Articles | Volume 33, issue 1
https://doi.org/10.5194/sd-33-47-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/sd-33-47-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Paleogene Earth perturbations in the US Atlantic Coastal Plain (PEP-US): coring transects of hyperthermals to understand past carbon injections and ecosystem responses
Marci M. Robinson
CORRESPONDING AUTHOR
Florence Bascom Geoscience Center, U.S. Geological Survey, Reston, VA 22032, USA
Kenneth G. Miller
Department of Earth and Planetary Sciences, Rutgers University, Piscataway, NJ 08534, USA
Tali L. Babila
Earth, Environmental, and Planetary Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
Timothy J. Bralower
Department of Geosciences, Pennsylvania State University, University Park, PA 16802, USA
James V. Browning
Department of Earth and Planetary Sciences, Rutgers University, Piscataway, NJ 08534, USA
Marlow J. Cramwinckel
Department of Earth Sciences, Faculty of Geosciences, Utrecht University, 3584 CB, Utrecht, the Netherlands
Monika Doubrawa
Earth and Environmental Sciences, KU Leuven, Leuven, 3001, Belgium
Gavin L. Foster
School of Ocean and Earth Science, University of Southampton, Southampton, SO14 3ZH, UK
Megan K. Fung
Earth and Environmental Sciences, California Lutheran University, Thousand Oaks, CA 91360, USA
Sean Kinney
Department of Earth and Planetary Sciences, Rutgers University, Piscataway, NJ 08534, USA
Maria Makarova
independent researcher: 283 Newark Ave., Apt. 4R, Jersey City, NJ 07302, USA
Peter P. McLaughlin
Delaware Geological Survey, University of Delaware, Newark, DE 19716, USA
Paul N. Pearson
Department of Earth Sciences, University College London, London, WC1E, 6BT, UK
Ursula Röhl
MARUM – Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
Morgan F. Schaller
Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
Jean M. Self-Trail
Florence Bascom Geoscience Center, U.S. Geological Survey, Reston, VA 22032, USA
Appy Sluijs
Department of Geosciences, Pennsylvania State University, University Park, PA 16802, USA
Thomas Westerhold
MARUM – Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
James D. Wright
Department of Earth and Planetary Sciences, Rutgers University, Piscataway, NJ 08534, USA
James C. Zachos
Earth and Planetary Sciences, University of California Santa Cruz, Santa Cruz, CA 95064, USA
Related authors
William Rush, Jean Self-Trail, Yang Zhang, Appy Sluijs, Henk Brinkhuis, James Zachos, James G. Ogg, and Marci Robinson
Clim. Past, 19, 1677–1698, https://doi.org/10.5194/cp-19-1677-2023, https://doi.org/10.5194/cp-19-1677-2023, 2023
Short summary
Short summary
The Eocene contains several brief warming periods referred to as hyperthermals. Studying these events and how they varied between locations can help provide insight into our future warmer world. This study provides a characterization of two of these events in the mid-Atlantic region of the USA. The records of climate that we measured demonstrate significant changes during this time period, but the type and timing of these changes highlight the complexity of climatic changes.
Yannick F. Bats, Klaas G. J. Nierop, Alice Stuart-Lee, Joost Frieling, Linda van Roij, Gert-Jan Reichart, and Appy Sluijs
EGUsphere, https://doi.org/10.5194/egusphere-2025-1678, https://doi.org/10.5194/egusphere-2025-1678, 2025
Short summary
Short summary
In this study we analyzed the molecular and stable carbon isotopic composition (δ13C) of pollen and spores (sporomorphs) that underwent chemical treatments that simulate diagenesis during fossilization. We show that the successive removal of sugars and lipids results in 13C depletion of the residual sporomorph, leaving it rich aromatic compounds. This residual aromatic-rich structure likely represents diagenetically resistant sporopollenin, implying diagenesis results in 13C depletion of pollen.
Peter K. Bijl, Kasia K. Sliwinska, Bella Duncan, Arnaud Huguet, Sebastian Naeher, Ronnakrit Rattanasriampaipong, Claudia Sosa-Montes de Oca, Alexandra Auderset, Melissa Berke, Bum Soo Kim, Nina Davtian, Tom Dunkley Jones, Desmond Eefting, Felix Elling, Lauren O'Connor, Richard D. Pancost, Francien Peterse, Pierrick Fenies, Addison Rice, Appy Sluijs, Devika Varma, Wenjie Xiao, and Yige Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1467, https://doi.org/10.5194/egusphere-2025-1467, 2025
Short summary
Short summary
Many academic laboratories worldwide process environmental samples for analysis of membrane lipid molecules of archaea, for the reconstruction of past environmental conditions. However, the sample workup scheme involves many steps, each of which has a risk of contamination or bias, affecting the results. This paper reviews steps involved in sampling, extraction and analysis of lipids, interpretation and archiving of the data. This ensures reproducable, reusable, comparable and consistent data.
Appy Sluijs and Henk Brinkhuis
J. Micropalaeontol., 43, 441–474, https://doi.org/10.5194/jm-43-441-2024, https://doi.org/10.5194/jm-43-441-2024, 2024
Short summary
Short summary
We present intrinsic details of dinocyst taxa and assemblages from the sole available central Arctic late Paleocene–early Eocene sedimentary succession recovered at the central Lomonosov Ridge by the Integrated Ocean Drilling Program (IODP) Expedition 302. We develop a pragmatic taxonomic framework, document critical biostratigraphic events, and propose two new genera and seven new species.
Julia de Entrambasaguas, Thomas Westerhold, Heather L. Jones, and Laia Alegret
J. Micropalaeontol., 43, 303–322, https://doi.org/10.5194/jm-43-303-2024, https://doi.org/10.5194/jm-43-303-2024, 2024
Short summary
Short summary
The Gulf Stream plays a crucial role in the ocean stability and climate regulation of the Northern Hemisphere. By analysing the fossil microorganisms that lived in the water column and the ocean floor, as well as reconstructing the ancient ocean's biogeochemistry, we were able to trace longitudinal shifts in the Gulf Stream during the late Eocene (36 Ma). Our results provide insight into the Gulf Stream's behaviour and the NW Atlantic's palaeoceanography during the Late Eocene (ca. 36 Ma).
