Trans-Amazon Drilling Project (TADP): origins and evolution of the forests, climate, and hydrology of the South American tropics
P. A. Baker
CORRESPONDING AUTHOR
Earth and Ocean Sciences, Duke University, Durham, NC 27708, USA
Yachay Tech University, San Miguel de Urcuquí, Imbabura, Ecuador
S. C. Fritz
Earth and Atmospheric Sciences, University of Nebraska – Lincoln, Lincoln, NE 68588-0340, USA
C. G. Silva
Departamento de Geologia, Universidade Federal Fluminense, Niterói, Brazil
C. A. Rigsby
Yachay Tech University, San Miguel de Urcuquí, Imbabura, Ecuador
Department of Geological Sciences, East Carolina University, Greenville, NC, USA
M. L. Absy
Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
R. P. Almeida
School of Arts, Sciences and Humanities, Universidade de São Paulo, São Paulo, Brazil
M. Caputo
Geoarte Consultoria Geológica e Artística Ltda, Belém, Brazil
C. M. Chiessi
School of Arts, Sciences and Humanities, Universidade de São Paulo, São Paulo, Brazil
F. W. Cruz
School of Arts, Sciences and Humanities, Universidade de São Paulo, São Paulo, Brazil
C. W. Dick
Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
S. J. Feakins
Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
J. Figueiredo
OGX Oil and Gas, Brazil
K. H. Freeman
Department of Geosciences, Pennsylvania State University, State College, PA, USA
Institute for Biodiversity and Ecosytem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
C. Jaramillo
Smithsonian Tropical Research Institute, Panama City, Panama
A. K. Kern
School of Arts, Sciences and Humanities, Universidade de São Paulo, São Paulo, Brazil
E. M. Latrubesse
Department of Geography, University of Texas, Austin, TX, USA
M. P. Ledru
Institut de Recherche pour le Développement, Université de Montpellier, Montpellier, France
A. Marzoli
Dipartimento di Geoscienze, Universitá Degli Studi di Padova, Padua, Italy
A. Myrbo
Limnological Research Center, University of Minnesota – Twin Cities, Minneapolis, MN, USA
Limnological Research Center, University of Minnesota – Twin Cities, Minneapolis, MN, USA
W. E. Piller
Institute of Earth Sciences, Universität Graz, Graz, Austria
M. I. F. Ramos
Museu Paraense Emílio Goeldi, Pára, Brazil
C. C. Ribas
Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
R. Trnadade
Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
A. J. West
Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
I. Wahnfried
Departamento de Geociências, Universidade Federal do Amazonas, Manaus, Brazil
D. A. Willard
US Geological Survey, Reston, VA, USA
Related authors
No articles found.
Thomas Kenji Akabane, Cristiano Mazur Chiessi, Paulo Eduardo De Oliveira, Jennifer Watling, Ana Carolina Carnaval, Vincent Hanquiez, Dailson José Bertassoli Jr., Thaís Aparecida Silva, Marília H. Shimizu, and Anne-Laure Daniau
EGUsphere, https://doi.org/10.5194/egusphere-2025-1424, https://doi.org/10.5194/egusphere-2025-1424, 2025
Short summary
Short summary
Vegetation and fire regimes have changed over the last 21,000 years. Here, we compile pollen and charcoal records from the Neotropics to assess tree cover and fire activity trajectories and identify their main controls. We found that landscapes were shaped by an interplay of temperature, atmospheric CO2, precipitation, vegetation-fire feedback, and human impacts. These drivers varied in importance across regions and time periods, leading to distinct responses under different boundary conditions.
Biagio Giaccio, Bernd Wagner, Giovanni Zanchetta, Adele Bertini, Gian Paolo Cavinato, Roberto de Franco, Fabio Florindo, David A. Hodell, Thomas A. Neubauer, Sebastien Nomade, Alison Pereira, Laura Sadori, Sara Satolli, Polychronis C. Tzedakis, Paul Albert, Paolo Boncio, Cindy De Jonge, Alexander Francke, Christine Heim, Alessia Masi, Marta Marchegiano, Helen M. Roberts, Anders Noren, and the MEME team
Sci. Dril., 33, 249–266, https://doi.org/10.5194/sd-33-249-2024, https://doi.org/10.5194/sd-33-249-2024, 2024
Short summary
Short summary
A total of 42 Earth scientists from 14 countries met in Gioia dei Marsi, central Italy, on 23 to 27 October 2023 to explore the potential for deep drilling of the thick lake sediment sequence of the Fucino Basin. The aim was to reconstruct the history of climate, ecosystem, and biodiversity changes and of the explosive volcanism and tectonics in central Italy over the last 3.5 million years, constrained by a detailed radiometric chronology.
