Articles | Volume 33, issue 1
https://doi.org/10.5194/sd-33-67-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/sd-33-67-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
CALDERA: a scientific drilling concept to unravel Connections Among Life, geo-Dynamics and Eruptions in a Rifting Arc caldera, Okataina Volcanic Centre, Aotearoa New Zealand
GNS Science Te Pū Ao, 1 Fairway Drive, Lower Hutt 5040, Aotearoa New Zealand
Ludmila Adam
School of Environment, University of Auckland, 23 Symonds St. Science Centre, Auckland 1010, Aotearoa New Zealand
Eric S. Boyd
Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
S. Craig Cary
Thermophile Research Unit, Te Aka Mātuatua School of Science, Te Whare Wānanga o Waikato University of Waikato, Kirikiriroa Hamilton 3240, Aotearoa New Zealand
deceased, 29 February 2024
Daniel R. Colman
Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
Alysia Cox
Department of Chemistry & Geochemistry, Montana Technological University, 1300 W. Park St. Butte, MT 59701, USA
Ery Hughes
GNS Science Te Pū Ao, 1 Fairway Drive, Lower Hutt 5040, Aotearoa New Zealand
Geoff Kilgour
GNS Science Te Pū Ao, 114 Karetoto Road, RD4, Taupo 3384, Aotearoa New Zealand
Matteo Lelli
Institute of Geosciences and Earth Resources, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy
Istituto Nazionale di Geofisica e Vulcanologia, Via C. Battisti 53, 56125 Pisa, Italy
Domenico Liotta
Dept. of Earth and Geoenviromental Sciences, University Aldo Moro, 70125 Bari, Italy
Institute of Geosciences and Earth Resources, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy
Karen G. Lloyd
Microbiology Department, University of Tennessee, Mossman 307, Knoxville, TN, USA
Tiipene Marr
Te Mana o Ngāti Rangitihi, Whakatane, Aotearoa New Zealand
David D. McNamara
Department of Earth, Ocean and Ecological Sciences, University of Liverpool, 4 Brownlow Street, Liverpool, UK
Sarah D. Milicich
GNS Science Te Pū Ao, 1 Fairway Drive, Lower Hutt 5040, Aotearoa New Zealand
Craig A. Miller
GNS Science Te Pū Ao, 114 Karetoto Road, RD4, Taupo 3384, Aotearoa New Zealand
Santanu Misra
Department of Earth Sciences, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
Alexander R. L. Nichols
Te Kura Aronukurangi School of Earth and Environment, Te Whare Wānanga o Waitaha University of Canterbury, Private Bag 4800, Ōtautahi Christchurch 8140, Aotearoa New Zealand
Simona Pierdominici
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Shane M. Rooyakkers
GNS Science Te Pū Ao, 1 Fairway Drive, Lower Hutt 5040, Aotearoa New Zealand
Douglas R. Schmitt
Earth, Atmospheric, and Planetary Science Department, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907-2051, USA
Andri Stefansson
School of Engineering and Natural Science, University of Iceland, Sæmundargata 2, 102 Reykjavík, Iceland
John Stix
Department of Earth and Planetary Sciences, McGill University, 3450 University Street, Montreal, Quebec H3A 0E8, Canada
Matthew B. Stott
Te Kura Pūtaiao Koiora School of Biological Sciences, Te Whare Wānanga o Waitaha University of Canterbury, Ōtautahi Christchurch 8140, Aotearoa New Zealand
Camille Thomas
Institute of Geological Sciences and Oeschger Centre for Climate Research, University of Bern, Baltzerstrasse 1 + 3, 3012 Bern, Switzerland
Pilar Villamor
GNS Science Te Pū Ao, 1 Fairway Drive, Lower Hutt 5040, Aotearoa New Zealand
Pujun Wang
College of Earth Sciences, Jilin University, Changchun 130061, China
Sadiq J. Zarrouk
Department of Engineering Sciences, University of Auckland, Private Bag 92019, Ākarana Auckland, Aotearoa New Zealand
A full list of authors appears at the end of the paper.
Related authors
Jack N. Williams, Virginia G. Toy, Cécile Massiot, David D. McNamara, Steven A. F. Smith, and Steven Mills
Solid Earth, 9, 469–489, https://doi.org/10.5194/se-9-469-2018, https://doi.org/10.5194/se-9-469-2018, 2018
Short summary
Short summary
We present new data on the orientation of fractures, their fill, and their density around the Alpine Fault, a plate boundary fault on the South Island of New Zealand. Fractures < 160 m of the fault are filled and show a range of orientations, whilst fractures at greater distances (< 500 m) are open and parallel to the rock's mechanical weakness. We interpret the latter fracture set to reflect near-surface processes, whilst the latter are potentially linked to deep-seated Alpine Fault seismicity.
Paola Montone, Simona Pierdominici, M. Teresa Mariucci, Francesco Mirabella, Marco Urbani, Assel Akimbekova, Lauro Chiaraluce, Wade Johnson, and Massimiliano Rinaldo Barchi
Solid Earth, 15, 1385–1406, https://doi.org/10.5194/se-15-1385-2024, https://doi.org/10.5194/se-15-1385-2024, 2024
Short summary
Short summary
The STAR project set out to drill six shallow holes and use geophysical logging to find the best depth for placing seismometers and strainmeters to image the upper crust, in particular the Alto Tiberina fault, Italy. These measurements give us a better idea of what the rocks are like, helping us connect what we know from the literature with what we find underground, giving solid information on rock properties, which helps us understand the first few hundred meters of the Earth's crust.
Pedro Doll, Shaun Robert Eaves, Ben Matthew Kennedy, Pierre-Henri Blard, Alexander Robert Lee Nichols, Graham Sloan Leonard, Dougal Bruce Townsend, Jim William Cole, Chris Edward Conway, Sacha Baldwin, Gabriel Fénisse, Laurent Zimmermann, and Bouchaïb Tibari
Geochronology, 6, 365–395, https://doi.org/10.5194/gchron-6-365-2024, https://doi.org/10.5194/gchron-6-365-2024, 2024
Short summary
Short summary
In this study, we use cosmogenic-sourced 3He to determine the eruption ages of 23 lava flows at Mt Ruapehu, Aotearoa New Zealand, and we show how this method can help overcome challenges associated with traditional dating methods in young lavas. Comparison with other methods demonstrates the accuracy of our data and the method's reliability. The new eruption ages allowed us to identify periods of quasi-simultaneous activity from different volcanic vents during the last 20 000 years.
Lauro Chiaraluce, Richard Bennett, David Mencin, Wade Johnson, Massimiliano Rinaldo Barchi, Marco Bohnhoff, Paola Baccheschi, Antonio Caracausi, Carlo Calamita, Adriano Cavaliere, Adriano Gualandi, Eugenio Mandler, Maria Teresa Mariucci, Leonardo Martelli, Simone Marzorati, Paola Montone, Debora Pantaleo, Stefano Pucci, Enrico Serpelloni, Mariano Supino, Salvatore Stramondo, Catherine Hanagan, Liz Van Boskirk, Mike Gottlieb, Glen Mattioli, Marco Urbani, Francesco Mirabella, Assel Akimbekova, Simona Pierdominici, Thomas Wiersberg, Chris Marone, Luca Palmieri, and Luca Schenato
Sci. Dril., 33, 173–190, https://doi.org/10.5194/sd-33-173-2024, https://doi.org/10.5194/sd-33-173-2024, 2024
Short summary
Short summary
We built six observatory stations in central Italy to monitor a fault potentially capable of generating a strong earthquake. Each site has 80–160 m deep wells equipped with strainmeters and seismometers. At the surface, we placed GNSS antennas and seismic and meteorological sensors. All data, which are open access for the scientific community, will help us to better understand the complex physical and chemical processes that lead to the generation of the full range of slow and fast earthquakes.
Luigi Marini, Claudia Principe, and Matteo Lelli
EGUsphere, https://doi.org/10.5194/egusphere-2024-1306, https://doi.org/10.5194/egusphere-2024-1306, 2024
Short summary
Short summary
We revised the conceptual model of the Solfatara magmatic-hydrothermal system and we used new geothermometers and geobarometers, specifically calibrated for the Solfatara fluids, to monitor temperature, T, and total fluid pressure, P, in three distinct reservoirs at different depths, over ~40 years. The T, P changes in the intermediate reservoir (at 2.7–4 km depth) are of utmost interest because its pressurization-depressurization acts as the “engine” of bradyseism currently affecting the area.
Jessica Salas-Navarro, John Stix, and J. Maarten de Moor
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-265, https://doi.org/10.5194/amt-2023-265, 2024
Revised manuscript not accepted
Short summary
Short summary
We identified and quantified the effects of H2S on CO2 and CH4 concentrations and their respective isotopic compositions using a Picarro instrument model G2201-i. This interference was used to develop a new method to accurately quantify H2S concentrations with a G2201-i. Measuring CO2, CH4, and H2S concentrations in the gas phase within 20 minutes using a single instrument will significantly improve current analytical routines and has the potential to be a powerful tool for volcano monitoring.