Xiaodong Zhang, Brett J. Tipple, Jiang Zhu, William D. Rush, Christian A. Shields, Joseph B. Novak, and James C. Zachos
Clim. Past, 20, 1615–1626, https://doi.org/10.5194/cp-20-1615-2024, https://doi.org/10.5194/cp-20-1615-2024, 2024
Short summary
Short summary
This study is motivated by the current anthropogenic-warming-forced transition in regional hydroclimate. We use observations and model simulations during the Paleocene–Eocene Thermal Maximum (PETM) to constrain the regional/local hydroclimate response. Our findings, based on multiple observational evidence within the context of model output, suggest a transition toward greater aridity and precipitation extremes in central California during the PETM.
Dominique K. L. L. Jenny, Tammo Reichgelt, Charlotte L. O'Brien, Xiaoqing Liu, Peter K. Bijl, Matthew Huber, and Appy Sluijs
Clim. Past, 20, 1627–1657, https://doi.org/10.5194/cp-20-1627-2024, https://doi.org/10.5194/cp-20-1627-2024, 2024
Short summary
Short summary
This study reviews the current state of knowledge regarding the Oligocene
icehouseclimate. We extend an existing marine climate proxy data compilation and present a new compilation and analysis of terrestrial plant assemblages to assess long-term climate trends and variability. Our data–climate model comparison reinforces the notion that models underestimate polar amplification of Oligocene climates, and we identify potential future research directions.
Chris D. Fokkema, Tobias Agterhuis, Danielle Gerritsma, Myrthe de Goeij, Xiaoqing Liu, Pauline de Regt, Addison Rice, Laurens Vennema, Claudia Agnini, Peter K. Bijl, Joost Frieling, Matthew Huber, Francien Peterse, and Appy Sluijs
Clim. Past, 20, 1303–1325, https://doi.org/10.5194/cp-20-1303-2024, https://doi.org/10.5194/cp-20-1303-2024, 2024
Short summary
Short summary
Polar amplification (PA) is a key uncertainty in climate projections. The factors that dominantly control PA are difficult to separate. Here we provide an estimate for the non-ice-related PA by reconstructing tropical ocean temperature variability from the ice-free early Eocene, which we compare to deep-ocean-derived high-latitude temperature variability across short-lived warming periods. We find a PA factor of 1.7–2.3 on 20 kyr timescales, which is somewhat larger than model estimates.
Frances A. Procter, Sandra Piazolo, Eleanor H. John, Richard Walshaw, Paul N. Pearson, Caroline H. Lear, and Tracy Aze
Biogeosciences, 21, 1213–1233, https://doi.org/10.5194/bg-21-1213-2024, https://doi.org/10.5194/bg-21-1213-2024, 2024
Short summary
Short summary
This study uses novel techniques to look at the microstructure of planktonic foraminifera (single-celled marine organisms) fossils, to further our understanding of how they form their hard exterior shells and how the microstructure and chemistry of these shells can change as a result of processes that occur after deposition on the seafloor. Understanding these processes is of critical importance for using planktonic foraminifera for robust climate and environmental reconstructions of the past.
Michiel Baatsen, Peter Bijl, Anna von der Heydt, Appy Sluijs, and Henk Dijkstra
Clim. Past, 20, 77–90, https://doi.org/10.5194/cp-20-77-2024, https://doi.org/10.5194/cp-20-77-2024, 2024
Short summary
Short summary
This work introduces the possibility and consequences of monsoons on Antarctica in the warm Eocene climate. We suggest that such a monsoonal climate can be important to understand conditions in Antarctica prior to large-scale glaciation. We can explain seemingly contradictory indications of ice and vegetation on the continent through regional variability. In addition, we provide a new mechanism through which most of Antarctica remained ice-free through a wide range of global climatic changes.
Elwyn de la Vega, Thomas B. Chalk, Mathis P. Hain, Megan R. Wilding, Daniel Casey, Robin Gledhill, Chongguang Luo, Paul A. Wilson, and Gavin L. Foster
Clim. Past, 19, 2493–2510, https://doi.org/10.5194/cp-19-2493-2023, https://doi.org/10.5194/cp-19-2493-2023, 2023
Short summary
Short summary
We evaluate how faithfully the boron isotope composition of foraminifera records atmospheric CO2 by comparing it to the high-fidelity CO2 record from the Antarctic ice cores. We evaluate potential factors and find that partial dissolution of foraminifera shells, assumptions of seawater chemistry, and the biology of foraminifera all have a negligible effect on reconstructed CO2. This gives confidence in the use of boron isotopes beyond the interval when ice core CO2 is available.
Joost Frieling, Linda van Roij, Iris Kleij, Gert-Jan Reichart, and Appy Sluijs
Biogeosciences, 20, 4651–4668, https://doi.org/10.5194/bg-20-4651-2023, https://doi.org/10.5194/bg-20-4651-2023, 2023
Short summary
Short summary
We present a first species-specific evaluation of marine core-top dinoflagellate cyst carbon isotope fractionation (εp) to assess natural pCO2 dependency on εp and explore its geological deep-time paleo-pCO2 proxy potential. We find that εp differs between genera and species and that in Operculodinium centrocarpum, εp is controlled by pCO2 and nutrients. Our results highlight the added value of δ13C analyses of individual micrometer-scale sedimentary organic carbon particles.
Stephen P. Hesselbo, Aisha Al-Suwaidi, Sarah J. Baker, Giorgia Ballabio, Claire M. Belcher, Andrew Bond, Ian Boomer, Remco Bos, Christian J. Bjerrum, Kara Bogus, Richard Boyle, James V. Browning, Alan R. Butcher, Daniel J. Condon, Philip Copestake, Stuart Daines, Christopher Dalby, Magret Damaschke, Susana E. Damborenea, Jean-Francois Deconinck, Alexander J. Dickson, Isabel M. Fendley, Calum P. Fox, Angela Fraguas, Joost Frieling, Thomas A. Gibson, Tianchen He, Kat Hickey, Linda A. Hinnov, Teuntje P. Hollaar, Chunju Huang, Alexander J. L. Hudson, Hugh C. Jenkyns, Erdem Idiz, Mengjie Jiang, Wout Krijgsman, Christoph Korte, Melanie J. Leng, Timothy M. Lenton, Katharina Leu, Crispin T. S. Little, Conall MacNiocaill, Miguel O. Manceñido, Tamsin A. Mather, Emanuela Mattioli, Kenneth G. Miller, Robert J. Newton, Kevin N. Page, József Pálfy, Gregory Pieńkowski, Richard J. Porter, Simon W. Poulton, Alberto C. Riccardi, James B. Riding, Ailsa Roper, Micha Ruhl, Ricardo L. Silva, Marisa S. Storm, Guillaume Suan, Dominika Szűcs, Nicolas Thibault, Alfred Uchman, James N. Stanley, Clemens V. Ullmann, Bas van de Schootbrugge, Madeleine L. Vickers, Sonja Wadas, Jessica H. Whiteside, Paul B. Wignall, Thomas Wonik, Weimu Xu, Christian Zeeden, and Ke Zhao
Sci. Dril., 32, 1–25, https://doi.org/10.5194/sd-32-1-2023, https://doi.org/10.5194/sd-32-1-2023, 2023
Short summary
Short summary
We present initial results from a 650 m long core of Late Triasssic to Early Jurassic (190–202 Myr) sedimentary strata from the Cheshire Basin, UK, which is shown to be an exceptional record of Earth evolution for the time of break-up of the supercontinent Pangaea. Further work will determine periodic changes in depositional environments caused by solar system dynamics and used to reconstruct orbital history.