Arianna V. Del Gaudio, Aaron Avery, Gerald Auer, Werner E. Piller, and Walter Kurz
Clim. Past, 20, 2237–2266, https://doi.org/10.5194/cp-20-2237-2024, https://doi.org/10.5194/cp-20-2237-2024, 2024
Short summary
Short summary
The Benguela Upwelling System is a region in the SE Atlantic Ocean of high biological productivity. It comprises several water masses such as the Benguela Current, South Atlantic Central Water, and Indian Ocean Agulhas waters. We analyzed planktonic foraminifera from IODP Sites U1575 and U1576 to characterize water masses and their interplay in the Pleistocene. This defined changes in the local thermocline, which were linked to long-term Benguela Niño- and Niña-like and deglaciation events.
Jonathan M. G. Stine, Joshua M. Feinberg, Adam K. Huttenlocker, Randall B. Irmis, Declan Ramirez, Rashida Doctor, John McDaris, Charles M. Henderson, Michael T. Read, Kristina Brady Shannon, Anders Noren, Ryan O'Grady, Ayva Sloo, Patrick Steury, Diego P. Fernandez, Amy C. Henrici, and Neil J. Tabor
Sci. Dril., 33, 109–128, https://doi.org/10.5194/sd-33-109-2024, https://doi.org/10.5194/sd-33-109-2024, 2024
Short summary
Short summary
We present initial results from the upper 450 m of ER-1, a legacy core collected from modern-day Bears Ears National Monument, Utah, USA. This section contains a relatively complete record of Upper Carboniferous to Early Permian sediments, providing a unique window on Earth's last icehouse–hothouse transition. Ongoing research will tie our results to important fossil sites, allowing us to better understand how this climate shift contributed to the evolution of terrestrial life.
Catherine C. Beck, Melissa Berke, Craig S. Feibel, Verena Foerster, Lydia Olaka, Helen M. Roberts, Christopher A. Scholz, Kat Cantner, Anders Noren, Geoffery Mibei Kiptoo, James Muirhead, and the Deep Drilling in the Turkana Basin (DDTB) project team
Sci. Dril., 33, 93–108, https://doi.org/10.5194/sd-33-93-2024, https://doi.org/10.5194/sd-33-93-2024, 2024
Short summary
Short summary
The Deep Drilling in the Turkana Basin project seeks to determine the relative impacts of tectonics and climate on eastern African ecosystems. To organize goals for coring, we hosted a workshop in Nairobi, Kenya, which focused on how a 4 Myr sedimentary core from Turkana will uniquely address research objectives related to basin evolution, past climates and environments, and modern resources. We concluded that a Pliocene to modern record is best accomplished through a two-phase drilling project.
Nico Wunderling, Anna S. von der Heydt, Yevgeny Aksenov, Stephen Barker, Robbin Bastiaansen, Victor Brovkin, Maura Brunetti, Victor Couplet, Thomas Kleinen, Caroline H. Lear, Johannes Lohmann, Rosa Maria Roman-Cuesta, Sacha Sinet, Didier Swingedouw, Ricarda Winkelmann, Pallavi Anand, Jonathan Barichivich, Sebastian Bathiany, Mara Baudena, John T. Bruun, Cristiano M. Chiessi, Helen K. Coxall, David Docquier, Jonathan F. Donges, Swinda K. J. Falkena, Ann Kristin Klose, David Obura, Juan Rocha, Stefanie Rynders, Norman Julius Steinert, and Matteo Willeit
Earth Syst. Dynam., 15, 41–74, https://doi.org/10.5194/esd-15-41-2024, https://doi.org/10.5194/esd-15-41-2024, 2024
Short summary
Short summary
This paper maps out the state-of-the-art literature on interactions between tipping elements relevant for current global warming pathways. We find indications that many of the interactions between tipping elements are destabilizing. This means that tipping cascades cannot be ruled out on centennial to millennial timescales at global warming levels between 1.5 and 2.0 °C or on shorter timescales if global warming surpasses 2.0 °C.
