Sensitivity of the West Antarctic Ice Sheet to +2 °C (SWAIS 2C)
Molly O. Patterson
CORRESPONDING AUTHOR
Department of Geological Sciences and Environmental Studies, Binghamton University, Binghamton, NY, USA
Richard H. Levy
GNS Science, Lower Hutt, New Zealand
Antarctic Research Centre, Victoria University of Wellington,
Wellington, New Zealand
Denise K. Kulhanek
Department of Geological Sciences and Environmental Studies, Binghamton University, Binghamton, NY, USA
Institute of Geosciences, Christian-Albrecht University of Kiel, Kiel, Germany
Tina van de Flierdt
Department of Earth Science and Engineering, Imperial College London, London, UK
Huw Horgan
Antarctic Research Centre, Victoria University of Wellington,
Wellington, New Zealand
Gavin B. Dunbar
Antarctic Research Centre, Victoria University of Wellington,
Wellington, New Zealand
Timothy R. Naish
Antarctic Research Centre, Victoria University of Wellington,
Wellington, New Zealand
Jeanine Ash
Department of Earth, Environmental and Planetary Sciences, Rice
University, Houston, TX, USA
Alex Pyne
Antarctic Research Centre, Victoria University of Wellington,
Wellington, New Zealand
Darcy Mandeno
Antarctic Research Centre, Victoria University of Wellington,
Wellington, New Zealand
Paul Winberry
Department of Geological Sciences, Central Washington University,
Ellensburg, WA, USA
David M. Harwood
Department of Earth & Atmospheric Sciences, University of
Nebraska-Lincoln, Lincoln, NE, USA
Fabio Florindo
Instituto Nazionale di Geofisica e Vulcanologia, Rome, Italy
Francisco J. Jimenez-Espejo
Instituto Andaluz de Ciencias de la Tierra, Spanish Research Council (CSIC), Armilla, Spain
Andreas Läufer
Federal Institute for Geosciences and Natural Resources (BGR),
Hannover, Germany
Kyu-Cheul Yoo
Division of Glacial Environment Research, Korea Polar Research
Institute, Incheon, Republic of Korea
Osamu Seki
National Institute of Polar Research, 10-3 Midori-cho, Tachikawa,
Tokyo, Japan
Institute of Low Temperature Science, Hokkaidō University,
Sapporo, Japan
Paolo Stocchi
Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, the Netherlands
Johann P. Klages
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, Bremerhaven, Germany
Jae Il Lee
Division of Glacial Environment Research, Korea Polar Research
Institute, Incheon, Republic of Korea
Florence Colleoni
Istituto Nazionale di Oceanografia e Geofisica Sperimentale, Trieste, Italy
Yusuke Suganuma
National Institute of Polar Research, 10-3 Midori-cho, Tachikawa,
Tokyo, Japan
Edward Gasson
School of Geographical Sciences, University of Bristol, Bristol, UK
Christian Ohneiser
Department of Geology, University of Otago, Dunedin, New Zealand
José-Abel Flores
Department of Geology, University of Salamanca, Salamanca, Spain
David Try
GNS Science, Lower Hutt, New Zealand
Rachel Kirkman
GNS Science, Lower Hutt, New Zealand
Daleen Koch
GNS Science, Lower Hutt, New Zealand
A full list of authors appears at the end of the paper.
Related authors
Georgia R. Grant, Jonny H. T. Williams, Sebastian Naeher, Osamu Seki, Erin L. McClymont, Molly O. Patterson, Alan M. Haywood, Erik Behrens, Masanobu Yamamoto, and Katelyn Johnson
Clim. Past, 19, 1359–1381, https://doi.org/10.5194/cp-19-1359-2023, https://doi.org/10.5194/cp-19-1359-2023, 2023
Short summary
Short summary
Regional warming will differ from global warming, and climate models perform poorly in the Southern Ocean. We reconstruct sea surface temperatures in the south-west Pacific during the mid-Pliocene, a time 3 million years ago that represents the long-term outcomes of 3 °C warming, which is expected for the future. Comparing these results to climate model simulations, we show that the south-west Pacific region will warm by 1 °C above the global average if atmospheric CO2 remains above 350 ppm.
Xavier Crosta, Karen E. Kohfeld, Helen C. Bostock, Matthew Chadwick, Alice Du Vivier, Oliver Esper, Johan Etourneau, Jacob Jones, Amy Leventer, Juliane Müller, Rachael H. Rhodes, Claire S. Allen, Pooja Ghadi, Nele Lamping, Carina B. Lange, Kelly-Anne Lawler, David Lund, Alice Marzocchi, Katrin J. Meissner, Laurie Menviel, Abhilash Nair, Molly Patterson, Jennifer Pike, Joseph G. Prebble, Christina Riesselman, Henrik Sadatzki, Louise C. Sime, Sunil K. Shukla, Lena Thöle, Maria-Elena Vorrath, Wenshen Xiao, and Jiao Yang
Clim. Past, 18, 1729–1756, https://doi.org/10.5194/cp-18-1729-2022, https://doi.org/10.5194/cp-18-1729-2022, 2022
Short summary
Short summary
Despite its importance in the global climate, our knowledge of Antarctic sea-ice changes throughout the last glacial–interglacial cycle is extremely limited. As part of the Cycles of Sea Ice Dynamics in the Earth system (C-SIDE) Working Group, we review marine- and ice-core-based sea-ice proxies to provide insights into their applicability and limitations. By compiling published records, we provide information on Antarctic sea-ice dynamics over the past 130 000 years.
Erin L. McClymont, Heather L. Ford, Sze Ling Ho, Julia C. Tindall, Alan M. Haywood, Montserrat Alonso-Garcia, Ian Bailey, Melissa A. Berke, Kate Littler, Molly O. Patterson, Benjamin Petrick, Francien Peterse, A. Christina Ravelo, Bjørg Risebrobakken, Stijn De Schepper, George E. A. Swann, Kaustubh Thirumalai, Jessica E. Tierney, Carolien van der Weijst, Sarah White, Ayako Abe-Ouchi, Michiel L. J. Baatsen, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Ran Feng, Chuncheng Guo, Anna S. von der Heydt, Stephen Hunter, Xiangyi Li, Gerrit Lohmann, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Christian Stepanek, and Zhongshi Zhang
Clim. Past, 16, 1599–1615, https://doi.org/10.5194/cp-16-1599-2020, https://doi.org/10.5194/cp-16-1599-2020, 2020
Short summary
Short summary
We examine the sea-surface temperature response to an interval of climate ~ 3.2 million years ago, when CO2 concentrations were similar to today and the near future. Our geological data and climate models show that global mean sea-surface temperatures were 2.3 to 3.2 ºC warmer than pre-industrial climate, that the mid-latitudes and high latitudes warmed more than the tropics, and that the warming was particularly enhanced in the North Atlantic Ocean.
Samantha E. Bombard, R. Mark Leckie, Imogen M. Browne, Amelia E. Shevenell, Robert M. McKay, David M. Harwood, and the IODP Expedition 374 Scientists
J. Micropalaeontol., 43, 383–421, https://doi.org/10.5194/jm-43-383-2024, https://doi.org/10.5194/jm-43-383-2024, 2024
Short summary
Short summary
The Ross Sea record of the Miocene Climatic Optimum (~16.9–14.7 Ma) and the Middle Miocene Climate Transition (~14.7–13.8 Ma) can provide critical insights into the Antarctic ocean–cryosphere system during an ancient time of extreme warmth and subsequent cooling. Benthic foraminifera inform us about water masses, currents, and glacial conditions in the Ross Sea, and planktic foram invaders can inform us of when warm waters melted the Antarctic Ice Sheet in the past.
Thibauld M. Béjard, Andrés S. Rigual-Hernández, Javier P. Tarruella, José-Abel Flores, Anna Sanchez-Vidal, Irene Llamas-Cano, and Francisco J. Sierro
Biogeosciences, 21, 4051–4076, https://doi.org/10.5194/bg-21-4051-2024, https://doi.org/10.5194/bg-21-4051-2024, 2024
Short summary
Short summary
The Mediterranean Sea is regarded as a climate change hotspot. Documenting the population of planktonic foraminifera is crucial. In the Sicily Channel, fluxes are higher during winter and positively linked with chlorophyll a concentration and cool temperatures. A comparison with other Mediterranean sites shows the transitional aspect of the studied zone. Finally, modern populations significantly differ from those in the sediment, highlighting a possible effect of environmental change.
Julia L. Seidenstein, R. Mark Leckie, Robert McKay, Laura De Santis, David Harwood, and IODP Expedition 374 Scientists
J. Micropalaeontol., 43, 211–238, https://doi.org/10.5194/jm-43-211-2024, https://doi.org/10.5194/jm-43-211-2024, 2024
Short summary
Short summary
Warmer waters in the Southern Ocean have led to the loss of Antarctic ice during past interglacial times. The shells of foraminifera are preserved in Ross Sea sediment, which is collected in cores. Benthic species from Site U1523 inform us about changing water masses and current activity, including incursions of Circumpolar Deep Water. Warm water planktic species were found in sediment samples from four intervals within 3.72–1.82 million years ago, indicating warmer than present conditions.
Jim Marschalek, Edward Gasson, Tina van de Flierdt, Claus-Dieter Hillenbrand, Martin Siegert, and Liam Holder
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-104, https://doi.org/10.5194/gmd-2024-104, 2024
Preprint under review for GMD
Short summary
Short summary
Ice sheet models can help predict how Antarctica's ice sheets respond to environmental change, and such models benefit from comparison to geological data. Here, we use an ice sheet model output, plus other data, to predict the erosion of debris and trace its transport to where it is deposited on the ocean floor. This allows the results of ice sheet modelling to be directly and quantitively compared to real-world data, helping to reduce uncertainty regarding Antarctic sea level contribution.
Serena N. Dameron, R. Mark Leckie, David Harwood, Reed Scherer, and Peter-Noel Webb
J. Micropalaeontol., 43, 187–209, https://doi.org/10.5194/jm-43-187-2024, https://doi.org/10.5194/jm-43-187-2024, 2024
Short summary
Short summary
In 1977-79, the Ross Ice Shelf Project recovered ocean sediments ~ 450 km south of the present-day ice shelf calving front. Within these sediments are microfossils, which are used to recreate the history of the West Antarctic Ice Sheet (WAIS) and address how the ice sheet responded to past times of extreme warmth. The microfossils reveal the WAIS collapsed multiple times in the past 17 million years. These results inform predictions of future WAIS response to rising global temperatures.
Chinmay Dash, Yeong Bae Seong, Ajay Kumar Singh, Min Kyung Lee, Jae Il Lee, Kyu-Cheul Yoo, Hyun Hee Rhee, and Byung Yong Yu
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-38, https://doi.org/10.5194/cp-2024-38, 2024
Revised manuscript under review for CP
Short summary
Short summary
This study explores sediment core RS15-LC47 from the Ross Sea over the past 800,000 years, examining changes in sea-ice dynamics and deposition environments. It integrates various data to reveal shifts related to Circumpolar Deep Water influx and Antarctic currents, particularly during significant climate transitions. Results highlight potential West Antarctic Ice Sheet collapses in warmer periods, offering new insights into the area's paleoclimate and sedimentary processes.
Takeshige Ishiwa, Jun’ichi Okuno, Yuki Tokuda, Satoshi Sasaki, Takuya Itaki, and Yusuke Suganuma
EGUsphere, https://doi.org/10.5194/egusphere-2024-275, https://doi.org/10.5194/egusphere-2024-275, 2024
Short summary
Short summary
Changes in the East Antarctic Ice Sheet are key to understanding ice sheet behavior and climate response. Recent studies show ice thinning in East Antarctica around 9,000 to 6,000 years ago, revealing the temporal gap with a widely used model. Our refined model matches sea-level reconstructions, showing different sea-level peaks in East Antarctica. This suggests that ice changes in East Antarctica vary across the region, challenging the idea of simultaneous ice growth and decay.
Rebecca B. Latto, Ross J. Turner, Anya M. Reading, and J. Paul Winberry
The Cryosphere, 18, 2061–2079, https://doi.org/10.5194/tc-18-2061-2024, https://doi.org/10.5194/tc-18-2061-2024, 2024
Short summary
Short summary
The study of icequakes allows for investigation of many glacier processes that are unseen by typical reconnaissance methods. However, detection of such seismic signals is challenging due to low signal-to-noise levels and diverse source mechanisms. Here we present a novel algorithm that is optimized to detect signals from a glacier environment. We apply the algorithm to seismic data recorded in the 2010–2011 austral summer from the Whillans Ice Stream and evaluate the resulting event catalogue.