William Rush, Jean Self-Trail, Yang Zhang, Appy Sluijs, Henk Brinkhuis, James Zachos, James G. Ogg, and Marci Robinson
Clim. Past, 19, 1677–1698, https://doi.org/10.5194/cp-19-1677-2023, https://doi.org/10.5194/cp-19-1677-2023, 2023
Short summary
Short summary
The Eocene contains several brief warming periods referred to as hyperthermals. Studying these events and how they varied between locations can help provide insight into our future warmer world. This study provides a characterization of two of these events in the mid-Atlantic region of the USA. The records of climate that we measured demonstrate significant changes during this time period, but the type and timing of these changes highlight the complexity of climatic changes.
Jesse R. Farmer, Katherine J. Keller, Robert K. Poirier, Gary S. Dwyer, Morgan F. Schaller, Helen K. Coxall, Matt O'Regan, and Thomas M. Cronin
Clim. Past, 19, 555–578, https://doi.org/10.5194/cp-19-555-2023, https://doi.org/10.5194/cp-19-555-2023, 2023
Short summary
Short summary
Oxygen isotopes are used to date marine sediments via similar large-scale ocean patterns over glacial cycles. However, the Arctic Ocean exhibits a different isotope pattern, creating uncertainty in the timing of past Arctic climate change. We find that the Arctic Ocean experienced large local oxygen isotope changes over glacial cycles. We attribute this to a breakdown of stratification during ice ages that allowed for a unique low isotope value to characterize the ice age Arctic Ocean.
Yord W. Yedema, Francesca Sangiorgi, Appy Sluijs, Jaap S. Sinninghe Damsté, and Francien Peterse
Biogeosciences, 20, 663–686, https://doi.org/10.5194/bg-20-663-2023, https://doi.org/10.5194/bg-20-663-2023, 2023
Short summary
Short summary
Terrestrial organic matter (TerrOM) is transported to the ocean by rivers, where its burial can potentially form a long-term carbon sink. This burial is dependent on the type and characteristics of the TerrOM. We used bulk sediment properties, biomarkers, and palynology to identify the dispersal patterns of plant-derived, soil–microbial, and marine OM in the northern Gulf of Mexico and show that plant-derived OM is transported further into the coastal zone than soil and marine-produced TerrOM.
Pauline Cornuault, Thomas Westerhold, Heiko Pälike, Torsten Bickert, Karl-Heinz Baumann, and Michal Kucera
Biogeosciences, 20, 597–618, https://doi.org/10.5194/bg-20-597-2023, https://doi.org/10.5194/bg-20-597-2023, 2023
Short summary
Short summary
We generated high-resolution records of carbonate accumulation rate from the Miocene to the Quaternary in the tropical Atlantic Ocean to characterize the variability in pelagic carbonate production during warm climates. It follows orbital cycles, responding to local changes in tropical conditions, as well as to long-term shifts in climate and ocean chemistry. These changes were sufficiently large to play a role in the carbon cycle and global climate evolution.
Ji-Eun Kim, Thomas Westerhold, Laia Alegret, Anna Joy Drury, Ursula Röhl, and Elizabeth M. Griffith
Clim. Past, 18, 2631–2641, https://doi.org/10.5194/cp-18-2631-2022, https://doi.org/10.5194/cp-18-2631-2022, 2022
Short summary
Short summary
This study attempts to gain a better understanding of the marine biological carbon pump and ecosystem functioning under warmer-than-today conditions. Our records from marine sediments show the Pacific tropical marine biological carbon pump was driven by variations in seasonal insolation in the tropics during the Late Cretaceous and may play a key role in modulating climate and the carbon cycle globally in the future.
Carolien M. H. van der Weijst, Koen J. van der Laan, Francien Peterse, Gert-Jan Reichart, Francesca Sangiorgi, Stefan Schouten, Tjerk J. T. Veenstra, and Appy Sluijs
Clim. Past, 18, 1947–1962, https://doi.org/10.5194/cp-18-1947-2022, https://doi.org/10.5194/cp-18-1947-2022, 2022
Short summary
Short summary
The TEX86 proxy is often used by paleoceanographers to reconstruct past sea-surface temperatures. However, the origin of the TEX86 signal in marine sediments has been debated since the proxy was first proposed. In our paper, we show that TEX86 carries a mixed sea-surface and subsurface temperature signal and should be calibrated accordingly. Using our 15-million-year record, we subsequently show how a TEX86 subsurface temperature record can be used to inform us on past sea-surface temperatures.
Karen M. Brandenburg, Björn Rost, Dedmer B. Van de Waal, Mirja Hoins, and Appy Sluijs
Biogeosciences, 19, 3305–3315, https://doi.org/10.5194/bg-19-3305-2022, https://doi.org/10.5194/bg-19-3305-2022, 2022
Short summary
Short summary
Reconstructions of past CO2 concentrations rely on proxy estimates, with one line of proxies relying on the CO2-dependence of stable carbon isotope fractionation in marine phytoplankton. Culturing experiments provide insights into which processes may impact this. We found, however, that the methods with which these culturing experiments are performed also influence 13C fractionation. Caution should therefore be taken when extrapolating results from these experiments to proxy applications.