Sina Loriani, Yevgeny Aksenov, David Armstrong McKay, Govindasamy Bala, Andreas Born, Cristiano M. Chiessi, Henk Dijkstra, Jonathan F. Donges, Sybren Drijfhout, Matthew H. England, Alexey V. Fedorov, Laura Jackson, Kai Kornhuber, Gabriele Messori, Francesco Pausata, Stefanie Rynders, Jean-Baptiste Salée, Bablu Sinha, Steven Sherwood, Didier Swingedouw, and Thejna Tharammal
EGUsphere, https://doi.org/10.5194/egusphere-2023-2589, https://doi.org/10.5194/egusphere-2023-2589, 2023
Short summary
Short summary
In this work, we draw on paleoreords, observations and modelling studies to review tipping points in the ocean overturning circulations, monsoon systems and global atmospheric circulations. We find indications for tipping in the ocean overturning circulations and the West African monsoon, with potentially severe impacts on the Earth system and humans. Tipping in the other considered systems is considered conceivable but currently not sufficiently supported by evidence.
Mathias Harzhauser, Oleg Mandic, and Werner E. Piller
Biogeosciences, 20, 4775–4794, https://doi.org/10.5194/bg-20-4775-2023, https://doi.org/10.5194/bg-20-4775-2023, 2023
Short summary
Short summary
Bowl-shaped spirorbid microbialite bioherms formed during the late Middle Miocene (Sarmatian) in the central Paratethys Sea under a warm, arid climate. The microbialites and the surrounding sediment document a predominance of microbial activity in the shallow marine environments of the sea at that time. Modern microbialites are not analogues for these unique structures, which reflect a series of growth stages with an initial “start-up stage”, massive “keep-up stage” and termination of growth.
Emily I. Burt, Gregory R. Goldsmith, Roxanne M. Cruz-de Hoyos, Adan Julian Ccahuana Quispe, and A. Joshua West
Hydrol. Earth Syst. Sci., 27, 4173–4186, https://doi.org/10.5194/hess-27-4173-2023, https://doi.org/10.5194/hess-27-4173-2023, 2023
Short summary
Short summary
When it rains, water remains in the ground for variable amounts of time before it is taken up by plants or becomes streamflow. Understanding how long water stays in the ground before it is taken up by plants or becomes streamflow helps predict what will happen to the water cycle in future climates. Some studies suggest that plants take up water that has been in the ground for a long time; in contrast, we find that plants take up a significant amount of recent rain.
Gerald Auer, Or M. Bialik, Mary-Elizabeth Antoulas, Noam Vogt-Vincent, and Werner E. Piller
Clim. Past, 19, 2313–2340, https://doi.org/10.5194/cp-19-2313-2023, https://doi.org/10.5194/cp-19-2313-2023, 2023
Short summary
Short summary
We provided novel insights into the behaviour of a major upwelling cell between 15 and 8.5 million years ago. To study changing conditions, we apply a combination of geochemical and paleoecological parameters to characterize the nutrient availability and subsequent utilization by planktonic primary producers. These changes we then juxtapose with established records of contemporary monsoon wind intensification and changing high-latitude processes to explain shifts in the plankton community.
Jonathan Obrist-Farner, Andreas Eckert, Peter M. J. Douglas, Liseth Perez, Alex Correa-Metrio, Bronwen L. Konecky, Thorsten Bauersachs, Susan Zimmerman, Stephanie Scheidt, Mark Brenner, Steffen Kutterolf, Jeremy Maurer, Omar Flores, Caroline M. Burberry, Anders Noren, Amy Myrbo, Matthew Lachniet, Nigel Wattrus, Derek Gibson, and the LIBRE scientific team
Sci. Dril., 32, 85–100, https://doi.org/10.5194/sd-32-85-2023, https://doi.org/10.5194/sd-32-85-2023, 2023
Short summary
Short summary
In August 2022, 65 scientists from 13 countries gathered in Antigua, Guatemala, for a workshop, co-funded by the US National Science Foundation and the International Continental Scientific Drilling Program. This workshop considered the potential of establishing a continental scientific drilling program in the Lake Izabal Basin, eastern Guatemala, with the goals of establishing a borehole observatory and investigating one of the longest continental records from the northern Neotropics.
Thiago F. Toniolo, Juliana M. Leme, Dermeval A. Carmo, Thomas R. Fairchild, Luana Morais, and Ricardo I. F. Trindade
J. Micropalaeontol., 42, 83–93, https://doi.org/10.5194/jm-42-83-2023, https://doi.org/10.5194/jm-42-83-2023, 2023
Short summary
Short summary
The early fossils of animals with an exoskeleton witness a key episode in the evolution of life. These fossils, such as the cloudinids, have tubular shapes and an uncertain affinity. The reaction between H2O2 and pyrite can lead to the generation of objects very similar to these fossils. For this reason, the method of rock preparation is a cause for concern. Besides discussing methodology, this work provides criteria to distinguish artifacts from fossils based on their composition and structure.