Rebecca B. Latto, Ross J. Turner, Anya M. Reading, Sue Cook, Bernd Kulessa, and J. Paul Winberry
The Cryosphere, 18, 2081–2101, https://doi.org/10.5194/tc-18-2081-2024, https://doi.org/10.5194/tc-18-2081-2024, 2024
Short summary
Short summary
Seismic catalogues are potentially rich sources of information on glacier processes. In a companion study, we constructed an event catalogue for seismic data from the Whillans Ice Stream. Here, we provide a semi-automated workflow for consistent catalogue analysis using an unsupervised cluster analysis. We discuss the defining characteristics of identified signal types found in this catalogue and possible mechanisms for the underlying glacier processes and noise sources.
Elizabeth R. Lasluisa, Oriol Oms, Eduard Remacha, Alba González-Lanchas, Hug Blanchar-Roca, and José Abel Flores
J. Micropalaeontol., 43, 55–68, https://doi.org/10.5194/jm-43-55-2024, https://doi.org/10.5194/jm-43-55-2024, 2024
Short summary
Short summary
We studied sediment samples containing marine plankton under the polarized microscope from the Sabiñánigo sandstone formation, a geological formation located in the Jaca Basin in Spain. The main result of this work was a more precise age for the formation, the Bartonian age, in the Middle Eocene period. In addition, we obtained information on the temperature of the ocean water in which the plankton lived, resulting in the surface ocean waters in this area being warm and poor in nutrients.
Francesca Baldacchino, Nicholas R. Golledge, Huw Horgan, Mathieu Morlighem, Alanna V. Alevropoulos-Borrill, Alena Malyarenko, Alexandra Gossart, Daniel P. Lowry, and Laurine van Haastrecht
EGUsphere, https://doi.org/10.5194/egusphere-2023-2793, https://doi.org/10.5194/egusphere-2023-2793, 2023
Short summary
Short summary
Understanding how the Ross Ice Shelf flow is changing in a warming world is important for monitoring mass changes. The flow displays an intra-annual variation; however, it is unclear what mechanisms drive this variability. Sensitivity maps are modelled showing areas of the ice shelf where changes in basal melt most influence the ice flow. We suggest that basal melting partly drives the flow variability along the calving front of the ice shelf and will continue to do so in a warming world.
Kim Senger, Denise Kulhanek, Morgan T. Jones, Aleksandra Smyrak-Sikora, Sverre Planke, Valentin Zuchuat, William J. Foster, Sten-Andreas Grundvåg, Henning Lorenz, Micha Ruhl, Kasia K. Sliwinska, Madeleine L. Vickers, and Weimu Xu
Sci. Dril., 32, 113–135, https://doi.org/10.5194/sd-32-113-2023, https://doi.org/10.5194/sd-32-113-2023, 2023
Short summary
Short summary
Geologists can decipher the past climates and thus better understand how future climate change may affect the Earth's complex systems. In this paper, we report on a workshop held in Longyearbyen, Svalbard, to better understand how rocks in Svalbard (an Arctic archipelago) can be used to quantify major climatic shifts recorded in the past.
Patrick Boyden, Paolo Stocchi, and Alessio Rovere
Earth Surf. Dynam., 11, 917–931, https://doi.org/10.5194/esurf-11-917-2023, https://doi.org/10.5194/esurf-11-917-2023, 2023
Short summary
Short summary
Preservation bias often hampers the extraction of sea level changes from the stratigraphic record. In this contribution, we use a forward stratigraphic model to build three synthetic subtropical fringing reefs for a site in southwestern Madagascar (Indian Ocean). Each of the three synthetic reefs represents a different ice sheet melt scenario for the Pleistocene. We then evaluate each resultant reef sequence against the observed stratigraphic record.
Georgia R. Grant, Jonny H. T. Williams, Sebastian Naeher, Osamu Seki, Erin L. McClymont, Molly O. Patterson, Alan M. Haywood, Erik Behrens, Masanobu Yamamoto, and Katelyn Johnson
Clim. Past, 19, 1359–1381, https://doi.org/10.5194/cp-19-1359-2023, https://doi.org/10.5194/cp-19-1359-2023, 2023
Short summary
Short summary
Regional warming will differ from global warming, and climate models perform poorly in the Southern Ocean. We reconstruct sea surface temperatures in the south-west Pacific during the mid-Pliocene, a time 3 million years ago that represents the long-term outcomes of 3 °C warming, which is expected for the future. Comparing these results to climate model simulations, we show that the south-west Pacific region will warm by 1 °C above the global average if atmospheric CO2 remains above 350 ppm.
Thibauld M. Béjard, Andrés S. Rigual-Hernández, José A. Flores, Javier P. Tarruella, Xavier Durrieu de Madron, Isabel Cacho, Neghar Haghipour, Aidan Hunter, and Francisco J. Sierro
Biogeosciences, 20, 1505–1528, https://doi.org/10.5194/bg-20-1505-2023, https://doi.org/10.5194/bg-20-1505-2023, 2023
Short summary
Short summary
The Mediterranean Sea is undergoing a rapid and unprecedented environmental change. Planktic foraminifera calcification is affected on different timescales. On seasonal and interannual scales, calcification trends differ according to the species and are linked mainly to sea surface temperatures and carbonate system parameters, while comparison with pre/post-industrial assemblages shows that all three species have reduced their calcification between 10 % to 35 % according to the species.
James W. Marschalek, Edward Gasson, Tina van de Flierdt, Claus-Dieter Hillenbrand, Martin J. Siegert, and Liam Holder
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-8, https://doi.org/10.5194/gmd-2023-8, 2023
Revised manuscript not accepted
Short summary
Short summary
Ice sheet models can help predict how Antarctica’s ice sheets respond to environmental change; such models benefit from comparison to geological data. Here, we use ice sheet model results, plus other data, to predict the erosion of Antarctic debris and trace its transport to where it is deposited on the ocean floor. This allows the results of ice sheet modelling to be directly and quantitively compared to real-world data, helping to reduce uncertainty regarding Antarctic sea level contribution.
Suzanne Robinson, Ruza F. Ivanovic, Lauren J. Gregoire, Julia Tindall, Tina van de Flierdt, Yves Plancherel, Frerk Pöppelmeier, Kazuyo Tachikawa, and Paul J. Valdes
Geosci. Model Dev., 16, 1231–1264, https://doi.org/10.5194/gmd-16-1231-2023, https://doi.org/10.5194/gmd-16-1231-2023, 2023
Short summary
Short summary
We present the implementation of neodymium (Nd) isotopes into the ocean model of FAMOUS (Nd v1.0). Nd fluxes from seafloor sediment and incorporation of Nd onto sinking particles represent the major global sources and sinks, respectively. However, model–data mismatch in the North Pacific and northern North Atlantic suggest that certain reactive components of the sediment interact the most with seawater. Our results are important for interpreting Nd isotopes in terms of ocean circulation.
José Guitián, Miguel Ángel Fuertes, José-Abel Flores, Iván Hernández-Almeida, and Heather Stoll
Biogeosciences, 19, 5007–5019, https://doi.org/10.5194/bg-19-5007-2022, https://doi.org/10.5194/bg-19-5007-2022, 2022
Short summary
Short summary
The effect of environmental conditions on the degree of calcification of marine phytoplankton remains unclear. This study implements a new microscopic approach to quantify the calcification of ancient coccolithophores, using North Atlantic sediments. Results show significant differences in the thickness and shape factor of coccoliths for samples with minimum dissolution, providing the first evaluation of phytoplankton physiology adaptation to million-year-scale variable environmental conditions.
Suzanne Robinson, Ruza Ivanovic, Lauren Gregoire, Lachlan Astfalck, Tina van de Flierdt, Yves Plancherel, Frerk Pöppelmeier, and Kazuyo Tachikawa
EGUsphere, https://doi.org/10.5194/egusphere-2022-937, https://doi.org/10.5194/egusphere-2022-937, 2022
Preprint archived
Short summary
Short summary
The neodymium (Nd) isotope (εNd) scheme in the ocean model of FAMOUS is used to explore a benthic Nd flux to seawater. Our results demonstrate that sluggish modern Pacific waters are sensitive to benthic flux alterations, whereas the well-ventilated North Atlantic displays a much weaker response. In closing, there are distinct regional differences in how seawater acquires its εNd signal, in part relating to the complex interactions of Nd addition and water advection.
Francesca Baldacchino, Mathieu Morlighem, Nicholas R. Golledge, Huw Horgan, and Alena Malyarenko
The Cryosphere, 16, 3723–3738, https://doi.org/10.5194/tc-16-3723-2022, https://doi.org/10.5194/tc-16-3723-2022, 2022
Short summary
Short summary
Understanding how the Ross Ice Shelf will evolve in a warming world is important to the future stability of Antarctica. It remains unclear what changes could drive the largest mass loss in the future and where places are most likely to trigger larger mass losses. Sensitivity maps are modelled showing that the RIS is sensitive to changes in environmental and glaciological controls at regions which are currently experiencing changes. These regions need to be monitored in a warming world.
Xavier Crosta, Karen E. Kohfeld, Helen C. Bostock, Matthew Chadwick, Alice Du Vivier, Oliver Esper, Johan Etourneau, Jacob Jones, Amy Leventer, Juliane Müller, Rachael H. Rhodes, Claire S. Allen, Pooja Ghadi, Nele Lamping, Carina B. Lange, Kelly-Anne Lawler, David Lund, Alice Marzocchi, Katrin J. Meissner, Laurie Menviel, Abhilash Nair, Molly Patterson, Jennifer Pike, Joseph G. Prebble, Christina Riesselman, Henrik Sadatzki, Louise C. Sime, Sunil K. Shukla, Lena Thöle, Maria-Elena Vorrath, Wenshen Xiao, and Jiao Yang
Clim. Past, 18, 1729–1756, https://doi.org/10.5194/cp-18-1729-2022, https://doi.org/10.5194/cp-18-1729-2022, 2022
Short summary
Short summary
Despite its importance in the global climate, our knowledge of Antarctic sea-ice changes throughout the last glacial–interglacial cycle is extremely limited. As part of the Cycles of Sea Ice Dynamics in the Earth system (C-SIDE) Working Group, we review marine- and ice-core-based sea-ice proxies to provide insights into their applicability and limitations. By compiling published records, we provide information on Antarctic sea-ice dynamics over the past 130 000 years.
Astrid Oetting, Emma C. Smith, Jan Erik Arndt, Boris Dorschel, Reinhard Drews, Todd A. Ehlers, Christoph Gaedicke, Coen Hofstede, Johann P. Klages, Gerhard Kuhn, Astrid Lambrecht, Andreas Läufer, Christoph Mayer, Ralf Tiedemann, Frank Wilhelms, and Olaf Eisen
The Cryosphere, 16, 2051–2066, https://doi.org/10.5194/tc-16-2051-2022, https://doi.org/10.5194/tc-16-2051-2022, 2022
Short summary
Short summary
This study combines a variety of geophysical measurements in front of and beneath the Ekström Ice Shelf in order to identify and interpret geomorphological evidences of past ice sheet flow, extent and retreat.
The maximal extent of grounded ice in this region was 11 km away from the continental shelf break.
The thickness of palaeo-ice on the calving front around the LGM was estimated to be at least 305 to 320 m.
We provide essential boundary conditions for palaeo-ice-sheet models.
Lennert B. Stap, Constantijn J. Berends, Meike D. W. Scherrenberg, Roderik S. W. van de Wal, and Edward G. W. Gasson
The Cryosphere, 16, 1315–1332, https://doi.org/10.5194/tc-16-1315-2022, https://doi.org/10.5194/tc-16-1315-2022, 2022
Short summary
Short summary
To gain understanding of how the Antarctic ice sheet responded to CO2 changes during past warm climate conditions, we simulate its variability during the Miocene. We include feedbacks between the ice sheet and atmosphere in our model and force the model using time-varying climate conditions. We find that these feedbacks reduce the amplitude of ice volume variations. Erosion-induced changes in the bedrock below the ice sheet that manifested during the Miocene also have a damping effect.
Jacob Jones, Karen E. Kohfeld, Helen Bostock, Xavier Crosta, Melanie Liston, Gavin Dunbar, Zanna Chase, Amy Leventer, Harris Anderson, and Geraldine Jacobsen
Clim. Past, 18, 465–483, https://doi.org/10.5194/cp-18-465-2022, https://doi.org/10.5194/cp-18-465-2022, 2022
Short summary
Short summary
We provide new winter sea ice and summer sea surface temperature estimates for marine core TAN1302-96 (59° S, 157° E) in the Southern Ocean. We find that sea ice was not consolidated over the core site until ~65 ka and therefore believe that sea ice may not have been a major contributor to early glacial CO2 drawdown. Sea ice does appear to have coincided with Antarctic Intermediate Water production and subduction, suggesting it may have influenced intermediate ocean circulation changes.