Carolien M. H. van der Weijst, Josse Winkelhorst, Wesley de Nooijer, Anna von der Heydt, Gert-Jan Reichart, Francesca Sangiorgi, and Appy Sluijs
Clim. Past, 18, 961–973, https://doi.org/10.5194/cp-18-961-2022, https://doi.org/10.5194/cp-18-961-2022, 2022
Short summary
Short summary
A hypothesized link between Pliocene (5.3–2.5 million years ago) global climate and tropical thermocline depth is currently only backed up by data from the Pacific Ocean. In our paper, we present temperature, salinity, and thermocline records from the tropical Atlantic Ocean. Surprisingly, the Pliocene thermocline evolution was remarkably different in the Atlantic and Pacific. We need to reevaluate the mechanisms that drive thermocline depth, and how these are tied to global climate change.
Peter K. Bijl, Joost Frieling, Marlow Julius Cramwinckel, Christine Boschman, Appy Sluijs, and Francien Peterse
Clim. Past, 17, 2393–2425, https://doi.org/10.5194/cp-17-2393-2021, https://doi.org/10.5194/cp-17-2393-2021, 2021
Short summary
Short summary
Here, we use the latest insights for GDGT and dinocyst-based paleotemperature and paleoenvironmental reconstructions in late Cretaceous–early Oligocene sediments from ODP Site 1172 (East Tasman Plateau, Australia). We reconstruct strong river runoff during the Paleocene–early Eocene, a progressive decline thereafter with increased wet/dry seasonality in the northward-drifting hinterland. Our critical review leaves the anomalous warmth of the Eocene SW Pacific Ocean unexplained.
Anna Joy Drury, Diederik Liebrand, Thomas Westerhold, Helen M. Beddow, David A. Hodell, Nina Rohlfs, Roy H. Wilkens, Mitchell Lyle, David B. Bell, Dick Kroon, Heiko Pälike, and Lucas J. Lourens
Clim. Past, 17, 2091–2117, https://doi.org/10.5194/cp-17-2091-2021, https://doi.org/10.5194/cp-17-2091-2021, 2021
Short summary
Short summary
We use the first high-resolution southeast Atlantic carbonate record to see how climate dynamics evolved since 30 million years ago (Ma). During ~ 30–13 Ma, eccentricity (orbital circularity) paced carbonate deposition. After the mid-Miocene Climate Transition (~ 14 Ma), precession (Earth's tilt direction) increasingly drove carbonate variability. In the latest Miocene (~ 8 Ma), obliquity (Earth's tilt) pacing appeared, signalling increasing high-latitude influence.
Gerrit Müller, Jack J. Middelburg, and Appy Sluijs
Earth Syst. Sci. Data, 13, 3565–3575, https://doi.org/10.5194/essd-13-3565-2021, https://doi.org/10.5194/essd-13-3565-2021, 2021
Short summary
Short summary
Rivers are major freshwater resources, connectors and transporters on Earth. As the composition of river waters and particles results from processes in their catchment, such as erosion, weathering, environmental pollution, nutrient and carbon cycling, Earth-spanning databases of river composition are needed for studies of these processes on a global scale. While extensive resources on water and nutrient composition exist, we provide a database of river particle composition.
Christopher M. Lowery, Jean M. Self-Trail, and Craig D. Barrie
Clim. Past, 17, 1227–1242, https://doi.org/10.5194/cp-17-1227-2021, https://doi.org/10.5194/cp-17-1227-2021, 2021
Short summary
Short summary
Recent work has shown that the mid-Cretaceous Oceanic Anoxic Event 2 (OAE2, ∼ 94 million years ago) was associated with a global increase in precipitation, but regional patterns are still poorly known. We present two new OAE2 records from the ancient inner continental shelf of North Carolina, USA. These cores show an increase in the amount of land-plant-derived organic matter delivered to the inner shelf during OAE2, indicating that this region experienced increased precipitation during OAE2.
Annique van der Boon, Klaudia F. Kuiper, Robin van der Ploeg, Marlow Julius Cramwinckel, Maryam Honarmand, Appy Sluijs, and Wout Krijgsman
Clim. Past, 17, 229–239, https://doi.org/10.5194/cp-17-229-2021, https://doi.org/10.5194/cp-17-229-2021, 2021
Short summary
Short summary
40.5 million years ago, Earth's climate warmed, but it is unknown why. Enhanced volcanism has been suggested, but this has not yet been tied to a specific region. We explore an increase in volcanism in Iran. We dated igneous rocks and compiled ages from the literature. We estimated the volume of igneous rocks in Iran in order to calculate the amount of CO2 that could have been released due to enhanced volcanism. We conclude that an increase in volcanism in Iran is a plausible cause of warming.
Daniel J. Lunt, Fran Bragg, Wing-Le Chan, David K. Hutchinson, Jean-Baptiste Ladant, Polina Morozova, Igor Niezgodzki, Sebastian Steinig, Zhongshi Zhang, Jiang Zhu, Ayako Abe-Ouchi, Eleni Anagnostou, Agatha M. de Boer, Helen K. Coxall, Yannick Donnadieu, Gavin Foster, Gordon N. Inglis, Gregor Knorr, Petra M. Langebroek, Caroline H. Lear, Gerrit Lohmann, Christopher J. Poulsen, Pierre Sepulchre, Jessica E. Tierney, Paul J. Valdes, Evgeny M. Volodin, Tom Dunkley Jones, Christopher J. Hollis, Matthew Huber, and Bette L. Otto-Bliesner
Clim. Past, 17, 203–227, https://doi.org/10.5194/cp-17-203-2021, https://doi.org/10.5194/cp-17-203-2021, 2021
Short summary
Short summary
This paper presents the first modelling results from the Deep-Time Model Intercomparison Project (DeepMIP), in which we focus on the early Eocene climatic optimum (EECO, 50 million years ago). We show that, in contrast to previous work, at least three models (CESM, GFDL, and NorESM) produce climate states that are consistent with proxy indicators of global mean temperature and polar amplification, and they achieve this at a CO2 concentration that is consistent with the CO2 proxy record.