Ashley J. Dubnick, Rachel L. Spietz, Brad D. Danielson, Mark L. Skidmore, Eric S. Boyd, Dave Burgess, Charvanaa Dhoonmoon, and Martin Sharp
The Cryosphere, 17, 2993–3012, https://doi.org/10.5194/tc-17-2993-2023, https://doi.org/10.5194/tc-17-2993-2023, 2023
Short summary
Short summary
At the end of an Arctic winter, we found ponded water 500 m under a glacier. We explored the chemistry and microbiology of this unique, dark, and cold aquatic habitat to better understand ecology beneath glaciers. The water was occupied by cold-loving and cold-tolerant microbes with versatile metabolisms and broad habitat ranges and was depleted in compounds commonly used by microbes. These results show that microbes can become established beneath glaciers and deplete nutrients within months.
Tomáš Fischer, Pavla Hrubcová, Torsten Dahm, Heiko Woith, Tomáš Vylita, Matthias Ohrnberger, Josef Vlček, Josef Horálek, Petr Dědeček, Martin Zimmer, Martin P. Lipus, Simona Pierdominici, Jens Kallmeyer, Frank Krüger, Katrin Hannemann, Michael Korn, Horst Kämpf, Thomas Reinsch, Jakub Klicpera, Daniel Vollmer, and Kyriaki Daskalopoulou
Sci. Dril., 31, 31–49, https://doi.org/10.5194/sd-31-31-2022, https://doi.org/10.5194/sd-31-31-2022, 2022
Short summary
Short summary
The newly established geodynamic laboratory aims to develop modern, comprehensive, multiparameter observations at depth for studying earthquake swarms, crustal fluid flow, mantle-derived fluid degassing and processes of the deep biosphere. It is located in the West Bohemia–Vogtland (western Eger Rift) geodynamic region and comprises a set of five shallow boreholes with high-frequency 3-D seismic arrays as well as continuous real-time fluid monitoring at depth and the study of the deep biosphere.
Wout Krijgsman, Iuliana Vasiliev, Anouk Beniest, Timothy Lyons, Johanna Lofi, Gabor Tari, Caroline P. Slomp, Namik Cagatay, Maria Triantaphyllou, Rachel Flecker, Dan Palcu, Cecilia McHugh, Helge Arz, Pierre Henry, Karen Lloyd, Gunay Cifci, Özgür Sipahioglu, Dimitris Sakellariou, and the BlackGate workshop participants
Sci. Dril., 31, 93–110, https://doi.org/10.5194/sd-31-93-2022, https://doi.org/10.5194/sd-31-93-2022, 2022
Short summary
Short summary
BlackGate seeks to MSP drill a transect to study the impact of dramatic hydrologic change in Mediterranean–Black Sea connectivity by recovering the Messinian to Holocene (~ 7 Myr) sedimentary sequence in the North Aegean, Marmara, and Black seas. These archives will reveal hydrographic, biotic, and climatic transitions studied by a broad scientific community spanning the stratigraphic, tectonic, biogeochemical, and microbiological evolution of Earth’s most recent saline and anoxic giant.
Julian Rüdiger, Alexandra Gutmann, Nicole Bobrowski, Marcello Liotta, J. Maarten de Moor, Rolf Sander, Florian Dinger, Jan-Lukas Tirpitz, Martha Ibarra, Armando Saballos, María Martínez, Elvis Mendoza, Arnoldo Ferrufino, John Stix, Juan Valdés, Jonathan M. Castro, and Thorsten Hoffmann
Atmos. Chem. Phys., 21, 3371–3393, https://doi.org/10.5194/acp-21-3371-2021, https://doi.org/10.5194/acp-21-3371-2021, 2021
Short summary
Short summary
We present an innovative approach to study halogen chemistry in the plume of Masaya volcano in Nicaragua. An unique data set was collected using multiple techniques, including drones. These data enabled us to determine the fraction of activation of the respective halogens at various plume ages, where in-mixing of ambient air causes chemical reactions. An atmospheric chemistry box model was employed to further examine the field results and help our understanding of volcanic plume chemistry.
Mark C. Quigley, Wendy Saunders, Chris Massey, Russ Van Dissen, Pilar Villamor, Helen Jack, and Nicola Litchfield
Nat. Hazards Earth Syst. Sci., 20, 3361–3385, https://doi.org/10.5194/nhess-20-3361-2020, https://doi.org/10.5194/nhess-20-3361-2020, 2020
Short summary
Short summary
This paper examines the roles of earth science information (data, knowledge, advice) in land-use decision-making in Christchurch, New Zealand, in response to the 2010–2011 Canterbury earthquake sequence. A detailed timeline of scientific activities and information provisions relative to key decision-making events is provided. We highlight the importance and challenges of the effective provision of science to decision makers in times of crisis.
Teresa Jordan, Patrick Fulton, Jefferson Tester, David Bruhn, Hiroshi Asanuma, Ulrich Harms, Chaoyi Wang, Doug Schmitt, Philip J. Vardon, Hannes Hofmann, Tom Pasquini, Jared Smith, and the workshop participants
Sci. Dril., 28, 75–91, https://doi.org/10.5194/sd-28-75-2020, https://doi.org/10.5194/sd-28-75-2020, 2020
Short summary
Short summary
A scientific borehole planning workshop sponsored by the International Continental Scientific Drilling Program convened in early 2020 at Cornell University in the NE United States. Cornell plans drilling to test the potential to use geothermal heat from depths of 2700–4500 m and rock temperatures of 60 to 120 °C to heat its campus. The workshop focused on designing companion scientific projects to investigate the coupled thermal–chemical–hydrological–mechanical workings of continental crust.
Felix Kästner, Simona Pierdominici, Judith Elger, Alba Zappone, Jochem Kück, and Christian Berndt
Solid Earth, 11, 607–626, https://doi.org/10.5194/se-11-607-2020, https://doi.org/10.5194/se-11-607-2020, 2020
Short summary
Short summary
Knowledge about physical properties at depth is crucial to image and understand structures linked with orogenic processes. We examined seismic velocities from core and downhole data from the COSC-1 borehole, Sweden, and calibrated our results with laboratory measurements on core samples. Despite a strong mismatch between the core and downhole velocities due to microcracks, mafic units are resolved at all scales, while at sample scale, strong seismic anisotropy correlates with the rock foliation.
Franklin D. Wolfe, Timothy A. Stahl, Pilar Villamor, and Biljana Lukovic
Earth Surf. Dynam., 8, 211–219, https://doi.org/10.5194/esurf-8-211-2020, https://doi.org/10.5194/esurf-8-211-2020, 2020
Short summary
Short summary
This short communication presents an efficient method for analyzing large fault scarp data sets. The programs and workflow required are open-source and the methodology is easy to use; thus the barrier to entry is low. This tool can be applied to a broad range of active tectonic studies. A case study in the Taupo Volcanic Zone, New Zealand, exemplifies the novelty of this tool by generating results that are consistent with extensive field campaigns in only a few hours at a work station.
Dougal A. Jerram, John M. Millett, Jochem Kück, Donald Thomas, Sverre Planke, Eric Haskins, Nicole Lautze, and Simona Pierdominici
Sci. Dril., 25, 15–33, https://doi.org/10.5194/sd-25-15-2019, https://doi.org/10.5194/sd-25-15-2019, 2019
Short summary
Short summary
This contribution highlights a combined research effort to collect a combined core and down-borehole geophysics data set on two boreholes from the main island on Hawaii. The results represent one of the most complete data sets of fully cored volcanics with associated borehole measurements, which can be confidently matched directly between remote data and core. The data set and results of this study include findings which should enable improved borehole facies analysis through volcanic sequences.
Marie D. Jackson, Magnús T. Gudmundsson, Tobias B. Weisenberger, J. Michael Rhodes, Andri Stefánsson, Barbara I. Kleine, Peter C. Lippert, Joshua M. Marquardt, Hannah I. Reynolds, Jochem Kück, Viggó T. Marteinsson, Pauline Vannier, Wolfgang Bach, Amel Barich, Pauline Bergsten, Julia G. Bryce, Piergiulio Cappelletti, Samantha Couper, M. Florencia Fahnestock, Carolyn F. Gorny, Carla Grimaldi, Marco Groh, Ágúst Gudmundsson, Ágúst T. Gunnlaugsson, Cédric Hamlin, Thórdís Högnadóttir, Kristján Jónasson, Sigurdur S. Jónsson, Steffen L. Jørgensen, Alexandra M. Klonowski, Beau Marshall, Erica Massey, Jocelyn McPhie, James G. Moore, Einar S. Ólafsson, Solveig L. Onstad, Velveth Perez, Simon Prause, Snorri P. Snorrason, Andreas Türke, James D. L. White, and Bernd Zimanowski
Sci. Dril., 25, 35–46, https://doi.org/10.5194/sd-25-35-2019, https://doi.org/10.5194/sd-25-35-2019, 2019
Short summary
Short summary
Three new cored boreholes through Surtsey volcano, an isolated island in southeastern Iceland, provide fresh insights into understanding how explosive submarine volcanism and the earliest alteration of basaltic deposits proceed in a pristine oceanic environment. The still-hot volcano was first sampled through a drill core in 1979. The time-lapse drill cores record the changing geochemical, mineralogical, microbiological, and material properties of the basalt 50 years after eruptions terminated.