Jamey Stutz, Andrew Mackintosh, Kevin Norton, Ross Whitmore, Carlo Baroni, Stewart S. R. Jamieson, Richard S. Jones, Greg Balco, Maria Cristina Salvatore, Stefano Casale, Jae Il Lee, Yeong Bae Seong, Robert McKay, Lauren J. Vargo, Daniel Lowry, Perry Spector, Marcus Christl, Susan Ivy Ochs, Luigia Di Nicola, Maria Iarossi, Finlay Stuart, and Tom Woodruff
The Cryosphere, 15, 5447–5471, https://doi.org/10.5194/tc-15-5447-2021, https://doi.org/10.5194/tc-15-5447-2021, 2021
Short summary
Short summary
Understanding the long-term behaviour of ice sheets is essential to projecting future changes due to climate change. In this study, we use rocks deposited along the margin of the David Glacier, one of the largest glacier systems in the world, to reveal a rapid thinning event initiated over 7000 years ago and endured for ~ 2000 years. Using physical models, we show that subglacial topography and ocean heat are important drivers for change along this sector of the Antarctic Ice Sheet.
Fabrizio Marra, Alison Pereira, Brian Jicha, Sebastien Nomade, Italo Biddittu, Fabio Florindo, Giovanni Muttoni, Elizabeth Niespolo, Paul Renne, and Vincent Scao
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-161, https://doi.org/10.5194/cp-2021-161, 2021
Publication in CP not foreseen
Short summary
Short summary
We demonstrate that coarse gravel deposition in the catchment basins of the major rivers of central Italy is a direct proxy of global deglaciation events associated with meltwater pulses. By precise 40Ar/39Ar dating of the sedimentary deposits we show that emplacement of these gravel beds is closely coincident with discrete events of sea-level rise, with peaks of the Ice-rafted debris (IRD) curve, and with particularly mild (warmer) minima of mean summer insolation at 65° N.
Karla Rubio-Sandoval, Alessio Rovere, Ciro Cerrone, Paolo Stocchi, Thomas Lorscheid, Thomas Felis, Ann-Kathrin Petersen, and Deirdre D. Ryan
Earth Syst. Sci. Data, 13, 4819–4845, https://doi.org/10.5194/essd-13-4819-2021, https://doi.org/10.5194/essd-13-4819-2021, 2021
Short summary
Short summary
The Last Interglacial (LIG) is a warm period characterized by a higher-than-present sea level. For this reason, scientists use it as an analog for future climatic conditions. In this paper, we use the World Atlas of Last Interglacial Shorelines database to standardize LIG sea-level data along the coasts of the western Atlantic and mainland Caribbean, identifying 55 unique sea-level indicators.
Florence Colleoni, Laura De Santis, Enrico Pochini, Edy Forlin, Riccardo Geletti, Giuseppe Brancatelli, Magdala Tesauro, Martina Busetti, and Carla Braitenberg
Geosci. Model Dev., 14, 5285–5305, https://doi.org/10.5194/gmd-14-5285-2021, https://doi.org/10.5194/gmd-14-5285-2021, 2021
Short summary
Short summary
PALEOSTRIP has been developed in the framework of past Antarctic ice sheet reconstructions for periods when bathymetry around Antarctica differed substantially from today. It has been designed for users with no knowledge of numerical modelling and allows users to switch on and off the processes involved in backtracking and backstripping. Applications are broad, and it can be used to restore any continental margin bathymetry or sediment thickness and to perform basin analysis.
Deirdre D. Ryan, Alastair J. H. Clement, Nathan R. Jankowski, and Paolo Stocchi
Earth Syst. Sci. Data, 13, 3399–3437, https://doi.org/10.5194/essd-13-3399-2021, https://doi.org/10.5194/essd-13-3399-2021, 2021
Short summary
Short summary
Studies of ancient sea level and coastlines help scientists understand how coasts will respond to future sea-level rise. This work standardized the published records of sea level around New Zealand correlated with sea-level peaks within the Last Interglacial (~128 000–73 000 years ago) using the World Atlas of Last Interglacial Shorelines (WALIS) database. New Zealand has the potential to provide an important sea-level record with more detailed descriptions and improved age constraint.
Jens O. Herrle, Cornelia Spiegel, Andreas Läufer, and Jean-Pierre Paul de Vera
Polarforschung, 89, 51–55, https://doi.org/10.5194/polf-89-51-2021, https://doi.org/10.5194/polf-89-51-2021, 2021
Short summary
Short summary
The Geology and Geophysics working group is one the largest within the German Society of Polar Research. Here, we present an overview of the development of major scientific German polar research programs and locations as well as important white papers from the last decades. This work is based on the contributions of members and institutions, including the Alfred Wegener Institute, the Federal Institute for Geosciences and Natural Resources and German Universities with polar research programs.
Huw J. Horgan, Laurine van Haastrecht, Richard B. Alley, Sridhar Anandakrishnan, Lucas H. Beem, Knut Christianson, Atsuhiro Muto, and Matthew R. Siegfried
The Cryosphere, 15, 1863–1880, https://doi.org/10.5194/tc-15-1863-2021, https://doi.org/10.5194/tc-15-1863-2021, 2021
Short summary
Short summary
The grounding zone marks the transition from a grounded ice sheet to a floating ice shelf. Like Earth's coastlines, the grounding zone is home to interactions between the ocean, fresh water, and geology but also has added complexity and importance due to the overriding ice. Here we use seismic surveying – sending sound waves down through the ice – to image the grounding zone of Whillans Ice Stream in West Antarctica and learn more about the nature of this important transition zone.
Romana Melis, Lucilla Capotondi, Fiorenza Torricella, Patrizia Ferretti, Andrea Geniram, Jong Kuk Hong, Gerhard Kuhn, Boo-Keun Khim, Sookwan Kim, Elisa Malinverno, Kyu Cheul Yoo, and Ester Colizza
J. Micropalaeontol., 40, 15–35, https://doi.org/10.5194/jm-40-15-2021, https://doi.org/10.5194/jm-40-15-2021, 2021
Short summary
Short summary
Integrated micropaleontological (planktic and benthic foraminifera, diatoms, and silicoflagellates) analysis, together with textural and geochemical results of a deep-sea core from the Hallett Ridge (northwestern Ross Sea), provides new data for late Quaternary (23–2 ka) paleoenvironmental and paleoceanographic reconstructions of this region. Results allow us to identify three time intervals: the glacial–deglacial transition, the deglacial period, and the interglacial period.
Kate E. Ashley, Robert McKay, Johan Etourneau, Francisco J. Jimenez-Espejo, Alan Condron, Anna Albot, Xavier Crosta, Christina Riesselman, Osamu Seki, Guillaume Massé, Nicholas R. Golledge, Edward Gasson, Daniel P. Lowry, Nicholas E. Barrand, Katelyn Johnson, Nancy Bertler, Carlota Escutia, Robert Dunbar, and James A. Bendle
Clim. Past, 17, 1–19, https://doi.org/10.5194/cp-17-1-2021, https://doi.org/10.5194/cp-17-1-2021, 2021
Short summary
Short summary
We present a multi-proxy record of Holocene glacial meltwater input, sediment transport, and sea-ice variability off East Antarctica. Our record shows that a rapid Antarctic sea-ice increase during the mid-Holocene (~ 4.5 ka) occurred against a backdrop of increasing glacial meltwater input and gradual climate warming. We suggest that mid-Holocene ice shelf cavity expansion led to cooling of surface waters and sea-ice growth, which slowed basal ice shelf melting.
Wei Ji Leong and Huw Joseph Horgan
The Cryosphere, 14, 3687–3705, https://doi.org/10.5194/tc-14-3687-2020, https://doi.org/10.5194/tc-14-3687-2020, 2020
Short summary
Short summary
A machine learning technique similar to the one used to enhance everyday photographs is applied to the problem of getting a better picture of Antarctica's bed – the part which is hidden beneath the ice. By taking hints from what satellites can observe at the ice surface, the novel method learns to generate a rougher bed topography that complements existing approaches, with a result that is able to be used by scientists running fine-scale ice sheet models relevant to predicting future sea levels.
Erin L. McClymont, Heather L. Ford, Sze Ling Ho, Julia C. Tindall, Alan M. Haywood, Montserrat Alonso-Garcia, Ian Bailey, Melissa A. Berke, Kate Littler, Molly O. Patterson, Benjamin Petrick, Francien Peterse, A. Christina Ravelo, Bjørg Risebrobakken, Stijn De Schepper, George E. A. Swann, Kaustubh Thirumalai, Jessica E. Tierney, Carolien van der Weijst, Sarah White, Ayako Abe-Ouchi, Michiel L. J. Baatsen, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Ran Feng, Chuncheng Guo, Anna S. von der Heydt, Stephen Hunter, Xiangyi Li, Gerrit Lohmann, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Christian Stepanek, and Zhongshi Zhang
Clim. Past, 16, 1599–1615, https://doi.org/10.5194/cp-16-1599-2020, https://doi.org/10.5194/cp-16-1599-2020, 2020
Short summary
Short summary
We examine the sea-surface temperature response to an interval of climate ~ 3.2 million years ago, when CO2 concentrations were similar to today and the near future. Our geological data and climate models show that global mean sea-surface temperatures were 2.3 to 3.2 ºC warmer than pre-industrial climate, that the mid-latitudes and high latitudes warmed more than the tropics, and that the warming was particularly enhanced in the North Atlantic Ocean.
Maren Bender, Thomas Mann, Paolo Stocchi, Dominik Kneer, Tilo Schöne, Julia Illigner, Jamaluddin Jompa, and Alessio Rovere
Clim. Past, 16, 1187–1205, https://doi.org/10.5194/cp-16-1187-2020, https://doi.org/10.5194/cp-16-1187-2020, 2020
Short summary
Short summary
This paper presents 24 new sea-level index points in the Spermonde Archipelago, Indonesia, and the reconstruction of the local Holocene relative sea-level history in combination with glacial isostasic adjustment models. We further show the importance of surveying the height of living coral microatolls as modern analogs to the fossil ones. Other interesting aspects are the potential subsidence of one of the densely populated islands, and we present eight samples that are dated to the Common Era.
Zhongshi Zhang, Qing Yan, Ran Zhang, Florence Colleoni, Gilles Ramstein, Gaowen Dai, Martin Jakobsson, Matt O'Regan, Stefan Liess, Denis-Didier Rousseau, Naiqing Wu, Elizabeth J. Farmer, Camille Contoux, Chuncheng Guo, Ning Tan, and Zhengtang Guo
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-38, https://doi.org/10.5194/cp-2020-38, 2020
Manuscript not accepted for further review
Short summary
Short summary
Whether an ice sheet once grew over Northeast Siberia-Beringia has been debated for decades. By comparing climate modelling with paleoclimate and glacial records from around the North Pacific, this study shows that the Laurentide-Eurasia-only ice sheet configuration fails in explaining these records, while a scenario involving the ice sheet over Northeast Siberia-Beringia succeeds. It highlights the complexity in glacial climates and urges new investigations across Northeast Siberia-Beringia.
Ambarish Pokhrel, Kimitaka Kawamura, Bhagawati Kunwar, Kaori Ono, Akane Tsushima, Osamu Seki, Sumio Matoba, and Takayuki Shiraiwa
Atmos. Chem. Phys., 20, 597–612, https://doi.org/10.5194/acp-20-597-2020, https://doi.org/10.5194/acp-20-597-2020, 2020
Short summary
Short summary
A 180 m long (ca. 274 year) ice core was drilled in the saddle of the Aurora Peak in Alaska (63.52° N, 146.54° W; elevation: 2,825 m). The ice core samples were derived with O-bis-(trimethylsilyl)trifluoroacetamide with 1 % trimethylsilyl chloride and pyridine followed by gas-chromatography–mass-spectrometry analyses. Levoglucosan, dehydroabietic acid and vanillic acid are reported for the first time from the alpine glacier to better understand historical biomass burning.