Michiel Baatsen, Anna S. von der Heydt, Matthew Huber, Michael A. Kliphuis, Peter K. Bijl, Appy Sluijs, and Henk A. Dijkstra
Clim. Past, 16, 2573–2597, https://doi.org/10.5194/cp-16-2573-2020, https://doi.org/10.5194/cp-16-2573-2020, 2020
Short summary
Short summary
Warm climates of the deep past have proven to be challenging to reconstruct with the same numerical models used for future predictions. We present results of CESM simulations for the middle to late Eocene (∼ 38 Ma), in which we managed to match the available indications of temperature well. With these results we can now look into regional features and the response to external changes to ultimately better understand the climate when it is in such a warm state.
André Bahr, Monika Doubrawa, Jürgen Titschack, Gregor Austermann, Andreas Koutsodendris, Dirk Nürnberg, Ana Luiza Albuquerque, Oliver Friedrich, and Jacek Raddatz
Biogeosciences, 17, 5883–5908, https://doi.org/10.5194/bg-17-5883-2020, https://doi.org/10.5194/bg-17-5883-2020, 2020
Short summary
Short summary
We explore the sensitivity of cold-water corals (CWCs) to environmental changes utilizing a multiproxy approach on a coral-bearing sediment core from off southeastern Brazil. Our results reveal that over the past 160 kyr, CWCs flourished during glacial high-northern-latitude cold events (Heinrich stadials). These periods were associated with anomalous wet phases on the continent enhancing terrigenous nutrient and organic-matter supply to the continental margin, boosting food supply to the CWCs.
Appy Sluijs, Joost Frieling, Gordon N. Inglis, Klaas G. J. Nierop, Francien Peterse, Francesca Sangiorgi, and Stefan Schouten
Clim. Past, 16, 2381–2400, https://doi.org/10.5194/cp-16-2381-2020, https://doi.org/10.5194/cp-16-2381-2020, 2020
Short summary
Short summary
We revisit 15-year-old reconstructions of sea surface temperatures in the Arctic Ocean for the late Paleocene and early Eocene epochs (∼ 57–53 million years ago) based on the distribution of fossil membrane lipids of archaea preserved in Arctic Ocean sediments. We find that improvements in the methods over the past 15 years do not lead to different results. However, data quality is now higher and potential biases better characterized. Results confirm remarkable Arctic warmth during this time.
Gordon N. Inglis, Fran Bragg, Natalie J. Burls, Marlow Julius Cramwinckel, David Evans, Gavin L. Foster, Matthew Huber, Daniel J. Lunt, Nicholas Siler, Sebastian Steinig, Jessica E. Tierney, Richard Wilkinson, Eleni Anagnostou, Agatha M. de Boer, Tom Dunkley Jones, Kirsty M. Edgar, Christopher J. Hollis, David K. Hutchinson, and Richard D. Pancost
Clim. Past, 16, 1953–1968, https://doi.org/10.5194/cp-16-1953-2020, https://doi.org/10.5194/cp-16-1953-2020, 2020
Short summary
Short summary
This paper presents estimates of global mean surface temperatures and climate sensitivity during the early Paleogene (∼57–48 Ma). We employ a multi-method experimental approach and show that i) global mean surface temperatures range between 27 and 32°C and that ii) estimates of
bulkequilibrium climate sensitivity (∼3 to 4.5°C) fall within the range predicted by the IPCC AR5 Report. This work improves our understanding of two key climate metrics during the early Paleogene.
Cited articles
Armstrong McKay, D. I. and Lenton, T. M.: Reduced carbon cycle resilience across the Palaeocene–Eocene Thermal Maximum, Clim. Past, 14, 1515–1527, https://doi.org/10.5194/cp-14-1515-2018, 2018.
Aze, T., Pearson, P. N., Dickson, A. J., Badger, M. P. S., Bown, P. R., Pancost, R. D., Gibbs, S. J., Huber, B. T., Leng, M. J., Coe, A. L., Cohen, A. S., and Foster, G. L.: Extreme warming of tropical waters during the Paleocene–Eocene Thermal Maximum, Geology, 42, 739–742, https://doi.org/10.1130/G35637.1, 2014.
Babila, T. L., Penman, D. E., Standish, C. D., Doubrawa, M., Bralower, T. J., Robinson, M. M., Self-Trail, J. M., Speijer, R. P., Stassen, P., Foster, G. L., and Zachos, J. C.: Surface ocean warming and acidification driven by rapid carbon release precedes Paleocene-Eocene Thermal Maximum, Science Advances, 8, eabg1025, https://doi.org/10.1126/sciadv.abg1025, 2022.
Bains, S., Corfield, R. M., and Norris, R. D.: Mechanisms of climate warming at the end of the Paleocene, Science, 285, 724–727, https://doi.org/10.1126/science.285.5428.724, 1999.
Barnet, J. S. K., Littler, K, Droon, D., Leng, M. J., Westerhold, T., Rohl, U., and Zachos, J. C.: A new high-resolution chronology for the late Maastrichtian warming event: Establishing robust temporal links with the onset of Deccan volcanism, Geology, 46, 147–150, https://doi.org/10.1130/G39771.1, 2018.
Bowen, G. J. and Zachos, J. C.: Rapid carbon sequestration at the termination of the Palaeocene-Eocene Thermal Maximum, Nat. Geosci., 3, 866–869, 2010.
Bowen, G. J., Maibauer, B. J., Kraus, M. J., Röhl, U., Westerhold, T., Steimke, A., Gingerich, P.D., Wing, S. L., and Clyde, W. C.: Two massive, rapid releases of carbon during the onset of the Palaeocene–Eocene thermal maximum, Nat. Geosci., 8, 44–47, https://doi.org/10.1038/ngeo2316, 2015.
Bralower, T. J., Zachos, J. C., Thomas, E., Parrow, M., Paull, C. K., Kelly, D. C., Premoli Silva, I., Sliter, W. V., and Lohmann, K. C.: Late Paleocene to Eocene paleoceanography of the equatorial Pacific Ocean: stable isotopes recorded at Ocean Drilling Program Site 865, Allison Guyot, Paleoceanography, 10, 841–865, https://doi.org/10.1029/95PA01143, 1995.
Bralower, T. J., Kelly, D. C., Gibbs, S., Farley, K., Eccles, L., Lindemann, T. L., and Smith, G. J.: Impact of dissolution on the sedimentary record of the Paleocene–Eocene thermal maximum, Earth Planet. Sc. Lett., 401, 70–82, https://doi.org/10.1016/j.epsl.2014.05.055, 2014.