Philippe Calcagno, Gwladys Evanno, Eugenio Trumpy, Luis Carlos Gutiérrez-Negrín, José Luis Macías, Gerardo Carrasco-Núñez, and Domenico Liotta
Adv. Geosci., 45, 321–333, https://doi.org/10.5194/adgeo-45-321-2018, https://doi.org/10.5194/adgeo-45-321-2018, 2018
Short summary
Short summary
Geothermal resource is heat energy that can be recovered from underground in the Earth. As part of the European H2020 GEMex project, 3D geological models were constructed for the geothermal sites of Los Humeros and Acoculco in Mexico. These models allow a better understanding of the rock types and structure when targeting deep sources of geothermal energy; they will be updated during the project, serving as a framework for simulating the geothermal system.
Jack N. Williams, Virginia G. Toy, Cécile Massiot, David D. McNamara, Steven A. F. Smith, and Steven Mills
Solid Earth, 9, 469–489, https://doi.org/10.5194/se-9-469-2018, https://doi.org/10.5194/se-9-469-2018, 2018
Short summary
Short summary
We present new data on the orientation of fractures, their fill, and their density around the Alpine Fault, a plate boundary fault on the South Island of New Zealand. Fractures < 160 m of the fault are filled and show a range of orientations, whilst fractures at greater distances (< 500 m) are open and parallel to the rock's mechanical weakness. We interpret the latter fracture set to reflect near-surface processes, whilst the latter are potentially linked to deep-seated Alpine Fault seismicity.
M. D. Jackson, M. T. Gudmundsson, W. Bach, P. Cappelletti, N. J. Coleman, M. Ivarsson, K. Jónasson, S. L. Jørgensen, V. Marteinsson, J. McPhie, J. G. Moore, D. Nielson, J. M. Rhodes, C. Rispoli, P. Schiffman, A. Stefánsson, A. Türke, T. Vanorio, T. B. Weisenberger, J. D. L. White, R. Zierenberg, and B. Zimanowski
Sci. Dril., 20, 51–58, https://doi.org/10.5194/sd-20-51-2015, https://doi.org/10.5194/sd-20-51-2015, 2015
Short summary
Short summary
A new drilling program at Surtsey Volcano, a 50-year-old oceanic island and UNESCO World Heritage site in Iceland, will undertake interdisciplinary investigations of rift zone volcanism, dynamic hydrothermal mineral assemblages in basaltic tephra, and subterrestrial microbial colonization and succession in altered tephra and hydrothermal fluids. Long-term monitoring of evolving hydrothermal and biological processes will occur through installation of a 200m deep Surtsey subsurface observatory.
K. Malowany, J. Stix, A. Van Pelt, and G. Lucic
Atmos. Meas. Tech., 8, 4075–4082, https://doi.org/10.5194/amt-8-4075-2015, https://doi.org/10.5194/amt-8-4075-2015, 2015
Short summary
Short summary
Portable cavity ring-down spectrometers (e.g. G1101-i) for isotopic CO2 have an interference with elevated (higher than ambient) amounts of hydrogen sulfide (H2S). This results from the overlap of the H2S and CO2 spectral lines in the near-infrared, causing changes in both the 12CO2 and 13CO2 concentrations. This effect can be removed by reacting H2S with a metal scrub before analysis, which will facilitate the application of these instruments in H2S-rich environments (i.e. active volcanoes).
B. N. Orcutt, D. E. LaRowe, K. G. Lloyd, H. Mills, W. Orsi, B. K. Reese, J. Sauvage, J. A. Huber, and J. Amend
Sci. Dril., 17, 61–66, https://doi.org/10.5194/sd-17-61-2014, https://doi.org/10.5194/sd-17-61-2014, 2014
Related subject area
Location/Setting: Continental | Subject: Geology | Geoprocesses: Tectonic processes
Workshop report: Afar Dallol Drilling – ONset of sedimentary processes in an active rift basin (ADD-ON)
COSC-2 – drilling the basal décollement and underlying margin of palaeocontinent Baltica in the Paleozoic Caledonide Orogen of Scandinavia
Fifteen years of the Chinese Continental Scientific Drilling Program
COSC-1 – drilling of a subduction-related allochthon in the Palaeozoic Caledonide orogen of Scandinavia
Drilling to investigate processes in active tectonics and magmatism
Anneleen Foubert, Derek Keir, Balemwal Atnafu, Tesfaye Kidane, and the ADD-ON Workshop Consortium
Sci. Dril., 33, 207–218, https://doi.org/10.5194/sd-33-207-2024, https://doi.org/10.5194/sd-33-207-2024, 2024
Short summary
Short summary
The Dallol area (northern Afar, Ethiopia) is the ideal field lab to study the birth of a future ocean. The ADD-ON workshop brought together scientists from different disciplines, government agencies, local universities, and communities to plan a scientific drilling into the Dallol deep subsurface. This drilling will provide unique archives to resolve questions related to rift processes, seismic and volcanic activity, climate change, the deep biosphere, geothermal energy, and water resources.
Henning Lorenz, Jan-Erik Rosberg, Christopher Juhlin, Iwona Klonowska, Rodolphe Lescoutre, George Westmeijer, Bjarne S. G. Almqvist, Mark Anderson, Stefan Bertilsson, Mark Dopson, Jens Kallmeyer, Jochem Kück, Oliver Lehnert, Luca Menegon, Christophe Pascal, Simon Rejkjær, and Nick N. W. Roberts
Sci. Dril., 30, 43–57, https://doi.org/10.5194/sd-30-43-2022, https://doi.org/10.5194/sd-30-43-2022, 2022
Short summary
Short summary
The Collisional Orogeny in the Scandinavian Caledonides project provides insights into the deep structure and bedrock of a ca. 400 Ma old major orogen to study deformation processes that are hidden at depth from direct access in modern mountain belts. This paper describes the successful operations at the second site. It provides an overview of the retrieved geological section that differs from the expected and summarises the scientific potential of the accomplished data sets and drill core.
Zhiqin Xu, Jingsui Yang, Chengshan Wang, Zhisheng An, Haibing Li, Qin Wang, and Dechen Su
Sci. Dril., 22, 1–18, https://doi.org/10.5194/sd-22-1-2017, https://doi.org/10.5194/sd-22-1-2017, 2017
Short summary
Short summary
The 5158 m deep borehole of the Chinese Continental Scientific Drilling (CCSD) Project in the Sulu ultrahigh-pressure metamorphic terrain marked the starting point of the CCSD Program. Since then, several continental scientific drilling projects were conducted with funding of the Chinese government and partially with support of ICDP, resulting in a total drilling depth of more than 35 000 m. This paper reviews the history and major progress of the CCSD Program in the past 15 years.
H. Lorenz, J.-E. Rosberg, C. Juhlin, L. Bjelm, B. S. G. Almqvist, T. Berthet, R. Conze, D. G. Gee, I. Klonowska, C. Pascal, K. Pedersen, N. M. W. Roberts, and C.-F. Tsang
Sci. Dril., 19, 1–11, https://doi.org/10.5194/sd-19-1-2015, https://doi.org/10.5194/sd-19-1-2015, 2015
Short summary
Short summary
The Collisional Orogeny in the Scandinavian Caledonides (COSC) scientific drilling project successfully drilled a 2.5km fully cored borehole (COSC-1) through allochthonous subduction-related high-grade metamorphic gneisses and into the underlying thrust zone. This paper summarizes the scientific rationale of the project and presents first preliminary results.
J. Shervais, J. Evans, V. Toy, J. Kirkpatrick, A. Clarke, and J. Eichelberger
Sci. Dril., 18, 19–33, https://doi.org/10.5194/sd-18-19-2014, https://doi.org/10.5194/sd-18-19-2014, 2014
Cited articles
Abe, K.: Seismicity of the caldera-making eruption of Mount Katmai, Alaska in 1912, B. Seismol. Soc. Am., 82, 175–191, https://pubs.geoscienceworld.org/ssa/bssa/article/82/1/175/119528/Seismicity-of-the-caldera-making-eruption-of-Mount (last access: 18 March 2024), 1992.
Acocella, V.: Structural control on magmatism along divergent and convergent plate boundaries: Overview, model, problems, Earth Sci. Rev., 136, 226–288, https://doi.org/10.1016/j.earscirev.2014.05.006, 2014.
Acocella, V., Neri, M., Behncke, B., Bonforte, A., Del Negro, C., and Ganci, G.: Why Does a Mature Volcano Need New Vents? The Case of the New Southeast Crater at Etna, Front. Earth Sci., 4, 67, https://doi.org/10.3389/feart.2016.00067, 2016.
Allan, A. S. R., Wilson, C. J. N., Millet, M.-A., and Wysoczanski, R. J.: The invisible hand: Tectonic triggering and modulation of a rhyolitic supereruption, Geology, 40, 563–566, https://doi.org/10.1130/G32969.1, 2012.
Arnórsson, S.: Geothermal systems in Iceland: Structure and conceptual models – I. High-temperature areas, Geothermics, 24, 561–602, https://doi.org/10.1016/0375-6505(95)00025-9, 1995.