Andrés S. Rigual Hernández, Thomas W. Trull, Scott D. Nodder, José A. Flores, Helen Bostock, Fátima Abrantes, Ruth S. Eriksen, Francisco J. Sierro, Diana M. Davies, Anne-Marie Ballegeer, Miguel A. Fuertes, and Lisa C. Northcote
Biogeosciences, 17, 245–263, https://doi.org/10.5194/bg-17-245-2020, https://doi.org/10.5194/bg-17-245-2020, 2020
Short summary
Short summary
Coccolithophores account for a major fraction of the carbonate produced in the world's oceans. However, their contribution in the subantarctic Southern Ocean remains undocumented. We quantitatively partition calcium carbonate fluxes amongst coccolithophore species in the Australian–New Zealand sector of the Southern Ocean. We provide new insights into the importance of species other than Emiliania huxleyi in the carbon cycle and assess their possible response to projected environmental change.
Jon Camuera, Gonzalo Jiménez-Moreno, María J. Ramos-Román, Antonio García-Alix, Francisco Jiménez-Espejo, Jaime L. Toney, R. Scott Anderson, and Cole Webster
Clim. Past Discuss., https://doi.org/10.5194/cp-2019-130, https://doi.org/10.5194/cp-2019-130, 2019
Preprint withdrawn
Short summary
Short summary
This study presents a unique high-resolution terrestrial paleoclimate record between 20,000 and 11,000 cal yr BP from the Padul wetland (S Spain) that allowed the identification of 3 main phases within the cold and arid Heinrich Stadial 1 (HS1) and, for the first time, a further subdivision of HS1 in 7 centennial-scale sub-phases.
Mariem Saavedra-Pellitero, Karl-Heinz Baumann, Miguel Ángel Fuertes, Hartmut Schulz, Yann Marcon, Nele Manon Vollmar, José-Abel Flores, and Frank Lamy
Biogeosciences, 16, 3679–3702, https://doi.org/10.5194/bg-16-3679-2019, https://doi.org/10.5194/bg-16-3679-2019, 2019
Short summary
Short summary
Open ocean phytoplankton include coccolithophore algae, a key element in carbon cycle regulation with important feedbacks to the climate system. We document latitudinal variability in both coccolithophore assemblage and the mass variation in one particular species, Emiliania huxleyi, for a transect across the Drake Passage (in the Southern Ocean). Coccolithophore abundance, diversity and maximum depth habitat decrease southwards, coinciding with changes in the predominant E. huxleyi morphotypes.
Gloria M. Martin-Garcia, Francisco J. Sierro, José A. Flores, and Fátima Abrantes
Clim. Past, 14, 1639–1651, https://doi.org/10.5194/cp-14-1639-2018, https://doi.org/10.5194/cp-14-1639-2018, 2018
Short summary
Short summary
This work documents major oceanographic changes that occurred in the N. Atlantic from 812 to 530 ka and were related to the mid-Pleistocene transition. Since ~ 650 ka, glacials were more prolonged and intense than before. Larger ice sheets may have worked as a positive feedback mechanism to prolong the duration of glacials. We explore the connection between the change in the N. Atlantic oceanography and the enhanced ice-sheet growth, which contributed to the change of cyclicity in climate.
Robert McKay, Neville Exon, Dietmar Müller, Karsten Gohl, Michael Gurnis, Amelia Shevenell, Stuart Henrys, Fumio Inagaki, Dhananjai Pandey, Jessica Whiteside, Tina van de Flierdt, Tim Naish, Verena Heuer, Yuki Morono, Millard Coffin, Marguerite Godard, Laura Wallace, Shuichi Kodaira, Peter Bijl, Julien Collot, Gerald Dickens, Brandon Dugan, Ann G. Dunlea, Ron Hackney, Minoru Ikehara, Martin Jutzeler, Lisa McNeill, Sushant Naik, Taryn Noble, Bradley Opdyke, Ingo Pecher, Lowell Stott, Gabriele Uenzelmann-Neben, Yatheesh Vadakkeykath, and Ulrich G. Wortmann
Sci. Dril., 24, 61–70, https://doi.org/10.5194/sd-24-61-2018, https://doi.org/10.5194/sd-24-61-2018, 2018
Richard H. Levy, Gavin B. Dunbar, Marcus J. Vandergoes, Jamie D. Howarth, Tony Kingan, Alex R. Pyne, Grant Brotherston, Michael Clarke, Bob Dagg, Matthew Hill, Evan Kenton, Steve Little, Darcy Mandeno, Chris Moy, Philip Muldoon, Patrick Doyle, Conrad Raines, Peter Rutland, Delia Strong, Marianna Terezow, Leise Cochrane, Remo Cossu, Sean Fitzsimons, Fabio Florindo, Alexander L. Forrest, Andrew R. Gorman, Darrell S. Kaufman, Min Kyung Lee, Xun Li, Pontus Lurcock, Nicholas McKay, Faye Nelson, Jennifer Purdie, Heidi A. Roop, S. Geoffrey Schladow, Abha Sood, Phaedra Upton, Sharon L. Walker, and Gary S. Wilson
Sci. Dril., 24, 41–50, https://doi.org/10.5194/sd-24-41-2018, https://doi.org/10.5194/sd-24-41-2018, 2018
Short summary
Short summary
A new annually resolvable sedimentary record of southern hemisphere climate has been recovered from Lake Ohau, South Island, New Zealand. The Lake Ohau Climate History (LOCH) Project acquired cores from two sites that preserve an 80 m thick sequence of laminated mud that accumulated since the lake formed ~ 17 000 years ago. Cores were recovered using a purpose-built barge and drilling system designed to recover soft sediment from relatively thick sedimentary sequences at water depths up to 100 m.
Joo-Eun Yoon, Kyu-Cheul Yoo, Alison M. Macdonald, Ho-Il Yoon, Ki-Tae Park, Eun Jin Yang, Hyun-Cheol Kim, Jae Il Lee, Min Kyung Lee, Jinyoung Jung, Jisoo Park, Jiyoung Lee, Soyeon Kim, Seong-Su Kim, Kitae Kim, and Il-Nam Kim
Biogeosciences, 15, 5847–5889, https://doi.org/10.5194/bg-15-5847-2018, https://doi.org/10.5194/bg-15-5847-2018, 2018
Short summary
Short summary
Our paper provides an intensive overview of the artificial ocean iron fertilization (aOIF) experiments conducted over the last 25 years to test Martin’s hypothesis, discusses aOIF-related important unanswered open questions, suggests considerations for the design of future aOIF experiments to maximize their effectiveness, and introduces design guidelines for a future Korean Iron Fertilization Experiment in the Southern Ocean.
Ariadna Salabarnada, Carlota Escutia, Ursula Röhl, C. Hans Nelson, Robert McKay, Francisco J. Jiménez-Espejo, Peter K. Bijl, Julian D. Hartman, Stephanie L. Strother, Ulrich Salzmann, Dimitris Evangelinos, Adrián López-Quirós, José Abel Flores, Francesca Sangiorgi, Minoru Ikehara, and Henk Brinkhuis
Clim. Past, 14, 991–1014, https://doi.org/10.5194/cp-14-991-2018, https://doi.org/10.5194/cp-14-991-2018, 2018
Short summary
Short summary
Here we reconstruct ice sheet and paleoceanographic configurations in the East Antarctic Wilkes Land margin based on a multi-proxy study conducted in late Oligocene (26–25 Ma) sediments from IODP Site U1356. The new obliquity-forced glacial–interglacial sedimentary model shows that, under the high CO2 values of the late Oligocene, ice sheets had mostly retreated to their terrestrial margins and the ocean was very dynamic with shifting positions of the polar fronts and associated water masses.
Andrés S. Rigual Hernández, José A. Flores, Francisco J. Sierro, Miguel A. Fuertes, Lluïsa Cros, and Thomas W. Trull
Biogeosciences, 15, 1843–1862, https://doi.org/10.5194/bg-15-1843-2018, https://doi.org/10.5194/bg-15-1843-2018, 2018
Short summary
Short summary
Long-term and annual field observations on key organisms are a critical basis for predicting changes in Southern Ocean ecosystems. Coccolithophores are the most abundant calcium-carbonate-producing phytoplankton and play an important role in Southern Ocean biogeochemical cycles. In this study we document the composition, degree of calcification and annual cycle of coccolithophore communities in one of the largest unexplored regions of the world oceans: the Antarctic zone.
Saúl González-Lemos, José Guitián, Miguel-Ángel Fuertes, José-Abel Flores, and Heather M. Stoll
Biogeosciences, 15, 1079–1091, https://doi.org/10.5194/bg-15-1079-2018, https://doi.org/10.5194/bg-15-1079-2018, 2018
Short summary
Short summary
Changes in atmospheric carbon dioxide affect ocean chemistry and the ability of marine organisms to manufacture shells from calcium carbonate. We describe a technique to obtain more reproducible measurements of the thickness of calcium carbonate shells made by microscopic marine algae called coccolithophores, which will allow researchers to compare how the shell thickness responds to variations in ocean chemistry in the past and present.
Nancy A. N. Bertler, Howard Conway, Dorthe Dahl-Jensen, Daniel B. Emanuelsson, Mai Winstrup, Paul T. Vallelonga, James E. Lee, Ed J. Brook, Jeffrey P. Severinghaus, Taylor J. Fudge, Elizabeth D. Keller, W. Troy Baisden, Richard C. A. Hindmarsh, Peter D. Neff, Thomas Blunier, Ross Edwards, Paul A. Mayewski, Sepp Kipfstuhl, Christo Buizert, Silvia Canessa, Ruzica Dadic, Helle A. Kjær, Andrei Kurbatov, Dongqi Zhang, Edwin D. Waddington, Giovanni Baccolo, Thomas Beers, Hannah J. Brightley, Lionel Carter, David Clemens-Sewall, Viorela G. Ciobanu, Barbara Delmonte, Lukas Eling, Aja Ellis, Shruthi Ganesh, Nicholas R. Golledge, Skylar Haines, Michael Handley, Robert L. Hawley, Chad M. Hogan, Katelyn M. Johnson, Elena Korotkikh, Daniel P. Lowry, Darcy Mandeno, Robert M. McKay, James A. Menking, Timothy R. Naish, Caroline Noerling, Agathe Ollive, Anaïs Orsi, Bernadette C. Proemse, Alexander R. Pyne, Rebecca L. Pyne, James Renwick, Reed P. Scherer, Stefanie Semper, Marius Simonsen, Sharon B. Sneed, Eric J. Steig, Andrea Tuohy, Abhijith Ulayottil Venugopal, Fernando Valero-Delgado, Janani Venkatesh, Feitang Wang, Shimeng Wang, Dominic A. Winski, V. Holly L. Winton, Arran Whiteford, Cunde Xiao, Jiao Yang, and Xin Zhang
Clim. Past, 14, 193–214, https://doi.org/10.5194/cp-14-193-2018, https://doi.org/10.5194/cp-14-193-2018, 2018
Short summary
Short summary
Temperature and snow accumulation records from the annually dated Roosevelt Island Climate Evolution (RICE) ice core show that for the past 2 700 years, the eastern Ross Sea warmed, while the western Ross Sea showed no trend and West Antarctica cooled. From the 17th century onwards, this dipole relationship changed. Now all three regions show concurrent warming, with snow accumulation declining in West Antarctica and the eastern Ross Sea.
Blanca Ausín, Diana Zúñiga, Jose A. Flores, Catarina Cavaleiro, María Froján, Nicolás Villacieros-Robineau, Fernando Alonso-Pérez, Belén Arbones, Celia Santos, Francisco de la Granda, Carmen G. Castro, Fátima Abrantes, Timothy I. Eglinton, and Emilia Salgueiro
Biogeosciences, 15, 245–262, https://doi.org/10.5194/bg-15-245-2018, https://doi.org/10.5194/bg-15-245-2018, 2018
Short summary
Short summary
A systematic investigation of the coccolithophore ecology was performed for the first time in the NW Iberian Margin to broaden our knowledge on the use of fossil coccoliths in marine sediment records to infer environmental conditions in the past. Coccolithophores proved to be significant primary producers and their abundance and distribution was favoured by warmer and nutrient–depleted waters during the upwelling regime, seasonally controlled offshore and influenced by coastal processes onshore.
Nicholas R. Golledge, Zoë A. Thomas, Richard H. Levy, Edward G. W. Gasson, Timothy R. Naish, Robert M. McKay, Douglas E. Kowalewski, and Christopher J. Fogwill
Clim. Past, 13, 959–975, https://doi.org/10.5194/cp-13-959-2017, https://doi.org/10.5194/cp-13-959-2017, 2017
Short summary
Short summary
We investigated how the Antarctic climate and ice sheets evolved during a period of warmer-than-present temperatures 4 million years ago, during a time when the carbon dioxide concentration in the atmosphere was very similar to today's level. Using computer models to first simulate the climate, and then how the ice sheets responded, we found that Antarctica most likely lost around 8.5 m sea-level equivalent ice volume as both East and West Antarctic ice sheets retreated.