Emily I. Burt, Daxs Herson Coayla Rimachi, Adan Julian Ccahuana Quispe, Abra Atwood, and A. Joshua West
Hydrol. Earth Syst. Sci., 27, 2883–2898, https://doi.org/10.5194/hess-27-2883-2023, https://doi.org/10.5194/hess-27-2883-2023, 2023
Short summary
Short summary
Mountains store and release water, serving as water towers for downstream regions and affecting global sediment and carbon fluxes. We use stream and rain chemistry to calculate how much streamflow comes from recent rainfall across seven sites in the Andes mountains and the nearby Amazon lowlands. We find that the type of rock and the intensity of rainfall control water retention and release, challenging assumptions that mountain topography exerts the primary effect on watershed hydrology.
Maxwell P. Dahlquist and A. Joshua West
Earth Surf. Dynam., 10, 705–722, https://doi.org/10.5194/esurf-10-705-2022, https://doi.org/10.5194/esurf-10-705-2022, 2022
Short summary
Short summary
Himalayan rivers are full of giant boulders that rarely move except during glacial lake outburst floods (GLOFs), which therefore must be important drivers of erosion in the Himalayas. GLOFs are rare, so little is known about their long-term erosional impact. We found that rivers in Nepal have channel geometry that, compared with markers of upstream glaciation, confirm GLOFs as a major control on erosion. This previously unrecognized control should be accounted for in landscape evolution studies.
Stefan Mulitza, Torsten Bickert, Helen C. Bostock, Cristiano M. Chiessi, Barbara Donner, Aline Govin, Naomi Harada, Enqing Huang, Heather Johnstone, Henning Kuhnert, Michael Langner, Frank Lamy, Lester Lembke-Jene, Lorraine Lisiecki, Jean Lynch-Stieglitz, Lars Max, Mahyar Mohtadi, Gesine Mollenhauer, Juan Muglia, Dirk Nürnberg, André Paul, Carsten Rühlemann, Janne Repschläger, Rajeev Saraswat, Andreas Schmittner, Elisabeth L. Sikes, Robert F. Spielhagen, and Ralf Tiedemann
Earth Syst. Sci. Data, 14, 2553–2611, https://doi.org/10.5194/essd-14-2553-2022, https://doi.org/10.5194/essd-14-2553-2022, 2022
Short summary
Short summary
Stable isotope ratios of foraminiferal shells from deep-sea sediments preserve key information on the variability of ocean circulation and ice volume. We present the first global atlas of harmonized raw downcore oxygen and carbon isotope ratios of various planktonic and benthic foraminiferal species. The atlas is a foundation for the analyses of the history of Earth system components, for finding future coring sites, and for teaching marine stratigraphy and paleoceanography.
Madison M. Douglas, Gen K. Li, Woodward W. Fischer, Joel C. Rowland, Preston C. Kemeny, A. Joshua West, Jon Schwenk, Anastasia P. Piliouras, Austin J. Chadwick, and Michael P. Lamb
Earth Surf. Dynam., 10, 421–435, https://doi.org/10.5194/esurf-10-421-2022, https://doi.org/10.5194/esurf-10-421-2022, 2022
Short summary
Short summary
Arctic rivers erode into permafrost and mobilize organic carbon, which can react to form greenhouse gasses or be re-buried in floodplain deposits. We collected samples on a permafrost floodplain in Alaska to determine if more carbon is eroded or deposited by river meandering. The floodplain contained a mixture of young carbon fixed by the biosphere and old, re-deposited carbon. Thus, sediment storage may allow Arctic river floodplains to retain aged organic carbon even when permafrost thaws.
Andre Baldermann, Oliver Wasser, Elshan Abdullayev, Stefano Bernasconi, Stefan Löhr, Klaus Wemmer, Werner E. Piller, Maxim Rudmin, and Sylvain Richoz
Clim. Past, 17, 1955–1972, https://doi.org/10.5194/cp-17-1955-2021, https://doi.org/10.5194/cp-17-1955-2021, 2021
Short summary
Short summary
We identified the provenance, (post)depositional history, weathering conditions and hydroclimate that formed the detrital and authigenic silicates and soil carbonates of the Valley of Lakes sediments in Central Asia during the Cenozoic (~34 to 21 Ma). Aridification pulses in continental Central Asia coincide with marine glaciation events and are caused by Cenozoic climate forcing and the exhumation of the Tian Shan, Hangay and Altai mountains, which reduced the moisture influx by westerly winds.