Bach, W., Peucker-Ehrenbrink, B., Hart, S. R., and Blusztajn, J. S.: Geochemistry of hydrothermally altered oceanic crust: DSDP/ODP Hole 504B – Implications for seawater-crust exchange budgets and Sr- and Pb-isotopic evolution of the mantle, Geochem. Geophy. Geosy., 4, 8904, https://doi.org/10.1029/2002GC000419, 2003.
Bannister, S., Bertrand, E. A., Heimann, S., Bourguignon, S., Asher, C., Shanks, J., and Harvison, A.: Imaging sub-caldera structure with local seismicity, Okataina Volcanic Centre, Taupo Volcanic Zone, using double-difference seismic tomography, J. Volcanol. Geoth. Res., 431, 107653, https://doi.org/10.1016/j.jvolgeores.2022.107653, 2022.
Barker, S. J., Rowe, M. C., Wilson, C. J. N., Gamble, J. A., Rooyakkers, S. M., Wysoczanski, R. J., Illsley-Kemp, F., and Kenworthy, C. C.: What lies beneath? Reconstructing the primitive magmas fueling voluminous silicic volcanism using olivine-hosted melt inclusions, Geology, 48, 504–508, https://doi.org/10.1130/G47422.1, 2020.
Barry, P. H., de Moor, J. M., Giovannelli, D., Schrenk, M., Hummer, D. R., Lopez, T., Pratt, C. A., Segura, Y. A., Battaglia, A., Beaudry, P., Bini, G., Cascante, M., d'Errico, G., di Carlo, M., Fattorini, D., Fullerton, K., Gazel, E., González, G., Halldórsson, S. A., Iacovino, K., Ilanko, T., Kulongoski, J. T., Manini, E., Martínez, M., Miller, H., Nakagawa, M., Ono, S., Patwardhan, S., Ramírez, C. J., Regoli, F., Smedile, F., Turner, S., Vetriani, C., Yücel, M., Ballentine, C. J., Fischer, T. P., Hilton, D. R., and Lloyd, K. G.: Forearc carbon sink reduces long-term volatile recycling into the mantle, Nature, 568, 487–492, https://doi.org/10.1038/s41586-019-1131-5, 2019.
Battaglia, M., Troise, C., Obrizzo, F., Pingue, F., and De Natale, G.: Evidence for fluid migration as the source of deformation at Campi Flegrei caldera (Italy), Geophys. Res. Lett., 33, L01307, https://doi.org/10.1029/2005GL024904, 2006.
Benson, T. W., Illsley-Kemp, F., Elms, H. C., Hamling, I. J., Savage, M. K., Wilson, C. J. N., Mestel, E. R. H., and Barker, S. J.: Earthquake Analysis Suggests Dyke Intrusion in 2019 Near Tarawera Volcano, New Zealand, Front. Earth Sci., 8, 606992, https://doi.org/10.3389/feart.2020.606992, 2021.
Berryman, K., Villamor, P., Nairn, I., van Dissen, R., Begg, J., and Lee, J.: Late Pleistocene surface rupture history of the Paeroa Fault, Taupo Rift, New Zealand, New Zeal. J. Geol. Geop., 51, 135–158, https://doi.org/10.1080/00288300809509855, 2008.
Berryman, K., Villamor, P., Nairn, I., Begg, J., Alloway, B. V, Rowland, J., Lee, J., and Capote, R.: Volcano-tectonic interactions at the southern margin of the Okataina Volcanic Centre, Taupō Volcanic Zone, New Zealand, J. Volcanol. Geoth. Res., 427, 107552, https://doi.org/10.1016/j.jvolgeores.2022.107552, 2022.
Bertrand, E. A., Kannberg, P., Caldwell, T. G., Heise, W., Constable, S., Scott, B., Bannister, S., Kilgour, G., Bennie, S. L., Hart, R., and Palmer, N.: Inferring the magmatic roots of volcano-geothermal systems in the Rotorua Caldera and Okataina Volcanic Centre from magnetotelluric models, J. Volcanol. Geoth. Res., 431, 107645, https://doi.org/10.1016/j.jvolgeores.2022.107645, 2022.
Bouvet de Maisonneuve, C., Forni, F., and Bachmann, O.: Magma reservoir evolution during the build up to and recovery from caldera-forming eruptions – A generalizable model?, Earth Sci. Rev., 218, 103684, https://doi.org/10.1016/j.earscirev.2021.103684, 2021.
Bursik, M., Renshaw, C., McCalpin, J., and Berry, M.: A volcanotectonic cascade: Activation of range front faulting and eruptions by dike intrusion, Mono Basin-Long Valley Caldera, California, J. Geophys. Res.-Sol. Ea., 108, 2393, https://doi.org/10.1029/2002JB002032, 2003.
Byerlee, J. D. and Savage, J. C.: Coulomb plasticity within the fault zone, Geophys. Res. Lett., 19, 2341–2344, https://doi.org/10.1029/92GL02370, 1992.
Cabaniss, H. E., Gregg, P. M., and Grosfils, E. B.: The Role of Tectonic Stress in Triggering Large Silicic Caldera Eruptions, Geophys. Res. Lett., 45, 3889–3895, https://doi.org/10.1029/2018GL077393, 2018.
Carroll, S. R., Garba, I., Figueroa-Rodríguez, O. L., Holbrook, J., Lovett, R., Materechera, S., Parsons, M., Raseroka, K., Rodriguez-Lonebear, D., and Rowe, R.: The CARE principles for indigenous data governance, Data Sci. J., 19, 43, https://doi.org/10.5334/dsj-2020-043, 2020.
Carson, L. B., Miller, C. A., Massiot, C., Villamor, P., Leonard, G. S., and Alcaraz, S. A.: 3D visualisation model of the basement geology and caldera structure at Okataina Volcanic Centre, in: Geoscience Society of New Zealand Annual Conference, 29 November–1 December 2022, Massey University, Palmerston North, New Zealand, edited by: Zernack, A. V. and Palmer, J., Geoscience Society of New Zealand, Wellington, NZ, 161A, ISBN 978-0-473-66216-5, 2022.
Casar, C. P., Kruger, B. R., Flynn, T. M., Masterson, A. L., Momper, L. M., and Osburn, M. R.: Mineral-hosted biofilm communities in the continental deep subsurface, Deep Mine Microbial Observatory, SD, USA, Geobiology, 18, 508–522, https://doi.org/10.1111/gbi.12391, 2020.
Cassidy, M., Sandberg, A., and Mani, L.: The Ethics of Volcano Geoengineering, Earths Future, 11, 1–17, https://doi.org/10.1029/2023EF003714, 2023.
Chamberlain, C. J., Boese, C. M., Eccles, J. D., Savage, M. K., Baratin, L. M., Townend, J., Gulley, A. K., Jacobs, K. M., Benson, A., Taylor-Offord, S., and Thurber, C.: Real-time earthquake monitoring during the second phase of the deep fault drilling project, Alpine Fault, New Zealand, Seismol. Res. Lett., 88, 1443–1454, https://doi.org/10.1785/0220170095, 2017.
Cluff, M. A., Hartsock, A., MacRae, J. D., Carter, K., and Mouser, P. J.: Temporal Changes in Microbial Ecology and Geochemistry in Produced Water from Hydraulically Fractured Marcellus Shale Gas Wells, Environ. Sci. Technol., 48, 6508–6517, https://doi.org/10.1021/es501173p, 2014.
Cole, J. W., Deering, C. D., Burt, R. M., Sewell, S., Shane, P. A. R., and Matthews, N. E.: Okataina Volcanic Centre, Taupo Volcanic Zone, New Zealand: A review of volcanism and synchronous pluton development in an active, dominantly silicic caldera system, Earth Sci. Rev., 128, 1–17, https://doi.org/10.1016/j.earscirev.2013.10.008, 2014.
Colman, D. R., Lindsay, M. R., and Boyd, E. S.: Mixing of meteoric and geothermal fluids supports hyperdiverse chemosynthetic hydrothermal communities, Nat. Commun., 10, 681, https://doi.org/10.1038/s41467-019-08499-1, 2019.
Colman, D. R., Lindsay, M. R., Harnish, A., Bilbrey, E. M., Amenabar, M. J., Selensky, M. J., Fecteau, K. M., Debes II, R. V, Stott, M. B., Shock, E. L., and Boyd, E. S.: Seasonal hydrologic and geologic forcing drive hot spring geochemistry and microbial biodiversity, Environ. Microbiol., 23, 4034–4053, https://doi.org/10.1111/1462-2920.15617, 2021.
Colman, D. R., Amenabar, M. J., Fernandes-Martins, M. C., and Boyd, E. S.: Subsurface Archaea associated with rapid geobiological change in a model Yellowstone hot spring, Commun. Earth. Environ., 3, 205, https://doi.org/10.1038/s43247-022-00542-2, 2022.
Corti, G.: Evolution and characteristics of continental rifting: Analog modeling-inspired view and comparison with examples from the East African Rift System, Tectonophysics, 522–523, 1–33, https://doi.org/10.1016/j.tecto.2011.06.010, 2012.
Costa, F.: Clocks in magmatic rocks, Annu. Rev. Earth. Planet Sci., 49, 231–252, https://doi.org/10.1146/annurev-earth-080320-060708, 2021.