Johan Liakka, Marcus Löfverström, and Florence Colleoni
Clim. Past, 12, 1225–1241, https://doi.org/10.5194/cp-12-1225-2016, https://doi.org/10.5194/cp-12-1225-2016, 2016
Short summary
Short summary
The present study explains why Scandinavia was ice-covered 20 000 years ago, while Siberia was mostly ice free. The authors show that the ice-sheet extent in Eurasia was to a large extent controlled by atmospheric circulation changes due to the ice sheet in North America. As the North American ice sheet becomes larger, it induces a cooling in Europe and a warming in Siberia: this climatic pattern forces the Eurasian ice sheet to migrate westward until it is centered over Scandinavia.
B. Giaccio, E. Regattieri, G. Zanchetta, B. Wagner, P. Galli, G. Mannella, E. Niespolo, E. Peronace, P. R. Renne, S. Nomade, G. P. Cavinato, P. Messina, A. Sposato, C. Boschi, F. Florindo, F. Marra, and L. Sadori
Sci. Dril., 20, 13–19, https://doi.org/10.5194/sd-20-13-2015, https://doi.org/10.5194/sd-20-13-2015, 2015
Short summary
Short summary
As a pilot study for a possible depth-drilling project, an 82m long sedimentary succession was retrieved from the Fucino Basin, central Apennines, which hosts ca. 900m of lacustrine sediments. The acquired paleoclimatic record, from the retrieved core, spans the last 180ka and reveals noticeable variations related to the last two glacial-interglacial cycles. In light of these results, the Fucino sediments are likely to provide one of the longest continuous record for the last 2Ma.
B. Ausín, I. Hernández-Almeida, J.-A. Flores, F.-J. Sierro, M. Grosjean, G. Francés, and B. Alonso
Clim. Past, 11, 1635–1651, https://doi.org/10.5194/cp-11-1635-2015, https://doi.org/10.5194/cp-11-1635-2015, 2015
Short summary
Short summary
Coccolithophore distribution in 88 surface sediment samples in the Atlantic Ocean and western Mediterranean was mainly influenced by salinity at 10m depth. A quantitative coccolithophore-based transfer function was developed and applied to a fossil sediment core to estimate sea surface salinity (SSS). The quality of this function and the reliability of the SSS reconstruction were assessed by statistical analyses and discussed. Several centennial SSS changes are identified for the last 15.5 ka.
O. Rama-Corredor, B. Martrat, J. O. Grimalt, G. E. López-Otalvaro, J. A. Flores, and F. Sierro
Clim. Past, 11, 1297–1311, https://doi.org/10.5194/cp-11-1297-2015, https://doi.org/10.5194/cp-11-1297-2015, 2015
Short summary
Short summary
The alkenone sea surface temperatures in the Guiana Basin show a rapid transmission of the climate variability from arctic to tropical latitudes during the last two interglacials (MIS1 and MIS5e) and warm long interstadials (MIS5d-a). In contrast, the abrupt variability of the glacial interval does follow the North Atlantic climate but is also shaped by precessional changes. This arctic to tropical decoupling occurs when the Atlantic meridional overturning circulation is substantially reduced.
C. J. Hollis, B. R. Hines, K. Littler, V. Villasante-Marcos, D. K. Kulhanek, C. P. Strong, J. C. Zachos, S. M. Eggins, L. Northcote, and A. Phillips
Clim. Past, 11, 1009–1025, https://doi.org/10.5194/cp-11-1009-2015, https://doi.org/10.5194/cp-11-1009-2015, 2015
Short summary
Short summary
Re-examination of a Deep Sea Drilling Project sediment core (DSDP Site 277) from the western Campbell Plateau has identified the initial phase of the Paleocene-Eocene Thermal Maximum (PETM) within nannofossil chalk, the first record of the PETM in an oceanic setting in the southern Pacific Ocean (paleolatitude of ~65°S). Geochemical proxies indicate that intermediate and surface waters warmed by ~6° at the onset of the PETM prior to the full development of the negative δ13C excursion.
I. Hernández-Almeida, F.-J. Sierro, I. Cacho, and J.-A. Flores
Clim. Past, 11, 687–696, https://doi.org/10.5194/cp-11-687-2015, https://doi.org/10.5194/cp-11-687-2015, 2015
Short summary
Short summary
This manuscript presents new Mg/Ca and previously published δ18O measurements of Neogloboquadrina pachyderma sinistral for MIS 31-19, from a sediment core from the subpolar North Atlantic. The mechanism proposed here involves northward subsurface transport of warm and salty subtropical waters during periods of weaker AMOC, leading to ice-sheet instability and IRD discharge. This is the first time that these rapid climate oscillations are described for the early Pleistocene.
C. Lavoie, E. W. Domack, E. C. Pettit, T. A. Scambos, R. D. Larter, H.-W. Schenke, K. C. Yoo, J. Gutt, J. Wellner, M. Canals, J. B. Anderson, and D. Amblas
The Cryosphere, 9, 613–629, https://doi.org/10.5194/tc-9-613-2015, https://doi.org/10.5194/tc-9-613-2015, 2015
B. de Boer, P. Stocchi, and R. S. W. van de Wal
Geosci. Model Dev., 7, 2141–2156, https://doi.org/10.5194/gmd-7-2141-2014, https://doi.org/10.5194/gmd-7-2141-2014, 2014
F. Colleoni, S. Masina, A. Cherchi, A. Navarra, C. Ritz, V. Peyaud, and B. Otto-Bliesner
Clim. Past, 10, 269–291, https://doi.org/10.5194/cp-10-269-2014, https://doi.org/10.5194/cp-10-269-2014, 2014
Related subject area
Location/Setting: Continental | Subject: Geology | Geoprocesses: Global climate change
Paleozoic Equatorial Records of Melting Ice Ages (PERMIA): calibrating the pace of paleotropical environmental and ecological change during Earth's previous icehouse
BASE (Barberton Archean Surface Environments) – drilling Paleoarchean coastal strata of the Barberton Greenstone Belt
ICDP workshop on the Deep Drilling in the Turkana Basin project: exploring the link between environmental factors and hominin evolution over the past 4 Myr
Paleogene Earth perturbations in the US Atlantic Coastal Plain (PEP-US): coring transects of hyperthermals to understand past carbon injections and ecosystem responses
Drilling into a deep buried valley (ICDP DOVE): a 252 m long sediment succession from a glacial overdeepening in northwestern Switzerland
Workshop report: PlioWest – drilling Pliocene lakes in western North America
Deep-time Arctic climate archives: high-resolution coring of Svalbard's sedimentary record – SVALCLIME, a workshop report
Drilling Overdeepened Alpine Valleys (ICDP-DOVE): quantifying the age, extent, and environmental impact of Alpine glaciations
From glacial erosion to basin overfill: a 240 m-thick overdeepening–fill sequence in Bern, Switzerland
Scientific drilling workshop on the Weihe Basin Drilling Project (WBDP): Cenozoic tectonic–monsoon interactions
Report on ICDP Deep Dust workshops: probing continental climate of the late Paleozoic icehouse–greenhouse transition and beyond
The Bouse Formation, a controversial Neogene archive of the evolving Colorado River: a scientific drilling workshop report (28 February–3 March 2019 – BlueWater Resort & Casino, Parker, AZ, USA)
Colorado Plateau Coring Project, Phase I (CPCP-I): a continuously cored, globally exportable chronology of Triassic continental environmental change from western North America
Report on ICDP workshop CONOSC (COring the NOrth Sea Cenozoic)
A key continental archive for the last 2 Ma of climatic history of the central Mediterranean region: A pilot drilling in the Fucino Basin, central Italy
Trans-Amazon Drilling Project (TADP): origins and evolution of the forests, climate, and hydrology of the South American tropics
Accelerating Neoproterozoic research through scientific drilling
A way forward to discover Antarctica's past
Jonathan M. G. Stine, Joshua M. Feinberg, Adam K. Huttenlocker, Randall B. Irmis, Declan Ramirez, Rashida Doctor, John McDaris, Charles M. Henderson, Michael T. Read, Kristina Brady Shannon, Anders Noren, Ryan O'Grady, Ayva Sloo, Patrick Steury, Diego P. Fernandez, Amy C. Henrici, and Neil J. Tabor
Sci. Dril., 33, 109–128, https://doi.org/10.5194/sd-33-109-2024, https://doi.org/10.5194/sd-33-109-2024, 2024
Short summary
Short summary
We present initial results from the upper 450 m of ER-1, a legacy core collected from modern-day Bears Ears National Monument, Utah, USA. This section contains a relatively complete record of Upper Carboniferous to Early Permian sediments, providing a unique window on Earth's last icehouse–hothouse transition. Ongoing research will tie our results to important fossil sites, allowing us to better understand how this climate shift contributed to the evolution of terrestrial life.
Christoph Heubeck, Nic Beukes, Michiel de Kock, Martin Homann, Emmanuelle J. Javaux, Takeshi Kakegawa, Stefan Lalonde, Paul Mason, Phumelele Mashele, Dora Paprika, Chris Rippon, Mike Tice, Rodney Tucker, Ryan Tucker, Victor Ndazamo, Astrid Christianson, and Cindy Kunkel
Sci. Dril., 33, 129–172, https://doi.org/10.5194/sd-33-129-2024, https://doi.org/10.5194/sd-33-129-2024, 2024
Short summary
Short summary
What was Earth like when young? Under what conditions did bacteria spread? We studied some of the best-preserved, oldest rocks in South Africa. Layers there are about vertical; we drilled sideways. Sedimentary strata from eight boreholes showed that they had been deposited in rivers, sandy shorelines, tidal flats, estuaries, and the ocean. Some have well-preserved remnants of microbes. We will learn how life was established on a planet which would appear very inhospitable to us nowadays.
Catherine C. Beck, Melissa Berke, Craig S. Feibel, Verena Foerster, Lydia Olaka, Helen M. Roberts, Christopher A. Scholz, Kat Cantner, Anders Noren, Geoffery Mibei Kiptoo, James Muirhead, and the Deep Drilling in the Turkana Basin (DDTB) project team
Sci. Dril., 33, 93–108, https://doi.org/10.5194/sd-33-93-2024, https://doi.org/10.5194/sd-33-93-2024, 2024
Short summary
Short summary
The Deep Drilling in the Turkana Basin project seeks to determine the relative impacts of tectonics and climate on eastern African ecosystems. To organize goals for coring, we hosted a workshop in Nairobi, Kenya, which focused on how a 4 Myr sedimentary core from Turkana will uniquely address research objectives related to basin evolution, past climates and environments, and modern resources. We concluded that a Pliocene to modern record is best accomplished through a two-phase drilling project.
Marci M. Robinson, Kenneth G. Miller, Tali L. Babila, Timothy J. Bralower, James V. Browning, Marlow J. Cramwinckel, Monika Doubrawa, Gavin L. Foster, Megan K. Fung, Sean Kinney, Maria Makarova, Peter P. McLaughlin, Paul N. Pearson, Ursula Röhl, Morgan F. Schaller, Jean M. Self-Trail, Appy Sluijs, Thomas Westerhold, James D. Wright, and James C. Zachos
Sci. Dril., 33, 47–65, https://doi.org/10.5194/sd-33-47-2024, https://doi.org/10.5194/sd-33-47-2024, 2024
Short summary
Short summary
The Paleocene–Eocene Thermal Maximum (PETM) is the closest geological analog to modern anthropogenic CO2 emissions, but its causes and the responses remain enigmatic. Coastal plain sediments can resolve this uncertainty, but their discontinuous nature requires numerous sites to constrain events. Workshop participants identified 10 drill sites that target the PETM and other interesting intervals. Our post-drilling research will provide valuable insights into Earth system responses.
Sebastian Schaller, Marius W. Buechi, Bennet Schuster, and Flavio S. Anselmetti
Sci. Dril., 32, 27–42, https://doi.org/10.5194/sd-32-27-2023, https://doi.org/10.5194/sd-32-27-2023, 2023
Short summary
Short summary
In the frame of the DOVE (Drilling Overdeepened Alpine Valleys) project and with the support of the International Continental Scientific Drilling Program (ICDP), we drilled and recovered a 252 m long sediment core from the Basadingen Through. The Basadingen Trough, once eroded by the Rhine glacier during several ice ages, reaches over 300 m under the modern landscape. The sedimentary filling represents a precious scientific archive for understanding and reconstructing past glaciations.