Florian Hofmann, Emily H. G. Cooperdock, A. Joshua West, Dominic Hildebrandt, Kathrin Strößner, and Kenneth A. Farley
Geochronology, 3, 395–414, https://doi.org/10.5194/gchron-3-395-2021, https://doi.org/10.5194/gchron-3-395-2021, 2021
Short summary
Short summary
We use microCT scanning to improve the quality of 3He exposure ages measured in detrital magnetite. We show that the presence of inclusions can significantly increase the measured amount of 3He and thereby the exposure age. By prescreening magnetite with microCT and analyzing only inclusion-free grains, this problem can be avoided. We also calibrate the cosmogenic 3He production rate in magnetite relative to 10Be in quartz, which can be used for similar studies in the future.
Cody C. Routson, Darrell S. Kaufman, Nicholas P. McKay, Michael P. Erb, Stéphanie H. Arcusa, Kendrick J. Brown, Matthew E. Kirby, Jeremiah P. Marsicek, R. Scott Anderson, Gonzalo Jiménez-Moreno, Jessica R. Rodysill, Matthew S. Lachniet, Sherilyn C. Fritz, Joseph R. Bennett, Michelle F. Goman, Sarah E. Metcalfe, Jennifer M. Galloway, Gerrit Schoups, David B. Wahl, Jesse L. Morris, Francisca Staines-Urías, Andria Dawson, Bryan N. Shuman, Daniel G. Gavin, Jeffrey S. Munroe, and Brian F. Cumming
Earth Syst. Sci. Data, 13, 1613–1632, https://doi.org/10.5194/essd-13-1613-2021, https://doi.org/10.5194/essd-13-1613-2021, 2021
Short summary
Short summary
We present a curated database of western North American Holocene paleoclimate records, which have been screened on length, resolution, and geochronology. The database gathers paleoclimate time series that reflect temperature, hydroclimate, or circulation features from terrestrial and marine sites, spanning a region from Mexico to Alaska. This publicly accessible collection will facilitate a broad range of paleoclimate inquiry.
Petra Zahajská, Carolina Olid, Johanna Stadmark, Sherilyn C. Fritz, Sophie Opfergelt, and Daniel J. Conley
Biogeosciences, 18, 2325–2345, https://doi.org/10.5194/bg-18-2325-2021, https://doi.org/10.5194/bg-18-2325-2021, 2021
Short summary
Short summary
The drivers of high accumulation of single-cell siliceous algae (diatoms) in a high-latitude lake have not been fully characterized before. We studied silicon cycling of the lake through water, radon, silicon, and stable silicon isotope balances. Results showed that groundwater brings 3 times more water and dissolved silica than the stream inlet. We demonstrate that groundwater discharge and low sediment deposition have driven the high diatom accumulation in the studied lake in the past century.
Cited articles
Agassiz, L. and Agassiz, E.: A Journey in Brazil, Ticknor and Fields, Boston, MA, USA, 540 pp., 1868.
Baker, P. A., Fritz, S. C., Dick, C. W., Eckert, A. J., Horton, B. K., Manzoni, S., Ribas, C. C., Garzione, C. N., and Battisti, D. S.: The emerging field of geogenomics: constraining geological problems with genetic data, Earth Science Reviews, 135, 38–47, 2014.
Barnes, J. B., Ehlers, T. A., McQuarrie, N., O'Sullivan, P. B., and Tawackol, S.: Thermochronometer record of central Andean plateau growth, Bolivia (19.5 degrees S), Tectonics, 27, TC3003, https://doi.org/10.1029/2007TC002174, 2008.
Boonstra, M., Ramos, M. I. F., Lammertsma, E. I., Antoine, P.-O., and Hoorn, C.: Marine connections of Amazonia: Evidence from foraminifera and dinoflagellate cysts (early to middle Miocene, Colombia/Peru), Palaeogeography, Palaeoclimatology, Palaeoecology, 417, 176–194, 2015.
Caputo, M. V.: Discussão sobre a Formação Alter do Chão e o Alto de Monte Alegre, Contribuições à Geologia da Amazônia, 7, 7–23, 2011.
Cheng, H., Sinha, A., Cruz, F. W., Wang, X., Edwards, R. L., d'Horta, F. M., Ribas, C. C., Vuille, M., Stott, L. S., and Auler, A. S.: Climate change patterns in Amazonia and biodiversity, Nature Communications, 4, 1411, https://doi.org/10.1038/ncomms2415, 2013.
Cunha, P. R. C: Bacia do Acre, Boletim de Geociências da Petrobras, 15, 207–215, 2007.
Cunha, P. R. C., Melo, J. H. G., and Silva, O. B.: Bacia do Amazonas, Boletim de Geociências da Petrobras, 15, 227–251, 2007.