De Natale, G., Troise, C., Mark D, Mormone, A., Piochi, M., Di Vito, M. A., Isaia, R., Carlino, S., Barra, D., and Somma, R.: The Campi Flegrei Deep DrillingProject (CFDDP): New insight on caldera structure, evolution and hazard implications for the Naples area (Southern Italy), Geochem. Geophy. Geosy., 17, 4836–4847, https://doi.org/10.1002/2015GC006183, 2016.
de Ronde, C. E. J., Humphris, S. E., Höfig, T. W., and Reyes, A. G.: Critical role of caldera collapse in the formation of seafloor mineralization: The case of Brothers volcano, Geology, 47, 762–766, https://doi.org/10.1130/G46047.1, 2019.
Druitt, T., Kutterolf, S., and Höfig, T. W.: Expedition 398 Scientific Prospectus: Hellenic Arc Volcanic Field, International Ocean Discovery Program, https://doi.org/10.14379/iodp.sp.398.2022, 2022.
Ellis, S., Heise, W., Kissling, W., Villamor, P., and Schreurs, G.: The effect of crustal melt on rift dynamics: case study of the Taupo Volcanic Zone, New Zeal. J. Geol. Geop., 57, 453–458, https://doi.org/10.1080/00288306.2014.972961, 2014.
Erzinger, J., Wiersberg, T., and Zimmer, M.: Real-time mud gas logging and sampling during drilling, Geofluid, 6, 225–233, https://doi.org/10.1111/j.1468-8123.2006.00152.x, 2006.
Falkowski, P. G., Fenchel, T., and Delong, E. F.: The Microbial Engines That Drive Earth's Biogeochemical Cycles, Science, 320, 1034–1039, https://doi.org/10.1126/science.1153213, 2008.
Fournier, R. O.: Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment, Econ. Geol., 94, 1193–1211, https://doi.org/10.2113/gsecongeo.94.8.1193, 1999.
Freifeld, B. M., Trautz, R. C., Kharaka, Y. K., Phelps, T. J., Myer, L. R., Hovorka, S. D., and Collins, D. J.: The U-tube: A novel system for acquiring borehole fluid samples from a deep geologic CO2 sequestration experiment, J. Geophys. Res.-Sol. Ea., 110, B10203, https://doi.org/10.1029/2005JB003735, 2005.
Fullerton, K. M., Schrenk, M. O., Yücel, M., Manini, E., Basili, M., Rogers, T. J., Fattorini, D., Di Carlo, M., d'Errico, G., Regoli, F., Nakagawa, M., Vetriani, C., Smedile, F., Ramírez, C., Miller, H., Morrison, S. M., Buongiorno, J., Jessen, G. L., Steen, A. D., Martínez, M., de Moor, J. M., Barry, P. H., Giovannelli, D., and Lloyd, K. G.: Effect of tectonic processes on biosphere–geosphere feedbacks across a convergent margin, Nat. Geosci., 14, 301–306, https://doi.org/10.1038/s41561-021-00725-0, 2021.
Giggenbach, W. F.: Variations in the chemical and isotopic composition of fluids discharged from the Taupo Volcanic Zone, New Zealand, J. Volcanol. Geoth. Res., 68, 89–116, https://doi.org/10.1016/0377-0273(95)00009-J, 1995.
Gold, T.: The deep, hot biosphere, P. Natl. Acad. Sci. USA, 89, 6045–6049, https://doi.org/10.1073/pnas.89.13.6045, 1992.
Gottsmann, J., Carniel, R., Coppo, N., Wooller, L., Hautmann, S., and Rymer, H.: Oscillations in hydrothermal systems as a source of periodic unrest at caldera volcanoes: Multiparameter insights from Nisyros, Greece, Geophys. Res. Lett., 34, L07307, https://doi.org/10.1029/2007GL029594, 2007.
Grindley, G. W.: Geology and structure of Waiotapu geothermal field, New Zealand Department of Scientific and Industrial Research bulletin, 155, 10–25, 1963.
Hayba, D. O. and Ingebritsen, S. E.: Multiphase groundwater flow near cooling plutons, J. Geophys. Res.-Sol. Ea., 102, 12235–12252, https://doi.org/10.1029/97JB00552, 1997.
Heap, M. J. and Violay, M. E. S.: The mechanical behaviour and failure modes of volcanic rocks: a review, B. Volcanol., 83, 33, https://doi.org/10.1007/s00445-021-01447-2, 2021.
Heap, M. J., Troll, V. R., Kushnir, A. R. L., Gilg, H. A., Collinson, A. S. D., Deegan, F. M., Darmawan, H., Seraphine, N., Neuberg, J., and Walter, T. R.: Hydrothermal alteration of andesitic lava domes can lead to explosive volcanic behaviour, Nat. Commun., 10, 5063, https://doi.org/10.1038/s41467-019-13102-8, 2019.
Hikuroa, D.: Mātauranga Māori – the ūkaipō of knowledge in New Zealand, J. Roy. Soc. New Zeal., 47, 5–10, https://doi.org/10.1080/03036758.2016.1252407, 2017.
Hildreth, W.: The timing of caldera collapse at Mount Katmai in response to magma withdrawal toward Novarupta, Geophys. Res. Lett., 18, 1541–1544, https://doi.org/10.1029/91GL01083, 1991.
Hill, D. P., Pollitz, F., and Newhall, C.: Earthquake–volcano interactions, Phys. Today, 55, 41–47, https://doi.org/10.1063/1.1535006, 2002.
Hilley, G. E., Brodsky, E.E., Roman, D., Shillington, D. J., Brudzinski, M., Behn, M., Tobin, H., and the SZ4D RCN: SZ4D Implementation Plan, edited by: Hilley, G. E., Stanford Digital Repository, https://doi.org/10.25740/hy589fc7561, 2022.
Houghton, B. F., Wilson, C. J. N., McWilliams, M. O., Lanphere, M. A., Weaver, S. D., Briggs, R. M., and Pringle, M. S.: Chronology and dynamics of a large silicic magmatic system: Central Taupo Volcanic Zone, New Zealand, Geology, 23, 13–16, https://doi.org/10.1130/0091-7613(1995)023<0013:CADOAL>2.3.CO;2, 1995.
Hughes, E. C., Mazot, A., Kilgour, G., Asher, C., Michelini, M., Britten, K., Chardot, L., Feisel, Y., and Werner, C.: Understanding degassing pathways along the 1886 Tarawera (New Zealand) volcanic fissure by combining soil and lake CO2 fluxes, Front. Earth Sci., 7, 264, https://doi.org/10.3389/feart.2019.00264, 2019.
Hughes, G. R. and Mahood, G. A.: Silicic calderas in arc settings: Characteristics, distribution, and tectonic controls, Bulletin, 123, 1577–1595, https://doi.org/10.1130/B30232.1, 2011.
Hutnak, M., Hurwitz, S., Ingebritsen, S. E., and Hsieh, P. A.: Numerical models of caldera deformation: Effects of multiphase and multicomponent hydrothermal fluid flow, J. Geophys. Res.-Sol. Ea., 114, B04411, https://doi.org/10.1029/2008JB006151, 2009.
Ilic, O., Sigmundsson, F., Lavallée, Y., Mortensen, A. K., Eichelberger, J., Markusson, S. H., Papale, P., and Thordarson, T.: Geological Risk Associated with Drilling into Magma at Krafla Caldera, Iceland: Preliminary Evaluation, in: Proceedings of the World Geothermal Congress 2020+1, Reykjavik, Iceland and online, April–October 2021, International Geothermal Association, https://www.geothermal-energy.org/pdf/IGAstandard/WGC/2020/12145.pdf (last access: 18 March 2024), 2021.
Illsley-Kemp, F., Barker, S. J., Wilson, C. J. N., Chamberlain, C. J., Hreinsdóttir, S., Ellis, S., Hamling, I. J., Savage, M. K., Mestel, E. R. H., and Wadsworth, F. B.: Volcanic Unrest at Taupō Volcano in 2019: Causes, Mechanisms and Implications, Geochem., Geophy. Geosy. 22, e2021GC009803, https://doi.org/10.1029/2021GC009803, 2021.
Jolie, E., Klinkmueller, M., Moeck, I., and Bruhn, D.: Linking gas fluxes at Earth's surface with fracture zones in an active geothermal field, Geology, 44, 187–190, https://doi.org/10.1130/G37412.1, 2016.
Jolie, E., Scott, S., Faulds, J., Chambefort, I., Axelsson, G., Gutiérrez-Negrín, L. C., Regenspurg, S., Ziegler, M., Ayling, B., and Richter, A.: Geological controls on geothermal resources for power generation, Nat. Rev. Earth Environ., 2, 324–339, https://doi.org/10.1038/s43017-021-00154-y, 2021.
Kanakiya, S., Turner, G. M., Rowe, M. C., Adam, L., and Lindsay, J. M.: High remanent magnetization measured in hydrothermally altered lavas, Geophys. Res. Lett., 48, e2021GL095732, https://doi.org/10.1029/2021GL095732, 2021a.
Kanakiya, S., Adam, L., Rowe, M. C., Lindsay, J. M., and Esteban, L.: The role of tuffs in sealing volcanic conduits, Geophys. Res. Lett., 48, e2021GL095175, https://doi.org/10.1029/2021GL095175, 2021b.