Alison J. Smith, Emi Ito, Natalie Burls, Leon Clarke, Timme Donders, Robert Hatfield, Stephen Kuehn, Andreas Koutsodendris, Tim Lowenstein, David McGee, Peter Molnar, Alexander Prokopenko, Katie Snell, Blas Valero Garcés, Josef Werne, Christian Zeeden, and the PlioWest Working Consortium
Sci. Dril., 32, 61–72, https://doi.org/10.5194/sd-32-61-2023, https://doi.org/10.5194/sd-32-61-2023, 2023
Short summary
Short summary
Western North American contains accessible and under-recognized paleolake records that hold the keys to understanding the drivers of wetter conditions in Pliocene Epoch subtropical drylands worldwide. In a 2021 ICDP workshop, we chose five paleolake basins to study that span 7° of latitude in a unique array able to capture a detailed record of hydroclimate during the Early Pliocene warm period and subsequent Pleistocene cooling. We propose new drill cores for three of these basins.
Kim Senger, Denise Kulhanek, Morgan T. Jones, Aleksandra Smyrak-Sikora, Sverre Planke, Valentin Zuchuat, William J. Foster, Sten-Andreas Grundvåg, Henning Lorenz, Micha Ruhl, Kasia K. Sliwinska, Madeleine L. Vickers, and Weimu Xu
Sci. Dril., 32, 113–135, https://doi.org/10.5194/sd-32-113-2023, https://doi.org/10.5194/sd-32-113-2023, 2023
Short summary
Short summary
Geologists can decipher the past climates and thus better understand how future climate change may affect the Earth's complex systems. In this paper, we report on a workshop held in Longyearbyen, Svalbard, to better understand how rocks in Svalbard (an Arctic archipelago) can be used to quantify major climatic shifts recorded in the past.
Flavio S. Anselmetti, Milos Bavec, Christian Crouzet, Markus Fiebig, Gerald Gabriel, Frank Preusser, Cesare Ravazzi, and DOVE scientific team
Sci. Dril., 31, 51–70, https://doi.org/10.5194/sd-31-51-2022, https://doi.org/10.5194/sd-31-51-2022, 2022
Short summary
Short summary
Previous glaciations eroded below the ice deep valleys in the Alpine foreland, which, with their sedimentary fillings, witness the timing and extent of these glacial advance–retreat cycles. Drilling such sedimentary sequences will thus provide well-needed evidence in order to reconstruct the (a)synchronicity of past ice advances in a trans-Alpine perspective. Eventually these data will document how the Alpine foreland was shaped and how the paleoclimate patterns varied along and across the Alps.
Michael A. Schwenk, Patrick Schläfli, Dimitri Bandou, Natacha Gribenski, Guilhem A. Douillet, and Fritz Schlunegger
Sci. Dril., 30, 17–42, https://doi.org/10.5194/sd-30-17-2022, https://doi.org/10.5194/sd-30-17-2022, 2022
Short summary
Short summary
A scientific drilling was conducted into a bedrock trough (overdeepening) in Bern-Bümpliz (Switzerland) in an effort to advance the knowledge of the Quaternary prior to 150 000 years ago. We encountered a 208.5 m-thick succession of loose sediments (gravel, sand and mud) in the retrieved core and identified two major sedimentary sequences (A: lower, B: upper). The sedimentary suite records two glacial advances and the subsequent filling of a lake sometime between 300 000 and 200 000 years ago.
Zhisheng An, Peizhen Zhang, Hendrik Vogel, Yougui Song, John Dodson, Thomas Wiersberg, Xijie Feng, Huayu Lu, Li Ai, and Youbin Sun
Sci. Dril., 28, 63–73, https://doi.org/10.5194/sd-28-63-2020, https://doi.org/10.5194/sd-28-63-2020, 2020
Short summary
Short summary
Earth has experienced remarkable climate–environmental changes in the last 65 million years. The Weihe Basin with its 6000–8000 m infill of a continuous sedimentary sequence gives a unique continental archive for the study of the Cenozoic environment and exploration of deep biospheres. This workshop report concludes key objectives of the two-phase Weihe Basin Drilling Project and the global significance of reconstructing Cenozoic climate evolution and tectonic–monsoon interaction in East Asia.
Gerilyn S. Soreghan, Laurent Beccaletto, Kathleen C. Benison, Sylvie Bourquin, Georg Feulner, Natsuko Hamamura, Michael Hamilton, Nicholas G. Heavens, Linda Hinnov, Adam Huttenlocker, Cindy Looy, Lily S. Pfeifer, Stephane Pochat, Mehrdad Sardar Abadi, James Zambito, and the Deep Dust workshop participants
Sci. Dril., 28, 93–112, https://doi.org/10.5194/sd-28-93-2020, https://doi.org/10.5194/sd-28-93-2020, 2020
Short summary
Short summary
The events of the Permian — the orogenies, biospheric turnovers, icehouse and greenhouse antitheses, and Mars-analog lithofacies — boggle the imagination and present us with great opportunities to explore Earth system behavior. Here we outline results of workshops to propose continuous coring of continental Permian sections in western (Anadarko Basin) and eastern (Paris Basin) equatorial Pangaea to retrieve continental records spanning 50 Myr of Earth's history.
Andrew Cohen, Colleen Cassidy, Ryan Crow, Jordon Bright, Laura Crossey, Rebecca Dorsey, Brian Gootee, Kyle House, Keith Howard, Karl Karlstrom, and Philip Pearthree
Sci. Dril., 26, 59–67, https://doi.org/10.5194/sd-26-59-2019, https://doi.org/10.5194/sd-26-59-2019, 2019
Short summary
Short summary
This paper summarizes a workshop held in Parker, AZ, USA, to discuss planned scientific drilling in the Miocene(?) or early Pliocene Bouse Formation, a controversial deposit (of lacustrine, marine, or some hybrid origin) found in the lower Colorado River valley. The drilling project is intended to address this controversy as well as shed light on Pliocene climates of southwestern North America during an important period of past climate change.
Paul E. Olsen, John W. Geissman, Dennis V. Kent, George E. Gehrels, Roland Mundil, Randall B. Irmis, Christopher Lepre, Cornelia Rasmussen, Dominique Giesler, William G. Parker, Natalia Zakharova, Wolfram M. Kürschner, Charlotte Miller, Viktoria Baranyi, Morgan F. Schaller, Jessica H. Whiteside, Douglas Schnurrenberger, Anders Noren, Kristina Brady Shannon, Ryan O'Grady, Matthew W. Colbert, Jessie Maisano, David Edey, Sean T. Kinney, Roberto Molina-Garza, Gerhard H. Bachman, Jingeng Sha, and the CPCD team
Sci. Dril., 24, 15–40, https://doi.org/10.5194/sd-24-15-2018, https://doi.org/10.5194/sd-24-15-2018, 2018
Short summary
Short summary
The Colorado Plateau Coring Project-1 recovered ~ 850 m of core in three holes at two sites in the Triassic fluvial strata of Petrified Forest National Park, AZ, USA. The cores have abundant zircon, U-Pb dateable layers (210–241 Ma) that along with magnetic polarity stratigraphy, validate the eastern US-based Newark-Hartford astrochronology and timescale, while also providing temporal and environmental context for the vast geological archives of the Triassic of western North America.
Wim Westerhoff, Timme Donders, and Stefan Luthi
Sci. Dril., 21, 47–51, https://doi.org/10.5194/sd-21-47-2016, https://doi.org/10.5194/sd-21-47-2016, 2016
Short summary
Short summary
The CONOSC (COring the NOrth Sea Cenozoic) project brings scientists together that aim at scientific drilling of the north-western European marginal seas where in the last 65 million years the influence of sea and land was recorded continuously in the sediments. The subsiding area is ideally suited for detailed study of the relations between changing climate, biodiversity, and changing land masses. The report discusses the ICDP workshop outcome and overall project aims.
B. Giaccio, E. Regattieri, G. Zanchetta, B. Wagner, P. Galli, G. Mannella, E. Niespolo, E. Peronace, P. R. Renne, S. Nomade, G. P. Cavinato, P. Messina, A. Sposato, C. Boschi, F. Florindo, F. Marra, and L. Sadori
Sci. Dril., 20, 13–19, https://doi.org/10.5194/sd-20-13-2015, https://doi.org/10.5194/sd-20-13-2015, 2015
Short summary
Short summary
As a pilot study for a possible depth-drilling project, an 82m long sedimentary succession was retrieved from the Fucino Basin, central Apennines, which hosts ca. 900m of lacustrine sediments. The acquired paleoclimatic record, from the retrieved core, spans the last 180ka and reveals noticeable variations related to the last two glacial-interglacial cycles. In light of these results, the Fucino sediments are likely to provide one of the longest continuous record for the last 2Ma.
P. A. Baker, S. C. Fritz, C. G. Silva, C. A. Rigsby, M. L. Absy, R. P. Almeida, M. Caputo, C. M. Chiessi, F. W. Cruz, C. W. Dick, S. J. Feakins, J. Figueiredo, K. H. Freeman, C. Hoorn, C. Jaramillo, A. K. Kern, E. M. Latrubesse, M. P. Ledru, A. Marzoli, A. Myrbo, A. Noren, W. E. Piller, M. I. F. Ramos, C. C. Ribas, R. Trnadade, A. J. West, I. Wahnfried, and D. A. Willard
Sci. Dril., 20, 41–49, https://doi.org/10.5194/sd-20-41-2015, https://doi.org/10.5194/sd-20-41-2015, 2015
Short summary
Short summary
We report on a planned Trans-Amazon Drilling Project (TADP) that will continuously sample Late Cretaceous to modern sediment in a transect along the equatorial Amazon of Brazil, from the Andean foreland to the Atlantic Ocean. The TADP will document the evolution of the Neotropical forest and will link biotic diversification to changes in the physical environment, including climate, tectonism, and landscape. We will also sample the ca. 200Ma basaltic sills that underlie much of the Amazon.
D. J. Condon, P. Boggiani, D. Fike, G. P. Halverson, S. Kasemann, A. H. Knoll, F. A. Macdonald, A. R. Prave, and M. Zhu
Sci. Dril., 19, 17–25, https://doi.org/10.5194/sd-19-17-2015, https://doi.org/10.5194/sd-19-17-2015, 2015
Short summary
Short summary
This workshop report outlines the background, topics discussed and major conclusions/future directions arising form an ICDP- and ECORD-sponsored workshop convened to discuss the utility of scientific drilling for accelerating Neoproterozoic research.
J. S. Wellner
Sci. Dril., 18, 11–11, https://doi.org/10.5194/sd-18-11-2014, https://doi.org/10.5194/sd-18-11-2014, 2014
Cited articles
Ash, J. L., Franca, A., Biddle, J., Giovannelli, D., Singh, S. M., Martinez-Mendez, G., Müller, J., Mollenhauer, G., and Hefter, J.: Microbial Sediment Community Changes from the Last Glacial Maximum to Modern beneath the Ross Sea, in: AGU Fall Meeting Abstracts, 5 October 2020, online, vol. 2019, B53L-2573, 2019.
Bamber, J. L. and Aspinall, W. P.: An expert judgement assessment of future
sea level rise from the ice sheets, Nat. Clim. Change, 3, 424–427, https://doi.org/10.1038/nclimate1778, 2013.
Bamber, J. L., Westaway, R. M., Marzeion, B., and Wouters, B.: The land ice
contribution to sea level during the satellite era, Environ. Res. Lett.,
13, 063008, https://doi.org/10.1088/1748-9326/aac2f0, 2018.
Bassis, J., Berg, B., Crawford, A., and Benn, D.: Transition to marine ice
cliff instability controlled by ice thickness gradients and velocity,
Science, 372, 1342–1344, 2021.
Bindschadler, R. A., Roberts, E. P., and Iken, A.: Age of Crary Ice Rise,
Antarctica, determined from temperature-depth profiles, Ann. Glaciol., 14,
13–16, 1990.
Carr, S. A., Vogel, S. W., Dunbar, R. B., Brandes, J., Spear, J. R., Levy,
R., Naish, T. R., Powell, R. D., Wakeham, S. G., and Mandernack, K. W.:
Bacterial abundance and composition in marine sediments beneath the Ross Ice
Shelf, Antarctica, Geobiology, 11, 377–395, 2013.
Catania, G., Hulbe, C., Conway, H., Scambos, T. A., and Raymond, C. F.:
Variability in the mass flux of the Ross ice streams, West Antarctica, over
the last millennium, J. Glaciol., 58, 741–752, 2012.