Darwin, C. W.: On the Origin of Species by Means of Natural Selection or the Preservation of Favored Races in the Struggle for Life, John Murray, London, 502 pp., 1859.
de la Parra, F.: Palynological changes across the Cretaceous-Tertiary boundary in Colombia, South America, MS Thesis, University of Florida, 105 pp., 2009.
Dick, C. W., Lewis, S. L., Maslin, M., and Bermingham, E.: Neogene origins and implied warmth tolerance of Amazon tree species, Ecology and Evolution, 3, 162–169, https://doi.org/10.1002/ece3.441, 2013.
Dobson, D. M., Dickens, G. R., and Rea, D. K.: Terrigenous sediments on Ceara Rise: A Cenozoic record of South American orogenesis and erosion, Palaeogeography, Palaeoclimatology, Palaeoecology, 165, 215–229, 2001.
Ehlers, T. A. and Poulsen, C. J.: Influence of Andean uplift on climate and paleoaltimetry estimates, Earth and Planetary Science Letter, 290, 238–248, 2009.
Elger, K., Oncken, O., and Glodny, J.: Plateau-style accumulation of deformation: Southern Altiplano, Tectonics, 24, TC4020, https://doi.org/10.1029/2004TC001675, 2005.
Filho, J. R. W., Eiras, J. F., and Vaz, P. T.: Bacia do Solimóes, Boletim de Geociências da Petrobras, 15, 217–225, 2007.
Figueiredo, J., Zalán, P. V., and Soares, E. F.: Bacia da Foz do Amazonas, Boletim de Geociências da Petrobras, 15, 299–309, 2007.
Figueiredo, J., Hoorn, C., van der Ven, P., and Soares, E.: Late Miocene onset of the Amazon River and the Amazon deep-sea fan: Evidence from the Foz do Amazonas Basin, Geology, 37, 619-622, 2009.
Fine, P. V. A. and Ree, R. H.: Evidence for a time-integrated species-area effect on the latitudinal gradient in tree diversity, American Naturalist, 168, 786–804, 2006.
Freeman K. H. and Pancost R. D.: Biomarkers for terrestrial plants and climate, in: Organic Biogeochemistry, edited by: Falkowski, P. and Freeman, K., Treatise on Geochemistry, Elsevier, Amsterdam, 12, 395–416, 2014.
Garreaud, R., Molina, A., and Farias, M.: Andean uplift and Atacama hyperaridity: A climate modeling perspective, Earth Planet. Sc. Lett., 292, 39–50, 2010.
Garzione, C. N., Molnar, P., Libarkin, J. C., and MacFadden, B. J.: Rapid late Miocene rise of the Bolivian Altiplano: Evidence for removal of mantle lithosphere, Earth Planet. Sc. Lett., 241, 543–556, 2006.
Ghosh, P., Garzione, C. N., and Eiler, J. M.: Rapid uplift of the Altiplano revealed through 13C-18O bonds in paleosol carbonates, Science, 311, 511–515, 2006.
Gillis, R. J., Horton, B. K., and Grove, M.: Thermochronology, geochronology, and upper crustal structure of the Cordillera Real: Implications for Cenozoic exhumation of the central Andean plateau, Tectonics, 25, TC6007, https://doi.org/10.1029/2005TC001887, 2006.
Graham, A.: The age and diversification of terrestrial New World ecosystems through Cretaceous and Cenozoic time, Am. J. Bot., 98, 336–351, 2011.
Gross, M., Piller, W. E., Ramos, M. I., and Silva Paz, J. D.: Late Miocene sedimentary environments in south-western Amazonia (Solimões Formation; Brazil), J. S. Am. Earth Sci., 32, 169–181, 2011.
Gross, M., Ramos, M. I., Caporaletti, M., and Piller, W. E.: Ostracodes (Crustacea) and their palaeoenvironmental implications for the Solimões Formation (Late Miocene; Western Amazonia/Brazil), J. S. Am. Earth Sci., 42, 216–241, 2013.
Haffer, J.: Speciation in Amazonian forest birds, Science, 165, 131–137, 1969.
Harris, S. E. and Mix, A. C.: Climate and tectonic influences on continental erosion of tropical South America, 0–13 Ma, Geology 30, 447–450, 2002.
Held, I. M. and Soden, B. J.: Robust responses of the hydrological cycle to global warming, J. Climate, 19, 5686–5699, 2006.