Kennedy, B. M., Farquhar, A., Hilderman, R., Villeneuve, M. C., Heap, M. J., Mordensky, S., Kilgour, G., Jolly, Art., Christenson, B., and Reuschlé, T.: Pressure Controlled Permeability in a Conduit Filled with Fractured Hydrothermal Breccia Reconstructed from Ballistics from Whakaari (White Island), New Zealand, Geosciences, 10, 138, https://doi.org/10.3390/geosciences10040138, 2020.
Komori, S., Kagiyama, T., Takakura, S., Ohsawa, S., Mimura, M., and Mogi, T.: Effect of the hydrothermal alteration on the surface conductivity of rock matrix: comparative study between relatively-high and low temperature hydrothermal systems, J. Volcanol. Geoth. Res., 264, 164–171, https://doi.org/10.1016/j.jvolgeores.2013.08.009, 2013.
Kukutai, T., Campbell-Kamariera, K., Mead, A., Mikaere, K., Moses, C., Whitehead, J., and Cormack, D.: Māori data governance model, Te Kāhui Raraunga, https://tengira.waikato.ac.nz/__data/assets/pdf_file/0008/973763/Maori_Data_Governance_Model.pdf (last access: 18 March 2024), 2023.
Lahitte, P., Gillot, P.-Y., and Courtillot, V.: Silicic central volcanoes as precursors to rift propagation: the Afar case, Earth Planet Sci. Lett., 207, 103–116, https://doi.org/10.1016/S0012-821X(02)01130-5, 2003.
Lazrus, H., Maldonado, J., Blanchard, P., Souza, M. K., Thomas, B., and Wildcat, D.: Culture change to address climate change: Collaborations with Indigenous and Earth sciences for more just, equitable, and sustainable responses to our climate crisis, PLOS Climate, 1, e0000005, https://doi.org/10.1371/journal.pclm.0000005, 2022.
Linde, A. T. and Sacks, I. S.: Triggering of volcanic eruptions, Nature, 395, 888–890, https://doi.org/10.1038/27650, 1998.
Lithgow, R., Massiot, C., Bertrand, E., Heise, W., Miller, C. A., Bennie, S., Brakenrig, T., Coup, L., and Macdonald, N.: Interpretation of geophysical data from the eastern margin of the Okataina Volcanic Centre (Issue October), GNS Science, Lower Hutt, NZ, https://doi.org/10.21420/FPEK-CG53, 2022.
Lowenstern, J. B., Smith, R. B., and Hill, D. P.: Monitoring super-volcanoes: geophysical and geochemical signals at Yellowstone and other large caldera systems, Philos. t. roy. soc. A, 364, 2055–2072, https://doi.org/10.1098/rsta.2006.1813, 2006.
Lowenstern, J. B., Bergfeld, D., Evans, W. C., and Hunt, A. G.: Origins of geothermal gases at Yellowstone, J. Volcanol. Geoth. Res., 302, 87–101, https://doi.org/10.1016/j.jvolgeores.2015.06.010, 2015.
Lund, J. W., Huttrer, G. W., and Toth, A. N.: Characteristics and trends in geothermal development and use, 1995 to 2020, Geothermics, 105, 102522, https://doi.org/10.1016/j.geothermics.2022.102522, 2022.
Magnabosco, C., Lin, L. H., Dong, H., Bomberg, M., Ghiorse, W., Stan-Lotter, H., Pedersen, K., Kieft, T. L., van Heerden, E., and Onstott, T. C.: The biomass and biodiversity of the continental subsurface, Nat. Geosci., 11, 707–717, https://doi.org/10.1038/s41561-018-0221-6, 2018.
Mahony, S. H., Wallace, L. M., Miyoshi, M., Villamor, P., Sparks, R. S. J., and Hasenaka, T.: Volcano-tectonic interactions during rapid plate-boundary evolution in the Kyushu region, SW Japan, Bulletin, 123, 2201–2223, https://doi.org/10.1130/B30408.1, 2011.
Marzocchi, W.: Remote seismic influence on large explosive eruptions, J. Geophys. Res.-Sol. Ea., 107, EPM 6-1–EPM 6-7, https://doi.org/10.1029/2001JB000307, 2002.
Mazot, A., Schwandner, F. M., Christenson, B., De Ronde, C. E., Inguaggiato, S., Scott, B., Graham, D., Britten, K., Keeman, J., and Tan, K.: CO2 discharge from the bottom of volcanic Lake Rotomahana, New Zealand, Geochem. Geophy. Geosy., 15, 577–588, https://doi.org/10.1002/2013GC004945, 2014.
McNamara, D. D., Lister, A., and Prior, D. J.: Calcite sealing in a fractured geothermal reservoir: Insights from combined EBSD and chemistry mapping, J. Volcanol. Geoth. Res., 323, 38–52, https://doi.org/10.1016/j.jvolgeores.2016.04.042, 2016.
McNamara, D. D., Milicich, S. D., Massiot, C., Villamor, P., McLean, K., Sépulveda, F., and Ries, W. F.: Tectonic Controls on Taupo Volcanic Zone Geothermal Expression: Insights From Te Mihi, Wairakei Geothermal Field, Tectonics, 38, 3011–3033, https://doi.org/10.1029/2018TC005296, 2019.
Miller, C. A. and Jolly, A. D.: A model for developing best practice volcano monitoring: A combined threat assessment, consultation and network effectiveness approach, Nat. Hazards, 71, 493–522, https://doi.org/10.1007/s11069-013-0928-z, 2014.
Miller, C. A., Taylor-Offord, S., Sherburn, S., Magill, C. R., and Pastor-Paz, J.: Revised threat assessment of New Zealand's volcanoes, GNS Science, Lower Hutt (NZ), GNS Science report; 2022/41, 32 pp., https://doi.org/10.21420/AQWM-ZR12, 2022a.
Miller, C. A., Barretto, J., Stagpoole, V., Caratori-Tontini, F., Brakenrig, T., and Bertrand, E.: The integrated history of repeated caldera formation and infill at the Okataina Volcanic Centre: Insights from 3D gravity and magnetic models, J. Volcanol. Geoth. Res., 427, 107555, https://doi.org/10.1016/j.jvolgeores.2022.107555, 2022b.
Mordensky, S. P., Villeneuve, M. C., Farquharson, J. I., Kennedy, B. M., Heap, M. J., and Gravley, D. M.: Rock mass properties and edifice strength data from Pinnacle Ridge, Mt. Ruapehu, New Zealand, J. Volcanol. Geoth. Res., 367, 46–62, https://doi.org/10.1016/j.jvolgeores.2018.09.012, 2018.
Mordensky, S. P., Heap, M. J., Kennedy, B. M., Gilg, H. A., Villeneuve, M. C., Farquharson, J. I., and Gravley, D. M.: Influence of alteration on the mechanical behaviour and failure mode of andesite: implications for shallow seismicity and volcano monitoring, B. Volcanol., 81, 1–12, https://doi.org/10.1007/s00445-019-1306-9, 2019.
Morgavi, D., Arienzo, I., Montagna, C., Perugini, D., and Dingwell, D. B.: Magma mixing: history and dynamics of an eruption trigger, in: Volcanic Unrest, edited by: Gottsmann, J., Neuberg, J., and Scheu, B., Springer Open, 123–137, https://doi.org/10.1007/978-3-319-58412-6, 2017.
Mosser, J. L., Mosser, A. G., and Brock, T. D.: Bacterial origin of sulfuric acid in geothermal habitats, Science, 179, 1323–1324, https://doi.org/10.1126/science.179.4080.1323, 1973.
Mu, A. and Moreau, J. W.: The geomicrobiology of CO2 geosequestration: a focused review on prokaryotic community responses to field-scale CO2 injection, Front. Microbiol., 6, 263, https://doi.org/10.3389/fmicb.2015.00263, 2015.
Muirhead, J. D., Illsley-Kemp, F., Barker, S. J., Villamor, P., Wilson, C. J. N., Otway, P., Mestel, E. R. H., Leonard, G. S., Ellis, S., Savage, M. K., Bannister, S., Rowland, J. V, Townsend, D., Hamling, I. J., Hreinsdóttir, S., Smith, B., McGregor, R., Snowden, M., and Shalla, Y.: Stretching, Shaking, Inflating: Volcanic-Tectonic Interactions at a Rifting Silicic Caldera, Front. Earth Sci., 10, 835841, https://doi.org/10.3389/feart.2022.835841, 2022.
Nairn, I. A.: Geology of the Okataina Volcanic Centre, scale 1 : 50 000, Institute of Geological and Nuclear Sciences Limited, ISBN 0478097182, 2002.
New Zealand Active Faults Database: 2003–, GNS Science, Lower Hutt (NZ), http://gns.cri.nz/Home/Products/Databases/Active-Faults-Database-of-New-Zealand (last access: 22 September 2023), 2003.
Nicolas, A., Lévy, L., Sissmann, O., Li, Z., Fortin, J., Gibert, B., and Sigmundsson, F.: Influence of hydrothermal alteration on the elastic behaviour and failure of heat-treated andesite from Guadeloupe, Geophys. J. Int., 223, 2038–2053, https://doi.org/10.1093/gji/ggaa437, 2020.