Christner, B. C., Priscu, J. C., Achberger, A. M., Barbante, C., Carter, S.
P., Christianson, K., Michaud, A. B., Mikucki, J. A., Mitchell, A. C., and
Skidmore, M. L.: A microbial ecosystem beneath the West Antarctic ice sheet,
Nature, 512, 310–313, 2014.
Conway, H., Catania, G., Raymond, C. F., Gades, A. M., Scambos, T. A., and
Engelhardt, H.: Switch of flow direction in an Antarctic ice stream, Nature,
419, 465–467, 2002.
Crawford, A. J., Benn, D. I., Todd, J., Åström, J. A., Bassis, J.
N., and Zwinger, T.: Marine ice-cliff instability modeling shows mixed-mode
ice-cliff failure and yields calving rate parameterization, Nat.
Commun., 12, 2701, https://doi.org/10.1038/s41467-021-23070-7, 2021.
DeConto, R. M. and Pollard, D.: Contribution of Antarctica to past and
future sea-level rise, Nature, 531, 591–597, https://doi.org/10.1038/nature17145, 2016.
DeConto, R. M., Pollard, D., Alley, R. B., Velicogna, I., Gasson, E., Gomez,
N., Sadai, S., Condron, A., Gilford, D. M., Ashe, E. L., Kopp, R. E., Li,
D., and Dutton, A.: The Paris Climate Agreement and future sea-level rise
from Antarctica, Nature, 593, 83–89, https://doi.org/10.1038/s41586-021-03427-0, 2021.
Edwards, T. L., Brandon, M. A., Durand, G., Edwards, N. R., Golledge, N. R.,
Holden, P. B., Nias, I. J., Payne, A. J., Ritz, C., and Wernecke, A.:
Revisiting Antarctic ice loss due to marine ice-cliff instability, Nature,
566, 58–64, 2019.
Edwards, T. L., Nowicki, S., Marzeion, B., Hock, R., Goelzer, H., Seroussi,
H., Jourdain, N. C., Slater, D. A., Turner, F. E., Smith, C. J., McKenna, C.
M., Simon, E., Abe-Ouchi, A., Gregory, J. M., Larour, E., Lipscomb, W. H.,
Payne, A. J., Shepherd, A., Agosta, C., Alexander, P., Albrecht, T.,
Anderson, B., Asay-Davis, X., Aschwanden, A., Barthel, A., Bliss, A., Calov,
R., Chambers, C., Champollion, N., Choi, Y., Cullather, R., Cuzzone, J.,
Dumas, C., Felikson, D., Fettweis, X., Fujita, K., Galton-Fenzi, B. K.,
Gladstone, R., Golledge, N. R., Greve, R., Hattermann, T., Hoffman, M. J.,
Humbert, A., Huss, M., Huybrechts, P., Immerzeel, W., Kleiner, T.,
Kraaijenbrink, P., Le clec'h, S., Lee, V., Leguy, G. R., Little, C. M.,
Lowry, D. P., Malles, J.-H., Martin, D. F., Maussion, F., Morlighem, M.,
O'Neill, J. F., Nias, I., Pattyn, F., Pelle, T., Price, S. F., Quiquet, A.,
Radić, V., Reese, R., Rounce, D. R., Rückamp, M., Sakai, A., Shafer,
C., Schlegel, N.-J., Shannon, S., Smith, R. S., Straneo, F., Sun, S.,
Tarasov, L., Trusel, L. D., Van Breedam, J., van de Wal, R., van den Broeke,
M., Winkelmann, R., Zekollari, H., Zhao, C., Zhang, T., and Zwinger, T.:
Projected land ice contributions to twenty-first-century sea level rise,
Nature, 593, 74–82, https://doi.org/10.1038/s41586-021-03302-y, 2021.
Falconer, T., Pyne, A., Wilson, D., Levy, R., Nielsen, S., and Petrushak,
S.: Operations overview for the ANDRILL Southern McMurdo Sound Project,
Antarctica, Terra Antarctica, 15, 41–48, 2008.
Fielding, C. R.: Stratigraphic architecture of the Cenozoic succession in
the McMurdo Sound region, Antarctica: An archive of polar
palaeoenvironmental change in a failed rift setting, Sedimentology, 65,
1–61, https://doi.org/10.1111/sed.12413, 2018.
Fisher, A. T., Mankoff, K. D., Tulaczyk, S. M., Tyler, S. W., Foley, N., and
Team, and the W. S.: High geothermal heat flux measured below the West
Antarctic Ice Sheet, Sci. Adv., 1, e1500093,
https://doi.org/10.1126/sciadv.1500093, 2015.
Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N. E., Bell, R., Bianchi, C., Bingham, R. G., Blankenship, D. D., Casassa, G., Catania, G., Callens, D., Conway, H., Cook, A. J., Corr, H. F. J., Damaske, D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni, P., Griggs, J. A., Hindmarsh, R. C. A., Holmlund, P., Holt, J. W., Jacobel, R. W., Jenkins, A., Jokat, W., Jordan, T., King, E. C., Kohler, J., Krabill, W., Riger-Kusk, M., Langley, K. A., Leitchenkov, G., Leuschen, C., Luyendyk, B. P., Matsuoka, K., Mouginot, J., Nitsche, F. O., Nogi, Y., Nost, O. A., Popov, S. V., Rignot, E., Rippin, D. M., Rivera, A., Roberts, J., Ross, N., Siegert, M. J., Smith, A. M., Steinhage, D., Studinger, M., Sun, B., Tinto, B. K., Welch, B. C., Wilson, D., Young, D. A., Xiangbin, C., and Zirizzotti, A.: Bedmap2: improved ice bed, surface and thickness datasets for Antarctica, The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013, 2013.
Gasson, E., DeConto, R. M., Pollard, D., and Levy, R. H.: Dynamic Antarctic
ice sheet during the early to mid-Miocene, P. Natl. Acad. Sci. USA, 113, 3459–3464, 2016.
Golledge, N. R. and Lowry, D. P.: Is the marine ice cliff hypothesis
collapsing?, Science, 372, 1266–1267, 2021.
Golledge, N. R., Kowalewski, D. E., Naish, T. R., Levy, R. H., Fogwill, C.
J., and Gasson, E. G.: The multi-millennial Antarctic commitment to future
sea-level rise, Nature, 526, 421–425, https://doi.org/10.1038/nature15706, 2015.
Gomez, N., Pollard, D., and Holland, D.: Sea-level feedback lowers
projections of future Antarctic Ice-Sheet mass loss, Nat. Commun., 6,
1–8, 2015.
Harwood, D., Florindo, F., Talarico, F., and Levy, R. H.: Studies from the ANDRILL, Southern McMurdo Sound Project, Antarctica, Initial Science Report on AND-2A, in: Terra Antartica, vol. 15, 1–235, ISSN 1122-8628, http://192.167.120.37/Editoria/TAP/volume15.html (last access: 17 February 2022), 2008–2009.
Hawkings, J. R., Skidmore, M. L., Wadham, J. L., Priscu, J. C., Morton, P.
L., Hatton, J. E., Gardner, C. B., Kohler, T. J., Stibal, M., and Bagshaw,
E. A.: Enhanced trace element mobilization by Earth's ice sheets, P.
Natl. Acad. Sci. USA, 117, 31648–31659, 2020.
Hay, C., Mitrovica, J. X., Gomez, N., Creveling, J. R., Austermann, J., and
Kopp, R. E.: The sea-level fingerprints of ice-sheet collapse during
interglacial periods, Quaternary Sci. Rev., 87, 60–69, 2014.
Hayes, D. E., Frakes, L. A., Barrett, P. J., Burns, D. A., Chen, P.-H., Ford, A. B., Kaneps, A. G., Kemp, E. M., McCollum, D. M., Piper, D. J. W., Wall, R. E., and Webb, P. N.: Sites 270, 271, 272, Initial Reports of the Deep Sea Drilling Project 28, Washington, US Government Printing Office, 211–334, https://doi.org/10.2973/dsdp.proc.28.108.1975, 1975a.
Hayes, D. E., Frakes, L. A., Barrett, P. J., Burns, D. A., Chen, P.-H., Ford, A. B., Kaneps, A. G., Kemp, E. M., McCollum, D. M., Piper, D. J. W., Wall, R. E., and Webb, P. N.: Site 273, Initial Reports of the Deep Sea Drilling
Project 28, 335–368, https://doi.org/10.2973/dsdp.proc.28.109.1975, 1975b.
Hillebrand, T. R., Conway, H., Koutnik, M., Martín, C., Paden, J., and
Winberry, J. P.: Radio-echo sounding and waveform modeling reveal abundant
marine ice in former rifts and basal crevasses within Crary Ice Rise,
Antarctica, J. Glaciol., 67, 1–12, 2021.
Horgan, H. J., Alley, R. B., Christianson, K., Jacobel, R. W.,
Anandakrishnan, S., Muto, A., Beem, L. H., and Siegfried, M. R.: Estuaries
beneath ice sheets, Geology, 41, 1159–1162, 2013.
Horgan, H. J., Hulbe, C., Alley, R. B., Anandakrishnan, S., Goodsell, B.,
Taylor-Offord, S., and Vaughan, M. J.: Poststagnation Retreat of Kamb Ice
Stream's Grounding Zone, Geophys. Res. Lett., 44, 9815–9822, 2017.
Hulbe, C. and Fahnestock, M.: Century-scale discharge stagnation and
reactivation of the Ross ice streams, West Antarctica, J. Geophys. Res.-Earth Surf., 112, F03S27, https://doi.org/10.1029/2006JF000603, 2007.
IMBIE team: Mass balance of the Antarctic Ice Sheet from 1992–2017, Nature,
558, 219–222, 2018.
IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp., ISBN 978-1-107-05799-1, 2013.
IPCC: Summary for Policymakers, in: Global Warming of 1.5 ∘C. An IPCC Special Report on the impacts of global warming of 1.5 ∘C above pre-industrial levels and related global greenhouse gas emission
pathways, in the context of strengthening the global response to the threat
of climate change, sustainable development, and efforts to eradicate poverty, edited by: Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M., and Waterfield, T., World Meteorological Organization, Geneva, Switzerland, 32 pp., https://www.ipcc.ch/site/assets/uploads/sites/2/2019/05/SR15_SPM_version_report_LR.pdf (last access: 17 February 2022), 2018.
IPCC: Summary for Policymakers, in: Climate Change 2021: The Physical
Science Basis. Contribution of Working Group I to the Sixth Assessment
Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, in press, 2021.
IRIS consortium: Collaborative Research: Grounding Line Dynamics: Crary Ice Rise Revisited [data set], 19-016, 9J 2015, http://ds.iris.edu/mda/19-016/, last access: 18 February 2022.
Joughin, I. and Tulaczyk, S.: Positive mass balance of the Ross ice streams,
West Antarctica, Science, 295, 476–480, 2002.
Joughin, I., Tulaczyk, S., Bindschadler, R., and Price, S. F.: Changes in west Antarctic ice stream velocities; observation and analysis, J. Geophys. Res.-Solid, 107, 2289, https://doi.org/10.1029/2001JB001029, 2002.
Joughin, I., Alley, R. B., and Holland, D. M.: Ice-sheet response to oceanic
forcing, Science, 338, 1172–1176, 2012.
Kingslake, J., Scherer, R. P., Albrecht, T., Coenen, J., Powell, R. D.,
Reese, R., Stansell, N. D., Tulaczyk, S., Wearing, M. G., and Whitehouse, P.
L.: Extensive retreat and re-advance of the West Antarctic Ice Sheet during
the Holocene, Nature, 558, 430–434, 2018.
Kopp, R. E., Horton, R. M., Little, C. M., Mitrovica, J. X., Oppenheimer,
M., Rasmussen, D. J., Strauss, B. H., and Tebaldi, C.: Probabilistic 21st and
22nd century sea-level projections at a global network of tide-gauge sites,
Earths Future, 2, 383–406, 2014.
Kopp, R. E., DeConto, R. M., Bader, D. A., Hay, C. C., Horton, R. M., Kulp,
S., Oppenheimer, M., Pollard, D., and Strauss, B. H.: Evolving understanding
of Antarctic ice-sheet physics and ambiguity in probabilistic sea-level
projections, Earths Future, 5, 1217–1233, 2017.