Hoorn, C.: Marine incursions and the influence of Andean tectonics on the Miocene depositional history of northwestern Amazonia, Palaeogeography, Palaeoclimatology, Palaeoecology, 105, 267–309, 1993.
Hoorn, C., Wesselingh, F. P., ter Steege, H., Bermudez, M. A., Mora, A., Sevink, J., Sanmartin, I., Sanchez-Meseguer, A., Anderson, C. L., Figueiredo, J. P., Jaramillo, C., Riff, D., Negri, F. R., Hooghiemstra, H., Lundberg, J., Stadler, T., Sarkinen, T., and Antonelli, A.: Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity, Science, 330, 927–931, 2010.
Hovikoski, J., Wesselingh, F. P., Räsänen, M., Gingras, M., and Vonhof, H. B.: Marine influence in Amazonia: evidence from the geological record, in: Amazonia: Landscape and Species Evolution, edited by: Hoorn, C. and Wesselingh, F., Wiley Blackwell, Chichester, 143–161, 2010.
Insel, N., Poulsen, C. J., and Ehlers, T. A.: Influence of the Andes Mountains on South American moisture transport, convection, and precipitation, Clim. Dynam., 35, 1477–1492, 2010.
Jaramillo, C.: Historia Geológica del Bosque Húmedo Neotropical, Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 36, 57–77, 2012.
Jaramillo, C. and Cardenas, A.: Global warming and neotropical rainforests: a historical perspective, Annual Reviews of Earth and Planetary Sciences, 41, 741–766, 2013.
Jaramillo, C., Rueda, M. J., and Mora, G.: Cenozoic plant diversity in the Neotropics, Science, 311, 1893–1896, 2006.
Jaramillo, C., Ochoa, D., Contreras, L., Pagani, M., Carvajal-Ortiz, H., Pratt, L.M., Krishnan, S., Cardona, A., Romero, M., Quiroz, L., Rodriguez, G., Rueda, M., de la Parra, F., Moron, S., Green, W., Bayona, G., Montes, C., Quintero, O., Ramirez, R., Mora, A., Schouten, S., Bermudez, H., Navarrete, R. E., Parra, F., Alvaran, M., Osorno, J., Crowley, L. J., Valencia, V., and Vervoort, J.: Effects of rapid global warming at the Paleocene-Eocene boundary on neotropical vegetation, Science, 330, 957–961, 2010.
Latrubesse, E. M., Cozzuol, M., da Silva-Caminha, S. A. F., Rigsby, C. A., Absy, M. L., and Jaramillo, C.: The Late Miocene paleogeography of the Amazon Basin and the evolution of the Amazon River system, Earth Science Reviews, 99, 99–124, 2010.
Mapes, R. W.: Past and present provenance of the Amazon River, PhD thesis, University of North Carolina, Chapel Hill, 185 pp., 2009.
Marzoli, A., Renne, P. R., Piccirillo, E. M., Ernesto, M., Bellieni, G., and De Min, A.: Extensive 200 million years old continental flood basalts from the Central Atlantic Magmatic Province, Science, 284, 616–618, 1999.
Marzoli, A., Bertrand, H., Knight, K., Cirilli, S., Buratti, N., Verati, C., Nomade, S., Renne, P., Youbi, N., Martini, R., Allenbach, K., Neuwerth, R., Rapaille, C., Zaninetti, L., and Bellieni, G.: Synchrony of the Central Atlantic magmatic province and the Triassic-Jurassic boundary climatic and biotic crisis, Geology 32, 973–976, 2004.
McQuarrie, N.: The kinematic history of the central Andean fold-thrust belt, Bolivia: Implications for building a high plateau, Geol. Soc. Am. Bull., 114, 950–963, 2002.
Megard, F.: Etude geologique des Andes du Peru central, Memoires ORSTOM 86, 517 pp., 1978.
Morley, R. J.: Origin and Evolution of Tropical Rain Forests, John Wiley & Sons, Chichester, UK, 362 pp., 2000.
Nutall, C. P.: A review of the Tertiary non marine molluscan faunas of the Pebasian and other inland basins of north-western South America, Bulletin of the British Museum of Natural History Geology, 45, 165–371, 1990.
Patton, J. L., da Silva, M. N. F., and Malcolm, J. R.: Mammals of the Rio Juruá and the evolutionary and ecological diversification of Amazonia, Bulletin of the American Museum Natural History, 244, 1–306, 2000.
Poulsen, C. J, Ehlers, T. A., and Insel, N.: Onset of convective rainfall during gradual Late Miocene rise of the Central Andes, Science, 328, 490–493, 2010.