Nordstrom, D. K., Ball, J. W., and McCleskey, R. B.: Ground water to surface water: chemistry of thermal outflows in Yellowstone National Park, Geothermal biology and geochemistry in Yellowstone National Park, Open File Report, Montana State University, Bozeman, Montana, USA, 73–94, https://pubs.usgs.gov/publication/70198852 (last access: 18 March 2024), 2005.
Norini, G., Carrasco-Núñez, G., Corbo-Camargo, F., Lermo, J., Rojas, J. H., Castro, C., Bonini, M., Montanari, D., Corti, G., Moratti, G., Piccardi, L., Chavez, G., Zuluaga, M. C., Ramirez, M., and Cedillo, F.: The structural architecture of the Los Humeros volcanic complex and geothermal field, J. Volcanol. Geoth. Res., 381, 312–329, https://doi.org/10.1016/j.jvolgeores.2019.06.010, 2019.
Oliva, S. J., Ebinger, C. J., Wauthier, C., Muirhead, J. D., Roecker, S. W., Rivalta, E., and Heimann, S.: Insights into fault-magma interactions in an early-stage continental rift from source mechanisms and correlated volcano-tectonic earthquakes, Geophys. Res. Lett., 46, 2065–2074, https://doi.org/10.1029/2018GL080866, 2019.
Payne, D., Dunham, E. C., Mohr, E., Miller, I., Arnold, A., Erickson, R., Fones, E. M., Lindsay, M. R., Colman, D. R., and Boyd, E. S.: Geologic legacy spanning > 90 years explains unique Yellowstone hot spring geochemistry and biodiversity, Environ. Microbiol., 21, 4180–4195, https://doi.org/10.1111/1462-2920.14775, 2019.
Pearson-Grant, S., Miller, C. A., Carson, L. B., Bertrand, E. A., and Leonard, G. S.: Influences on geothermal circulation in the Okataina Volcanic Centre, New Zealand, J. Volcanol. Geoth. Res., 432, 107705, https://doi.org/10.1016/j.jvolgeores.2022.107705, 2022.
Plag, H. P., Brocklebank, S., Brosnan, D., Campus, P., Cloetingh, S., Jules-Plag, S., and Stein, S.: Extreme Geohazards: Reducing Disaster Risk and Increasing Resilience, European Science Fundation, 72 pp., ISBN 978-2-36873-197-0, http://archives.esf.org/fileadmin/Public_documents/Publications/Natural_Hazards.pdf (last access: 18 March 2024), 2015.
Pola, A., Crosta, G. B., Fusi, N., and Castellanza, R.: General characterization of the mechanical behaviour of different volcanic rocks with respect to alteration, Eng. Geol., 169, 1–13, https://doi.org/10.1016/j.enggeo.2013.11.011, 2014.
Polom, U., Mueller, C., Nicol, A., Villamor, P., Langridge, R. M., and Begg, J. G.: Finding the Concealed Section of the Whakatane Fault in the Whakatane Township with a Shear Wave Land Streamer System: A Seismic Surveying Report, Institute of Geological & Nuclear Sciences, ISBN 978-0-947510-76-3, 2016.
Power, J. F., Carere, C. R., Lee, C. K., Wakerley, G. L. J., Evans, D. W., Button, M., White, D., Climo, M. D., Hinze, A. M., and Morgan, X. C.: Microbial biogeography of 925 geothermal springs in New Zealand, Nat. Commun., 9, 2876, https://doi.org/10.1038/s41467-018-05020-y, 2018.
Power, J. F., Lowe, C. L., Carere, C. R., McDonald, I. R., Cary, S. C., and Stott, M. B.: Temporal dynamics of geothermal microbial communities in Aotearoa-New Zealand, Front. Microbiol., 14, 1094311, https://doi.org/10.3389/fmicb.2023.1094311, 2023.
Power, J. F., Carere, C. R., Welford, H. E., Hudson, D. T., Lee, K. C., Moreau, J. W., Ettema, T. J., Reysenbach, A. L., Lee, C. K., Colman, D. R., and Boyd, E. S.: A genus in the bacterial phylum Aquificota appears to be endemic to Aotearoa-New Zealand, Nat. Commun., 15, 179, https://doi.org/10.1038/s41467-023-43960-2, 2024.
Rosenberg, M. D., Wilson, C. J. N., Bignall, G., Ireland, T. R., Sepulveda, F., and Charlier, B. L. A.: Structure and evolution of the Wairakei–Tauhara geothermal system (Taupo Volcanic Zone, New Zealand) revisited with a new zircon geochronology, J. Volcanol. Geoth. Res., 390, 106705, https://doi.org/10.1016/j.jvolgeores.2019.106705, 2020.
Rowe, M. C., Carey, R. J., White, J. D. L., Kilgour, G., Hughes, E., Ellis, B., Rosseel, J.-B., and Segovia, A.: Tarawera 1886: an integrated review of volcanological and geochemical characteristics of a complex basaltic eruption, New Zeal. J. Geol. Geop., 64, 296–319, https://doi.org/10.1080/00288306.2021.1914118, 2021.
Rowland, J. V. and Simmons, S. F.: Hydrologic, magmatic, and tectonic controls on hydrothermal flow, Taupo Volcanic Zone, New Zealand: Implications for the formation of epithermal vein deposits, Econ. Geol., 107, 427–457, https://doi.org/10.2113/econgeo.107.3.427, 2012.
Rowland, J. V., Wilson, C. J. N., and Gravley, D. M.: Spatial and temporal variations in magma-assisted rifting, Taupo Volcanic Zone, New Zealand, J. Volcanol. Geoth. Res., 190, 89–108, https://doi.org/10.1016/j.jvolgeores.2009.05.004, 2010.
Ruz-Ginouves, J., Gerbault, M., Cembrano, J., Iturrieta, P., Leiva, F. S., Novoa, C., and Hassani, R.: The interplay of a fault zone and a volcanic reservoir from 3D elasto-plastic models: Rheological conditions for mutual trigger based on a field case from the Andean Southern Volcanic Zone, J. Volcanol. Geoth. Res., 418, 107317, https://doi.org/10.1016/j.jvolgeores.2021.107317, 2021.
Sanderson, D. J. and Nixon, C. W.: The use of topology in fracture network characterization, J. Struct. Geol., 72, 55–66, https://doi.org/10.1016/j.jsg.2015.01.005, 2015.
Scarpa, R., Bianco, F., Capuano, P., Castellano, M., D'Auria, L., Di Lieto, B., and Romano, P.: Historic unrest of the Campi Flegrei Caldera, Italy, in: Campi Flegrei: A Restless Caldera in a Densely Populated Area, edited by: Orsi, G., D'Antonio, M., and Civetta, L., Springer, Berlin, Heidelberg, 257–282, https://doi.org/10.1007/978-3-642-37060-1_10, 2022.
Scott, S., Driesner, T., and Weis, P.: Geologic controls on supercritical geothermal resources above magmatic intrusions, Nat. Commun., 6, 7837, https://doi.org/10.1038/ncomms8837, 2015.
Self, S.: The effects and consequences of very large explosive volcanic eruptions, Philos. T. Roy. Soc. A, 364, 2073–2097, https://doi.org/10.1098/rsta.2006.1814, 2006.
Shapiro, N. M., Droznin, D. V, Droznina, S. Y., Senyukov, S. L., Gusev, A. A., and Gordeev, E. I.: Deep and shallow long-period volcanic seismicity linked by fluid-pressure transfer, Nat. Geosci., 10, 442–445, https://doi.org/10.1038/ngeo2952, 2017.
Sherburn, S., Bromley, C., Bannister, S., Sewell, S. M., and Bourguignon, S.: New Zealand Geothermal Induced Seismicity: an overview, in: Proceedings World Geothermal Congress 2015, Melbourne, Australia, 19–25 April 2015, edited by: Horne, R. and Boyd, T., International Geothermal Association, 24009, 9 pp., https://pangea.stanford.edu/ERE/db/WGC/papers/WGC/2015/24009.pdf (last access: 18 March 2024), 2015a.
Sherburn, S., Sewell, S. M., Bourguignon, S., Cumming, W., Bannister, S., Bardsley, C., Winick, J., Quinao, J., and Wallis, I. C.: Microseismicity at Rotokawa geothermal field, New Zealand, 2008—2012, Geothermics, 54, 23–34, https://doi.org/10.1016/j.geothermics.2014.11.001, 2015b.
Sibson, R. H.: Fluid involvement in normal faulting, J. Geodyn., 29, 469–499, https://doi.org/10.1016/S0264-3707(99)00042-3, 2000.
Simmons, S. F., Brown, K. L., Browne, P. R. L., and Rowland, J. V.: Gold and silver resources in Taupo Volcanic Zone geothermal systems, Geothermics, 59, 205–214, https://doi.org/10.1016/j.geothermics.2015.07.009, 2016.
Simpson, M. P. and Bignall, G.: Undeveloped high-enthalpy geothermal fields of the Taupo Volcanic Zone, New Zealand, Geothermics, 59, 325–346, https://doi.org/10.1016/j.geothermics.2015.08.006, 2016.
Somr, M., Žák, J., Kabele, P., and Tomek, F.: Analysis of fracturing processes leading to caldera collapse, Earth Sci. Rev., 241, 104413, https://doi.org/10.1016/j.earscirev.2023.104413, 2023.