Bralower, T. J., Kump, L. R., Self-Trail, J. M., Robinson, M. M., Lyons, S., Babila, T., Ballaron. E., Freeman, K. H., Hajek, E., Rush, W., and Zachos, J. C.: Evidence for shelf acidification during the onset of the Paleocene-Eocene Thermal Maximum, Paleoceanography and Paleoclimatology, 33, 1408–1426, https://doi.org/10.1029/2018PA003382, 2018.
Browning, J. V., Miller, K. G., McLaughlin, P. P., Kominz, M. A., Sugarman, P. J., Monteverde, D., Feigenson, M. D., and Hernàndez, J. C.: Quantification of the effects of eustasy, subsidence, and sediment supply on Miocene sequences, Mid-Atlantic margin of the United States, Geol. Soc. Am. Bull., 118, 567–588, https://doi.org/10.1130/B25551.1, 2006.
Colosimo, A. B, Bralower, T. J., and Zachos, J. C.: Evidence for lysocline shoaling at the Paleocene/Eocene Thermal Maximum on Shatsky Rise, Northwest Pacific, http://www-odp.tamu.edu/publications/198_SR/112/112.htm (last access: 31 January 2024), 2005.
Cramer, B. S., Aubry, M.-P., Miller, K. G., Olsson, R. K., Wright, J. D., and Kent, D. V.: An exceptional chronologic, isotopic, and clay mineralogic record at the latest Paleocene thermal maximum, Bass River, NJ, ODP 174AX, B. Soc. Geol. Fr., 170, 883–897, 1999.
Cramer, B. S., Wright, J. D., Kent, D. V., and Aubry, M.-P.: Orbital climate forcing of δ13C excursions in the late Paleocene–early Eocene (chrons C24n–C25n), Paleoceanography, 18, 1097, https://doi.org/10.1029/2003PA000909, 2003.
Crider, E. A., Self-Trail, J. M., Parker, M., Seefelt, E. L., Staley, A., Beach, T., Bruce, T. S., and Quinn, H.: Database for the isopach map of the Brightseat Formation and structure contour map of the Cretaceous-Paleogene boundary, in Maryland and Virginia, U.S. Geological Survey Data Release [data set], https://doi.org/10.5066/P9AHP9BC, 2022.
Crider, E. A., Self-Trail, J. M., Parker, M., Gardner, K. F., Beach, T., Bruce, T. S., Staley, A., and Quinn, H.: Isopach contour map of the upper Paleocene Aquia Formation and structure contour map of the Paleocene-Eocene boundary in the Salisbury Embayment of Maryland and Virginia, GSA SE/NE Sectional Meeting, Reston, VA, 17–19 March 2023, https://doi.org/10.1130/abs/2023SE-385653, 2023.
Cui, Y., Kump, L. R., Ridgwell, A. J., Charles, A. J., Junium, C. K., Diefendorf, A. F., Freeman, K. H., Urban, N. M., and Harding, I. C.: Slow release of fossil carbon during the Palaeocene–Eocene Thermal Maximum, Nat. Geosci., 4, 481–485, https://doi.org/10.1038/NGEO1179, 2011.
de Bar, M. W., de Nooijer, L. J., Schouten, S., Ziegler, M., Sluijs, A., and Reichart, G.-J.: Comparing Seawater Temperature Proxy Records for the Past 90 Myrs from the Shallow Shelf Record Bass River, New Jersey, Paleoceanography and Paleoclimatology, 34, 455–475, https://doi.org/10.1029/2018PA003453, 2019.
Dickens, G. R., O'Neil, J. R., Rea, D. K., and Owen, R. M.: Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene, Paleoceanography, 10, 965–971, https://doi.org/10.1029/95PA02087, 1995.
Dickens, G. R., Castillo, M. M., and Walker J. C. G.: A blast of gas in the latest Paleocene: Simulating first-order effects of massive dissociation of oceanic methane hydrate, Geology, 25, 259–262, https://doi.org/10.1130/0091-7613(1997)025<0259:ABOGIT>2.3.CO;2, 1997.
Doubrawa, M., Stassen, P., Robinson, M. M., Babila, T. L., Zachos, J. C., and Speijer, R. P.: Shelf ecosystems along the U.S. Atlantic Coastal Plain prior to and during the Paleocene-Eocene Thermal Maximum: Insights into the stratigraphic architecture, Paleoceanography and Paleoclimatology, 37, e2022PA004475, https://doi.org/10.1029/2022PA004475, 2022.
Dowsett, H. J., Robinson, M. M., Foley, K. M., and Herbert, T. D.: The Yorktown Formation: Improved Stratigraphy, Chronology, and Paleoclimate Interpretations from the U.S. Mid-Atlantic Coastal Plain, Geosciences, 11, 486, https://doi.org/10.3390/geosciences11120486, 2021.
Dunkley Jones, T., Lunt, D. J., Schmidt, D. N., Ridgwell, A., Sluijs, A., Valdes, P. J., and Maslin, M.: Climate model and proxy data constraints on ocean warming across the Paleocene-Eocene Thermal Maximum, Earth-Sci. Rev., 125, 123–145, https://doi.org/10.1016/j.earscirev.2013.07.004, 2013.
Esmeray-Senlet, S., Wright, J. D., Olsson, R. K., Miller, K. G., Browning, J. V., and Quan, T. M.: Evidence for reduced export productivity following the Cretaceous/Paleogene mass extinction, Paleoceanography, 30, 1–21, https://doi.org/10.1002/2014PA002724, 2015.
Frieling, J., Gebhardt, H., Huber, M., Adekeye, O. A., Akande, S. O., Reichart, G.-J., Middelburg, J. J., Schouten, S., and Sluijs, A.: Extreme warmth and heat-stressed plankton in the tropics during the Paleocene-Eocene Thermal Maximum, Science Advances, 3, e1600891, https://doi.org/10.1126/sciadv.1600891, 2017.
Frieling, J., Reichart, G.-J., Middelburg, J. J., Röhl, U., Westerhold, T., Bohaty, S. M., and Sluijs, A.: Tropical Atlantic climate and ecosystem regime shifts during the Paleocene–Eocene Thermal Maximum, Clim. Past, 14, 39–55, https://doi.org/10.5194/cp-14-39-2018, 2018.
Frieling, J., Peterse, F., Lunt, D. J., Bohaty, S. M., Sinninghe Damsté, J. S., Reichart, G.-J., and Sluijs, A.: Widespread warming before and elevated barium burial during the Paleocene-Eocene Thermal Maximum: Evidence for methane hydrate release?, Paleoceanography and Paleoclimatology, 34, 546–566, https://doi.org/10.1029/2018pa003425, 2019.