Räsänen, M., Linna, A. M., Santos, J. C. R., and Negri, F. R.: Late Miocene tidal deposits in the Amazonian foreland basin, Science, 269, 386–389, 1995.
Ribas, C. C., Aleixo, A., Nogeuira, A. C. R., Miyaki, C. Y., and Cracraft, J.: Amazonia over the past three million years, Proceedings of the Royal Society of London B, 279, 681–689, https://doi.org/10.1098/rspb.2011.1120, 2011.
Richardson, J. E., Pennington, R. T., Pennington, T. D., and Hollingsworth, P. M.: Rapid diversification of a species-rich genus of neotropical rain forest trees, Science, 293, 2242–2245, 2001.
Ruhl, M., Bonis, N. R., Reichard, G. J., Sinninghe Damsté, J. S., and Kürschner, W. M.: Atmospheric carbon injection linked to end-Triassic mass extinction, Science, 333, 430–434, 2011.
Rull, V.: Neotropical biodiversity: timing and potential drivers, Trends in Ecology and Evolution, 26, 508–513, 2011.
Saylor, J. E. and Horton, B. K.: Nonuniform surface uplift of the Andean plateau revealed by deuterium isotopes in Miocene volcanic glass from southern Peru, Earth Planet. Sc. Lett., 387, 120–131, 2014.
Schoene, B., Guex, J., Bartolini, A., Schaltegger, U., and Blackburn, T. J.: Correlating the end-Triassic mass extinction and flood basalt volcanism at the 100 ka level, Geology, 38, 387–390, 2010.
Sepulchre, P., Ramstein, G., Fluteau, F., Schuster, M., Tiercelin, J.-J., and Brunet, M.: Tectonic uplift and eastern Africa aridification, Science, 313, 1419–1423, 2006.
Silva-Caminha, S. A. F., Jaramillo, C., and Absy, M. L.: Neogene palynology of the Solimoes Basin, Palaophytologie, 284, 13–79, 2010.
Stebbins, G. L.: Flowering Plants: Evolution above the Species Level, Belknap, 480 pp., 1974.
ter Steege, H. and RAINFOR: Contribution of current and historical processes to patterns of tree diversity and composition of Amazonia, in: Amazonia: landscape and species evolution, edited by: Hoorn, C. and Wesselingh, F. P., Wiley-Blackwell, Chichester, 349–359, 2010.
ter Steege, H., Pitman, N. C. A., Sabatier, D. et al.: Hyperdominance in the Amazonian tree flora, Science, 342, 6156, https://doi.org/10.1126/science.1243092, 2013.
Vega, A. M., Nogueira, A. C. R., Mapes, R. W., and Coleman, D. S.: A late-Miocene delta-lacustrine system in the eastern Solimoes basin: prelude to the modern Amazon, Geological Society of America Abstracts, 38, p. 144, 2006.
Wahnfried, I. and Soares, E. A. A.: Água Subterrânea na Amazônia: Importância, Estado Atual do Conhecimento e Estratégias de Pesquisa, Revista Ciência e Ambiente 44, 30–40, 2012.
Wallace, A. R.: Tropical Nature and Other Essays, Macmillan, New York, 356 pp., 1878.
Wesselingh, F. P.: Miocene long-lived lake Pebas as a stage of mollusk radiations, with implications for landscape evolution in western Amazonia, Scripta Geologica, 133, 1–17, 2006.
Westaway, R.: Late Cenozoic fluvial sequences in western Amazonia: fluvial or tidal? J. S. Am. Earth Sci., 21, 120–134, 2006.
Willis, K. I., Bennett, K. D., Bhagwat, S. A., and Birks, H. J. B.: 4 °C and beyond: what does this mean for biodiversity in the past?, Syst. Biodivers., 8, 3–9, 2010.
Zachos, J., Pagani, M., Sloan, L., and Billups, K.: Trends, rhythms, and aberrations in global climate 65 ma to present, Science, 292, 686–693, 2001.
Zalán, P. V. and Matsuda, N. S.: Bacia do Marajó, Boletim de Geociências da Petrobras, 15, 311–319, 2007.
Short summary
We report on a planned Trans-Amazon Drilling Project (TADP) that will continuously sample Late Cretaceous to modern sediment in a transect along the equatorial Amazon of Brazil, from the Andean foreland to the Atlantic Ocean. The TADP will document the evolution of the Neotropical forest and will link biotic diversification to changes in the physical environment, including climate, tectonism, and landscape. We will also sample the ca. 200Ma basaltic sills that underlie much of the Amazon.
We report on a planned Trans-Amazon Drilling Project (TADP) that will continuously sample Late...