Levy, R., Harwood, D., Florindo, F., Sangiorgi, F., Tripati, R., von
Eynatten, H., Gasson, E., Kuhn, G., Tripati, A., DeConto, R., Fielding, C.,
Field, B., Golledge, N., McKay, R., Naish, T., Olney, M., Pollard, D.,
Schouten, S., Talarico, F., Warny, S., Willmott, V., Acton, G., Panter, K.,
Paulsen, T., and Taviani, M.: Antarctic ice sheet sensitivity to atmospheric
CO2 variations in the early to mid-Miocene, P. Natl. Acad. Sci. USA,
113, 3453, https://doi.org/10.1073/pnas.1516030113, 2016.
Levy, R. H., Meyers, S. R., Naish, T. R., Golledge, N. R., McKay, R. M.,
Crampton, J. S., DeConto, R. M., De Santis, L., Florindo, F., Gasson, E. G.
W., Harwood, D. M., Luyendyk, B. P., Powell, R. D., Clowes, C., and
Kulhanek, D. K.: Antarctic ice-sheet sensitivity to obliquity forcing
enhanced through ocean connections, Nat. Geosci., 12, 132–137,
https://doi.org/10.1038/s41561-018-0284-4, 2019.
Luthra, T., Anandakrishnan, S., Winberry, J. P., Alley, R. B., and Holschuh,
N.: Basal characteristics of the main sticky spot on the ice plain of
Whillans Ice Stream, Antarctica, Earth Planet. Sci. Lett., 440, 12–19,
2016.
McKay, R., Naish, T., Carter, L., Riesselman, C., Dunbar, R., Sjunneskog,
C., Winter, D., Sangiorgi, F., Warren, C., and Pagani, M.: Antarctic and
Southern Ocean influences on Late Pliocene global cooling, P. Natl. Acad.
Sci. USA, 109, 6423–6428, 2012.
McKay, R. M., Barrett, P. J., Levy, R. S., Naish, T. R., Golledge, N. R.,
and Pyne, A.: Antarctic Cenozoic climate history from sedimentary records:
ANDRILL and beyond, Philos. T. Roy. Soc. A, 374, 1–17, https://doi.org/10.1098/rsta.2014.0301, 2016.
McKay, R. M., De Santis, L., Kulhanek, D. K., and Expedition 374 Scientists (Eds.): Ross Sea West Antarctic Ice Sheet History, International Ocean
Discovery Program, https://doi.org/10.14379/iodp.proc.374.2019, 2019.
Melles, M., Brigham-Grette, J., Minyuk, P. S., Nowaczyk, N. R., Wennrich,
V., DeConto, R. M., Anderson, P. M., Andreev, A. A., Coletti, A., and Cook,
T. L.: 2.8 million years of Arctic climate change from Lake El'gygytgyn, NE
Russia, Science, 337, 315–320, 2012.
Mitrovica, J. X., Gomez, N., and Clark, P. U.: The sea-level fingerprint of
West Antarctic collapse, Science, 323, 753–753, 2009.
Naish, T., Powell, R., Levy, R., Florindo, F., Harwood, D., Kuhn, G.,
Niessen, F., Talarico, F., and Wilson, G.: A record of Antarctic climate and
ice sheet history recovered, Eos Trans. Am. Geophys. Union, 88,
557–558, 2007.
Naish, T., Powell, R., Levy, R., Wilson, G., Scherer, R., Talarico, F., Krissek, L., Niessen, F., Pompilio, M., Wilson, T., Carter, L., DeConto, R., Huybers, P., McKay, R., Pollard, D., Ross, J., Winter, D., Barrett, P., Browne, G., Cody, R., Cowan, E., Crampton, J., Dunbar, G., Dunbar, N., Florindo, F., Gebhardt, C., Graham, I., Hannah, M., Hansaraj, D., Harwood, D., Helling, D., Henry, S., Hinnov, L., Kuhn, G., Kyle, P., Läufer, A., Mafioli, P., Magens, D., Mandernack, K., McIntosh, W., Millan, C., Morin, R., Ohneiser, C., Paulsen, T., Persico, D., Raine, I., Reed, J., Riesselman, C., Sagnotti, L., Schmitt, D., Sjunneskog, C., Strong, P., Taviani, M., Vogel, S., Wilch, T., and Williams, T.: Obliquity-paced Pliocene West Antarctic ice sheet oscillations, Nature, 458, 322–328, https://doi.org/10.1038/nature07867,
2009.
Nerem, R. S., Beckley, B. D., Fasullo, J. T., Hamlington, B. D., Masters,
D., and Mitchum, G. T.: Climate-change–driven accelerated sea-level rise
detected in the altimeter era, P. Natl. Acad. Sci. USA, 115, 2022–2025, https://doi.org/10.1073/pnas.1717312115, 2018.
Oppenheimer, M. and Alley, R. B.: How high will the seas rise?, Science,
354, 1375–1377, 2016.
Pollard, D. and DeConto, R. M.: Modelling West Antarctic ice sheet growth
and collapse through the past five million years, Nature, 458,
329–332, https://doi.org/10.1038/nature07809, 2009.
Pollard, D., DeConto, R. M., and Alley, R. B.: Potential Antarctic Ice Sheet
retreat driven by hydrofracturing and ice cliff failure, Earth Planet.
Sc. Lett., 412, 112–121, https://doi.org/10.1016/j.epsl.2014.12.035, 2015.
Price, S. F., Bindschadler, R. A., Hulbe, C. L., and Joughin, I. R.: Post-stagnation behavior in the upstream regions of Ice Stream C, West Antarctica, J. Glaciol., 47, 283–294, https://doi.org/10.3189/172756501781832232, 2001.
Priscu, J. C., Kalin, J., Winans, J., Campbell, T., Siegfried, M. R.,
Skidmore, M., Dore, J. E., Leventer, A., Harwood, D. M., Duling, D., Zook,
R., Burnett, J., Gibson, D., Krula, E., Mironov, A., McManis, J., Roberts,
G., Rosenheim, B., Christner, B. C., Kasic, K., Fricker, H., Lyons, W. B.,
Barker, J., Bowling, M., Collins, B., Davis, C., Gagnon, A., Gardner, C.,
Gustafson, C., Kim, O-S., Li, W., Michaud, Al., Patterson, M. O., Tranter,
M., Venturelli, R., Vick-Majors, T., Cooper, E., and the SALSA Science Team:
Scientific access into Mercer Subglacial Lake: scientific objectives,
drilling operations and initial observations, Ann. Glaciol., 62, 1–13, 2021.
Retzlaff, R. and Bentley, C. R.: Timing of stagnation of Ice Stream C, West
Antarctica, from short-pulse radar studies of buried surface crevasses, J.
Glaciol., 39, 553–561, https://doi.org/10.3189/S0022143000016440,
1993.
Retzlaff, R., Lord, N., and Bentley, C. R.: Airborne-radar studies: Ice
streams A, B and C, West Antarctica, J. Glaciol., 39, 495–506, 1993.
Scherer, R. P.: Quaternary and Tertiary microfossils from beneath Ice Stream
B: Evidence for a dynamic West Antarctic Ice Sheet history, Glob. Planet.
Change, 4, 395–412, https://doi.org/10.1016/0921-8181(91)90005-H, 1991.
Scherer, R. P., Harwood, D. M., Ishman, S. E., and Webb, P. N.:
Micropaleontological analysis of sediments from the Crary Ice Rise, Ross ice
Shelf, Antarctic JUS, 23, 34–36, 1988.
Shepherd, A., Ivins, E., Rignot, E., Smith, B., van den Broeke, M.,
Velicogna, I., Whitehouse, P., Briggs, K., Joughin, I., Krinner, G.,
Nowicki, S., Payne, T., Scambos, T., Schlegel, N., A, G., Agosta, C.,
Ahlstrøm, A., Babonis, G., Barletta, V., Blazquez, A., Bonin, J., Csatho,
B., Cullather, R., Felikson, D., Fettweis, X., Forsberg, R., Gallee, H.,
Gardner, A., Gilbert, L., Groh, A., Gunter, B., Hanna, E., Harig, C., Helm,
V., Horvath, A., Horwath, M., Khan, S., Kjeldsen, K. K., Konrad, H., Langen,
P., Lecavalier, B., Loomis, B., Luthcke, S., McMillan, M., Melini, D.,
Mernild, S., Mohajerani, Y., Moore, P., Mouginot, J., Moyano, G., Muir, A.,
Nagler, T., Nield, G., Nilsson, J., Noel, B., Otosaka, I., Pattle, M. E.,
Peltier, W. R., Pie, N., Rietbroek, R., Rott, H., Sandberg-Sørensen, L.,
Sasgen, I., Save, H., Scheuchl, B., Schrama, E., Schröder, L., Seo,
K.-W., Simonsen, S., Slater, T., Spada, G., Sutterley, T., Talpe, M.,
Tarasov, L., van de Berg, W. J., van der Wal, W., van Wessem, M.,
Vishwakarma, B. D., Wiese, D., and Wouters, B.: Mass balance of the
Antarctic Ice Sheet from 1992 to 2017, Nature, 558, 219–222, https://doi.org/10.1038/s41586-018-0179-y, 2018.
Tebaldi, C., Debeire, K., Eyring, V., Fischer, E., Fyfe, J., Friedlingstein, P., Knutti, R., Lowe, J., O'Neill, B., Sanderson, B., van Vuuren, D., Riahi, K., Meinshausen, M., Nicholls, Z., Tokarska, K. B., Hurtt, G., Kriegler, E., Lamarque, J.-F., Meehl, G., Moss, R., Bauer, S. E., Boucher, O., Brovkin, V., Byun, Y.-H., Dix, M., Gualdi, S., Guo, H., John, J. G., Kharin, S., Kim, Y., Koshiro, T., Ma, L., Olivié, D., Panickal, S., Qiao, F., Rong, X., Rosenbloom, N., Schupfner, M., Séférian, R., Sellar, A., Semmler, T., Shi, X., Song, Z., Steger, C., Stouffer, R., Swart, N., Tachiiri, K., Tang, Q., Tatebe, H., Voldoire, A., Volodin, E., Wyser, K., Xin, X., Yang, S., Yu, Y., and Ziehn, T.: Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6, Earth Syst. Dynam., 12, 253–293, https://doi.org/10.5194/esd-12-253-2021, 2021.
Tyler, S. W., Holland, D. M., Zagorodnov, V., Stern, A. A., Sladek, C.,
Kobs, S., White, S., Suárez, F., and Bryenton, J.: Using distributed
temperature sensors to monitor an Antarctic ice shelf and sub-ice-shelf
cavity, J. Glaciol., 59, 583–591, https://doi.org/10.3189/2013JoG12J207,
2013.
UNFCCC: Adoption of the Paris Agreement, FCCC/CP/2015/10/Add.1, 1–32, Paris, https://www.un.org/en/development/desa/population/migration/generalassembly/docs/globalcompact/FCCC_CP_2015_10_Add.1.pdf (last access: 10 February 2022), 2015.
Velicogna, I., Sutterley, T. C., and van den Broeke, M. R.: Regional
acceleration in ice mass loss from Greenland and Antarctica using GRACE
time-variable gravity data, Geophys. Res. Lett., 41, 8130–8137, https://doi.org/10.1002/2014gl061052, 2014.
Venturelli, R. A., Siegfried, M. R., Roush, K. A., Li, W., Burnett, J.,
Zook, R., Fricker, H. A., Priscu, J. C., Leventer, A., and Rosenheim, B. E.:
Mid-Holocene Grounding Line Retreat and Readvance at Whillans Ice Stream,
West Antarctica, Geophys. Res. Lett., 47, e2020GL088476, https://doi.org/10.1029/2020GL088476, 2020.
Vick-Majors, T. J., Michaud, A. B., Skidmore, M. L., Turetta, C., Barbante,
C., Christner, B. C., Dore, J. E., Christianson, K., Mitchell, A. C., and
Achberger, A. M.: Biogeochemical connectivity between freshwater ecosystems
beneath the West Antarctic Ice Sheet and the sub-ice marine environment,
Glob. Biogeochem. Cy., 34, e2019GB006446, https://doi.org/10.1029/2019GB006446, 2020.
Whitehouse, P. L., Gomez, N., King, M. A., and Wiens, D. A.: Solid Earth
change and the evolution of the Antarctic Ice Sheet, Nat. Commun., 10,
1–14, https://doi.org/10.1038/s41467-018-08068-y, 2019.
Short summary
How much of the West Antarctic Ice Sheet will melt and how quickly it will happen when average global temperatures exceed 2 °C is currently unknown. Given the far-reaching and international consequences of Antarctica’s future contribution to global sea level rise, the SWAIS 2C Project was developed in order to better forecast the size and timing of future changes.
How much of the West Antarctic Ice Sheet will melt and how quickly it will happen when average...