Fung, M. K., Katz, M. E., Miller, K. G., Browning, J. V., and Rosenthal Y.: Sequence stratigraphy, micropaleontology, and foraminiferal geochemistry, Bass River, New Jersey paleoshelf, USA: Implications for Eocene ice-volume changes, Geosphere, 15, 502–532, https://doi.org/10.1130/GES01652.1, 2019.
Fung, M. K., Katz, M. E., Miller, K. G., Browning, J. V., and Schaller, M. F.: Exploring Early Eocene hyperthermals on the New Jersey paleoshelf (ODP 174AX), J. Foramin. Res., 53, 378–396, https://doi.org/10.2113/gsjfr.53.4.378, 2023.
Gibson, T. G. and Bybell, L. M.: Sedimentary patterns across the Paleocene-Eocene boundary in the Atlantic and Gulf Coastal Plains of the United States, Bulletin – Societe Belge de Geologie, 103, 237–265, 1994.
Gibson, T. G., Bybell, L. M., and Owens, J. P.: Latest Paleocene lithologic and biotic events in neritic deposits from south-western New Jersey, Paleoceanography, 8, 495–514, 1993.
Gibson, T. G., Bybell, L. M., and Mason, D. B.: Stratigraphic and climatic implications of clay mineral changes around the Paleocene/Eocene boundary of the northeastern US margin, Sediment. Geol., 134, 65–92, 2000.
Gutjahr, M., Ridgwell, A., Sexton, P. F., Anagnostou, E., Pearson, P. N., Pälike, H., Norris, R. D., Thomas, E., and Foster, G. L.: Very large release of mostly volcanic carbon during the Palaeocene-Eocene Thermal Maximum, Nature, 548, 573–577, https://doi.org/10.1038/nature23646, 2017.
Harris, A. D., Miller, K. G., Browning, J. V., Sugarman, P. J., Olsson, R. K., Cramer, B. S., and Wright, J. D.: Integrated stratigraphic studies of Paleocene-lowermost Eocene sequences, New Jersey Coastal Plain: Evidence for glacioeustatic control, Paleoceanography, 25, PA3211, https://doi.org/10.1029/2009PA001800, 2010.
Inglis, G. N., Martinez-Sosa, P., Tierney, J. E., Witkowski, C. R., Lyons, S., Baczynski, A. A., and Freeman, K. H.: Impact of organic carbon reworking upon GDGT temperature proxies during the Paleocene-Eocene Thermal Maximum, Org. Geochem., 183, 104644, https://doi.org/10.1016/j.orggeochem.2023.104644, 2023.
John, C. M., Bohaty, S. M., Zachos, J. C., Sluijs, A., Gibbs, S., Brinkhuis, H., and Bralower, T. J.: North American continental margin records of the Paleocene-Eocene thermal maximum: Implications for global carbon and hydrological cycling, Paleoceanography, 23, 1–20, https://doi.org/10.1029/2007PA001465, 2008.
John, C. M., Banerjee, N. R., Longstaffe, F. J., Sica, C., Law, K. R., and Zachos, J. C.: Clay assemblage and oxygen isotopic constraints on the weathering response to the Paleocene- Eocene thermal maximum, east coast of North America, Geology, 40, 591–594, 2012.
Kahn, A. and Aubry, M.-P.: Provincialism associated with the Paleocene/Eocene thermal maximum: temporal constraint, Mar. Micropaleontol., 52, 117–131, https://doi.org/10.1016/j.marmicro.2004.04.003, 2004.
Katz, M. E., Pak, D. K., Dickens, G. R., and Miller, K. G.: The source and fate of massive carbon input during the Latest Paleocene Thermal Maximum, Science, 286, 1531–1533, 1999.
Kennett, J. P. and Stott, L. D.: Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene, Nature, 353, 225–229, 1991.
Kent, D. V., Cramer, B. S., Lanci, L., Wang, D., Wright, J. D., and Van der Voo, R.: A case for a comet impact trigger for the Paleocene/Eocene thermal maximum and carbon isotope excursion, Earth Planet. Sc. Lett., 211, 13–26, 2003.
Kent, D. V., Lanci, L., Wang, H., and Wright, J. D.: Enhanced magnetization of the Marlboro Clay as a product of soil pyrogenesis at the Paleocene–Eocene boundary?, Earth Planet. Sc. Lett., 473, 303–312, https://doi.org/10.1016/j.epsl.2017.06.014, 2017.
Kirtland Turner, S.: Constraints on the onset duration of the Paleocene–Eocene Thermal Maximum, Philos. T. Roy. Soc. A, 376, 20170082, https://doi.org/10.1098/rsta.2017.0082, 2018.
Kirtland Turner, S. and Ridgwell, A.: Development of a novel empirical framework for interpreting geological carbon isotope excursions, with implications for the rate of carbon injection across the PETM, Earth Planet. Sc. Lett., 435, 1–13, https://doi.org/10.1016/j.epsl.2015.11.027, 2016.
Koch, P. L., Zachos, J. C., and Gingerich, P. D.: Correlation between isotope records in marine and continental carbon reservoirs near the Palaeocene/Eocene boundary, Nature, 358, 319–322, 1992.
Kopp, R. E., Schumann, D., Raub, T. D., Powars, D. S., Godfrey, L. V., Swanson-Hysell, N. L., Maloof, A. C., and Vali, H.: An Appalachian Amazon? Magnetofossil evidence for the development of a tropical river-like system in the mid-Atlantic United States during the Paleocene-Eocene thermal maximum, Paleoceanography, 24, 1–17, https://doi.org/10.1029/2009PA001783, 2009.
Li, M., Bralower, T. J., Kump, L. R., Self-Trail, J. M., Zachos, J. C., Rush, W. D., and Robinson, M. M.: Astrochronology of the Paleocene-Eocene thermal maximum on the Atlantic coastal plain, Nat. Commun., 13, 5618, https://doi.org/10.1038/s41467-022-33390-x, 2022.
Lippert, P. C. and Zachos, J. C.: A biogenic origin for anomalous fine-grained magnetic material at the Paleocene–Eocene boundary at Wilson Lake, New Jersey, Paleoceanography, 22, PA4104, https://doi.org/10.1029/2007PA001471, 2007.