Sparks, R. S. J.: Forecasting volcanic eruptions, Earth Planet. Sci. Lett., 210, 1–15, https://doi.org/10.1016/S0012-821X(03)00124-9, 2003.
Sparks, R. S. J., Blundy, J. D., Cashman, K. V., Jackson, M., Rust, A., and Wilson, C. J. N.: Large silicic magma bodies and very large magnitude explosive eruptions, B. Volcanol., 84, 4–9, https://doi.org/10.1007/s00445-021-01510-y, 2022.
Stagpoole, V., Miller, C., Caratori Tontini, F., Brakenrig, T., and Macdonald, N.: A two million-year history of rifting and caldera volcanism imprinted in new gravity anomaly compilation of the Taupō Volcanic Zone, New Zealand, New Zeal. J. Geol. Geop., 64, 358–371, https://doi.org/10.1080/00288306.2020.1848882, 2021.
Stein, R. S.: The role of stress transfer in earthquake occurrence, Nature, 402, 605–609, https://doi.org/10.1038/45144, 1999.
Stone, J., Edgar, J. O., Gould, J. A., and Telling, J.: Tectonically-driven oxidant production in the hot biosphere, Nat. Commun., 13, 4529, https://doi.org/10.1038/s41467-022-32129-y, 2022.
Taute, N., Morgan, K., Ingham, J., Archer, R., and Fa'aui, T.: Māori values in geothermal management and development, AlterNative, 18, 548–555, https://doi.org/10.1177/11771801221118629, 2022.
Telling, J., Boyd, E. S., Bone, N., Jones, E. L., Tranter, M., MacFarlane, J. W., Martin, P. G., Wadham, J. L., Lamarche-Gagnon, G., Skidmore, M. L., Hamilton, T. L., Hill, E., Jackson, M., and Hodgson, D. A.: Rock comminution as a source of hydrogen for subglacial ecosystems, Nat. Geosci., 8, 851–855, https://doi.org/10.1038/ngeo2533, 2015.
Templeton, A. S. and Caro, T. A.: The Rock-Hosted Biosphere, Annu. Rev. Earth Planet. Sci., 51, 493–519, https://doi.org/10.1146/annurev-earth-031920-081957, 2023.
Uno, M., Koyanagawa, K., Kasahara, H., Okamoto, A., and Tsuchiya, N.: Volatile-consuming reactions fracture rocks and self-accelerate fluid flow in the lithosphere, P. Natl. Acad. Sci. USA, 119, e2110776118, https://doi.org/10.1073/pnas.2110776118, 2022.
van Wyk de Vries, B. and Merle, O.: The effect of volcanic constructs on rift fault patterns, Geology, 24, 643–646, https://doi.org/10.1130/0091-7613(1996)024<0643:TEOVCO>2.3.CO;2, 1996.
Villamor, B. P., Litchfield, N. J., Gómez-Ortiz, D., Martin-González, F., Alloway, B. V, Berryman, K. R., Clark, K. J., Ries, W. F., Howell, A., and Ansell, I. A.: Fault ruptures triggered by large rhyolitic eruptions at the boundary between tectonic and magmatic rift segments: The Manawahe Fault, Taupō Rift, New Zealand, J. Volcanol. Geoth. Res., 427, 107478, https://doi.org/10.1016/j.jvolgeores.2022.107478, 2022.
Villamor, P., Berryman, K. R., Nairn, I. A., Wilson, K., Litchfield, N., and Ries, W.: Associations between volcanic eruptions from Okataina volcanic center and surface rupture of nearby active faults, Taupo rift, New Zealand: Insights into the nature of volcano-tectonic interactions, GSA Bull., 123, 1383–1405, https://doi.org/10.1130/B30184.1, 2011.
Villamor, P., Berryman, K. R., Ellis, S. M., Schreurs, G., Wallace, L. M., Leonard, G. S., Langridge, R. M., and Ries, W. F.: Rapid Evolution of Subduction-Related Continental Intraarc Rifts: The Taupo Rift, New Zealand, Tectonics, 36, 2250–2272, https://doi.org/10.1002/2017TC004715, 2017a.
Villamor, P., Nicol, A., Seebeck, H., Townsend, D., Massiot, C., McNamara, D., Ries, W., Rowland, J., Milicich, S., and Alcaraz, S.: Tectonic structure and permeability in the Taupō rift: New insights from analysis of LIDAR derived DEMs, in: Proceedings 39th New Zealand Geothermal Workshop, 22–24 November 2017, Rotorua, New Zealand, University of Auckland, New Zealand, https://www.geothermal-energy.org/pdf/IGAstandard/NZGW/2017/025_Villamor-Final_.pdf (last access: 18 March 2024), 2017b.
Walter, T. R. and Amelung, F.: Volcanic eruptions following M ≥ 9 megathrust earthquakes: Implications for the Sumatra-Andaman volcanoes, Geology, 35, 539–542, https://doi.org/10.1130/G23429A.1, 2007.
Wankel, S. D., Germanovich, L. N., Lilley, M. D., Genc, G., DiPerna, C. J., Bradley, A. S., Olson, E. J., and Girguis, P. R.: Influence of subsurface biosphere on geochemical fluxes from diffuse hydrothermal fluids, Nat. Geosci., 4, 461–468, https://doi.org/10.1038/ngeo1183, 2011.
Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., Gonzalez-Beltran, A., Gray, A. J. G., Groth, P., Goble, C., Grethe, J. S., Heringa, J., 't Hoen, P. A. C., Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons, A., Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R., Sansone, S.-A., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz, M. A., Thompson, M., van der Lei, J., van Mulligen, E., Velterop, J., Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., and Mons, B.: The FAIR Guiding Principles for scientific data management and stewardship, Sci. Data, 3, 160018, https://doi.org/10.1038/sdata.2016.18, 2016.
Wilson, C. J. N. and Rowland, J. V.: The volcanic, magmatic and tectonic setting of the Taupo Volcanic Zone, New Zealand, reviewed from a geothermal perspective, Geothermics, 59, 168–187, https://doi.org/10.1016/j.geothermics.2015.06.013, 2016.
Wilson, C. J. N., Houghton, B. F., McWilliams, M. O., Lanphere, M. A., Weaver, S. D., and Briggs, R. M.: Volcanic and structural evolution of Taupo Volcanic Zone, New Zealand: a review, J. Volcanol. Geoth. Res., 68, 1–28, https://doi.org/10.1016/0377-0273(95)00006-G, 1995.
Wilson, C. J., Gravley, D. M., Leonard, G. S., and Rowland, J. V.: Volcanism in the central Taupo Volcanic Zone, New Zealand: tempo, styles and controls, Studies in volcanology: the legacy of George Walker, Special Publications of IAVCEI, 2, 225–247, 2009.
Wilson, C. J. N., Cooper, G. F., Chamberlain, K. J., Barker, S. J., Myers, M. L., Illsley-Kemp, F., and Farrell, J.: No single model for supersized eruptions and their magma bodies, Nat. Rev. Earth Environ., 2, 610–627, https://doi.org/10.1038/s43017-021-00191-7, 2021.
Wyering, L. D., Villeneuve, M. C., Wallis, I. C., Siratovich, P., Kennedy, B. M., Gravley, D. M., and Cant, J. L.: Mechanical and physical properties of hydrothermally altered rocks, Taupo Volcanic Zone, New Zealand, J. Volcanol. Geoth. Res., 288, 76–93, https://doi.org/10.1016/j.jvolgeores.2014.10.008, 2014.
Yang, T. H. J., Chambefort, I., Mazot, A., Rowe, M. C., Scott, B., Macdonald, N., Werner, C., Fischer, T. P., and de Ronde, C. E.: Understanding caldera degassing from a detailed investigation at Lake Rotoiti, Okataina Volcanic Centre, New Zealand, J. Volcanol. Geoth. Res., 433, 107716, https://doi.org/10.1016/j.jvolgeores.2022.107716, 2023.
Zhan, Y. and Gregg, P. M.: How accurately can we model magma reservoir failure with uncertainties in host rock rheology?. J. Geophys. Res.-Sol. Ea., 124, 8030–8042, https://doi.org/10.1029/2019JB018178, 2019.
Zucchi, M., Brogi, A., Liotta, D., Rimondi, V., Ruggieri, G., Montegrossi, G., Caggianelli, A., and Dini, A.: Permeability and hydraulic conductivity of faulted micaschist in the eastern Elba Island exhumed geothermal system (Tyrrhenian sea, Italy): insights from Cala Stagnone, Geothermics, 70, 125–145, https://doi.org/10.1016/j.geothermics.2017.05.007, 2017.
Short summary
Volcanoes where tectonic plates drift apart pose eruption and earthquake hazards. Underground waters are difficult to track. Underground microbial life is probably plentiful but unexplored. Scientists discussed the idea of drilling two boreholes in the Okataina Volcanic Centre, New Zealand, to unravel the connections between volcano, faults, geotherms, and the biosphere, also integrating mātauranga Māori (Indigenous knowledge) to assess hazards and manage resources and microbial ecosystems.
Volcanoes where tectonic plates drift apart pose eruption and earthquake hazards. Underground...