Sedimentology, 69, 2131–2150, https://doi.org/10.1111/sed.12985, 2022.
Rosenthal, Y., Holbourn, A. E., Kulhanek, D. K., Aiello, I. W., Babila, T. L., Bayon, G., Beaufort, L., Bova, S. C., Chun, J.-H., Dang, H., Drury, A. J., Dunkley Jones, T., Eichler, P. P. B., Fernando, A. G. S., Gibson, K. A., Hatfield, R. G., Johnson, D. L., Kumagai, Y., Li, T., Linsley, B. K., Meinicke, N., Mountain, G. S., Opdyke, B. N., Pearson, P. N., Poole, C. R., Ravelo, A. C., Sagawa, T., Schmitt, A., Wurtzel, J. B., Xu, J., Yamamoto, M., and Zhang, Y. G.: U1482, in: Western pacific warm pool, edited by: Rosenthal, Y., Holbourn, A. E., Kulhanek, D. K., and the Expedition 363 Scientists, International Ocean Discovery Program, College Station, TX, https://doi.org/10.14379/iodp.proc.363.103.2018, 2018.
Ryan, G., Bernardel, G., Kennard, J., Jones, A. T., Logan, G., and Rollet, N.: A pre-cursor extensive miocene reef system to the rowley shoals reefs, western australia: Evidence for structural control of reef growth or natural hydrocarbon seepage?, The APPEA Journal, 49, 337–364, https://doi.org/10.1071/AJ08021, 2009.
Sample, J. C., Torres, M. E., Fisher, A., Hong, W.-L., Destrigneville, C., Defliese, W. F., and Tripati, A. E.: Geochemical constraints on the temperature and timing of carbonate formation and lithification in the nankai trough, nantroseize transect, Geochim. Cosmochim. Ac., 198, 92–114, https://doi.org/10.1016/j.gca.2016.10.013, 2017.
Shinn, E. A.: Submarine lithification of holocene carbonate sediments in the persian gulf, Sedimentology, 12, 109–144, https://doi.org/10.1111/j.1365-3091.1969.tb00166.x, 1969.
Sinnesael, M., De Vleeschouwer, D., Zeeden, C., Batenburg, S. J., Da Silva, A.-C., de Winter, N. J., Dinarès-Turell, J., Drury, A. J., Gambacorta, G., Hilgen, F. J., Hinnov, L. A., Hudson, A. J. L., Kemp, D. B., Lantink, M. L., Laurin, J., Li, M., Liebrand, D., Ma, C., Meyers, S. R., Monkenbusch, J., Montanari, A., Nohl, T., Pälike, H., Pas, D., Ruhl, M., Thibault, N., Vahlenkamp, M., Valero, L., Wouters, S., Wu, H., and Claeys, P.: The cyclostratigraphy intercomparison project (cip): Consistency, merits and pitfalls, Earth-Sci, Rev,, 199, 102965, https://doi.org/10.1016/j.earscirev.2019.102965, 2019.
Soetaert, K., Hofmann, A. F., Middelburg, J. J., Meysman, F. J. R., and Greenwood, J.: Reprint of “the effect of biogeochemical processes on ph”, Mar. Chem., 106, 380–401, https://doi.org/10.1016/j.marchem.2007.06.008, 2007.
Sulpis, O., Agrawal, P., Wolthers, M., Munhoven, G., Walker, M., and Middelburg, J. J.: Aragonite dissolution protects calcite at the seafloor, Nat. Commun., 13, 1104, https://doi.org/10.1038/s41467-022-28711-z, 2022.
Tagliavento, M., John, C. M., Anderskouv, K., and Stemmerik, L.: Towards a new understanding of the genesis of chalk: Diagenetic origin of micarbs confirmed by clumped isotope analysis, Sedimentology, 68, 513–530, https://doi.org/10.1111/sed.12802, 2021.
Talalay, P. G.: Geological and scientific offshore drilling and core sampling in ice-covered waters, in: Geotechnical and exploration drilling in the polar regions, edited by: Talalay, P. G., Springer International Publishing, Cham, 339–383, https://doi.org/10.1007/978-3-031-07269-7_11, 2022.
Wurgaft, E., Findlay, A. J., Vigderovich, H., Herut, B., and Sivan, O.: Sulfate reduction rates in the sediments of the mediterranean continental shelf inferred from combined dissolved inorganic carbon and total alkalinity profiles, Mar. Chem., 211, 64–74, https://doi.org/10.1016/j.marchem.2019.03.004, 2019.
Short summary
Differences exist in International Ocean Discovery Program (IODP) sediment lithification depending on the coring tool used. Advanced piston corers (APCs) display less pronounced lithification compared to extended core barrels (XCBs) of the same formation. The difference stems from the destruction of early cements between sediment grains and an
acoustic compactioncaused by the piston-core pressure wave. XCB cores provide a more accurate picture of the lithification of the original formation.
Differences exist in International Ocean Discovery Program (IODP) sediment lithification...