Lombardi, C. J.: Lithostratigraphy and clay mineralogy of Paleocene-Eocene thermal maximum sediments at Wilson Lake, NJ, MS thesis, Rutgers University, 94 pp., 2013.
Lourens, L. J., Sluijs, A., Kroon, D., Zachos, J. C., Thomas, E., Röhl, U., Bowles, J., and Raffi, I.: Astronomical pacing of late Palaeocene to early Eocene global warming events, Nature, 435, 1083–1087, https://doi.org/10.1038/nature03814, 2005.
Lunt, D. J., Ridgwell, A., Sluijs, A., Zachos, J., Hunter, S., and Haywood, A.: A model for orbital pacing of methane hydrate destabilization during the Palaeogene, Nat. Geosci., 4, 775–778, 2011.
Makarova, M.: Application of multiproxy tracers to reconstruct paleoenvironmental perturbations on the mid-Atlantic margin across the Paleocene-Eocene thermal maximum, PhD thesis, Rutgers University, 194 pp., https://doi.org/10.7282/t3-k5md-yd57, 2018.
Makarova, M., Wright, J. D., Miller, K. G., Babila, T. L., Rosenthal, Y., and Park, J. I.: Hydrographic and ecologic implications of foraminiferal stable isotopic response across the U.S. mid-Atlantic continental shelf during the Paleocene-Eocene Thermal Maximum, Paleoceanography, 32, 1–18, https://doi.org/10.1002/2016PA002985, 2017.
McInerney, F. A. and Wing, S. L.: The Paleocene-Eocene thermal maximum: a perturbation of carbon cycle, climate, and biosphere with implications for the future, Annu. Rev. Earth Pl. Sc., 39, 489–516, 2011.
Miller, K. G., Browning, J. V., Aubry, M.-P., Babila, T., Baluyot, R. D., Esmeray-Senlet, S., Feigenson, M. D., Karakaya, S., Lombardi, C. J., McCreary, S., McLaughlin. P. P., Monteverde, D. H., Olsson, R. K., Smith C. T., Sugarman., P. J., and Wright J. D.: Wilson Lake B Site, in: Proceedings of the Ocean Drilling Program, edited by: Miller, K. G., Sugarman, P. J., Browning, J. V., McLaughlin, P. P., and Pekar, S. F., Initial reports, Vol. 174AX (Supplement), College Station, TX, https://doi.org/10.2973/odp.proc.174AXS.111.2017, 2017.
Miller, K. G., Browning, J. V., Schmelz, W. J, Kopp, R. E., Mountain, G. S., and Wright, J. D.: Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records, Science Advances, 6, eaaz1346, https://doi.org/10.1126/sciadv.aaz1346, 2020.
Mixon, R. B., Pavlides, L., Powars, D. S., Froelich, A. J., Weems, R. E., Schindler, J. S., Newell, W. L., Edwards, L. E., and Ward, L. W.: Geologic Map of the Fredericksburg 30' x 60' Quadrangle, Virginia and Maryland, U.S. Geological Survey Geologic Investigations Series Map I-2607, scale 1:100,000, 2 sheets, https://doi.org/10.3133/i2607, 2000.
Moucha, R., Forte, A. M., Mitrovica, J. X., Rowley, D. B., Quéré, S., Simmons, N. A., and Grand, S. P.: Dynamic topography and long-term sea-level variations: There is no such thing as a stable continental platform, Earth Planet. Sc. Lett., 271, 101–108, 2008.
Nittrouer, C. A., Kuehl, S. A., Figueiredo Jr., A. G., Allison, M. A., Sommerfield, C. K., Rine, J. M., Faria, L. E. C., and Silveira, O. M.: The geological record preserved by Amazon shelf sedimentation, Cont. Shelf Res., 16, 817–841, 1996.
Olsson, R. K., Miller, K. G., Browning, J. V., Habib, D., and Sugarman, P. J.: Ejecta layer at the Cretaceous-Tertiary boundary, Bass River, New Jersey (Ocean Drilling Program Leg 174AX), Geology, 25, 759–762, 1997.
Olsson, R. K., Miller, K. G., Browning, J. V., Wright, J. D., and Cramer, B. S.: Sequence stratigraphy and sea-level change across the Cretaceous-Tertiary boundary on the New Jersey passive margin, Geological Society of America Special Paper 356, 97–108, https://doi.org/10.1130/0-8137-2356-6.97, 2002.
Pagani, M., Caldeira, K., Archer, D., and Zachos, J. C.: An ancient carbon mystery, Science, 314, 1556–1557, https://doi.org/10.1126/science.1136110, 2006.
Pearson, P. N. and Nicholas, C. J.: Layering in the Paleocene/Eocene boundary of the Millville core is drilling disturbance, P. Natl. Acad. Sci. USA, 111, E1064–E1065, https://doi.org/10.1073/pnas.1322077111, 2013.
Pearson, P. N. and Thomas, E.: Drilling disturbance and constraints on the onset of the Paleocene–Eocene boundary carbon isotope excursion in New Jersey, Clim. Past, 11, 95–104, https://doi.org/10.5194/cp-11-95-2015, 2015.
Pearson, P. N., Ditchfield, P. W., Singano, J., Harcourt-Brown, K. G., Nicholas, C. J., Olsson, R. K., Shackleton, N. J., and Hall, M. A.: Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs, Nature, 413, 481–487, https://doi.org/10.1038/35097000, 2001.
Piedrahita, V. A., Galeotti, S., Zhao, X., Roberts, A. P., Rohling, E. J., Heslop, D., Florindo, F., Grant, K. M., Rodríguez-Sanz, L., Reghellin, D., and Zeebe, R. E.: Orbital phasing of the Paleocene-Eocene Thermal Maximum, Earth Planet. Sc. Lett., 598, 117839, https://doi.org/10.1016/j.epsl.2022.117839, 2022.
Planke, S., Berndt, C., Alvarez Zarikian, C. A., and the Expedition 396 Scientists: Expedition 396 Preliminary Report: Mid-Norwegian continental margin magmatism and paleoclimate implications, International Ocean Discovery Program, https://doi.org/10.14379/iodp.pr.396.2022, 2022.
Podrecca, L. G., Makarova, M., Miller, K. G., Browning, J. V., and Wright, J. D.: Clear as mud: Expanded records of the Paleocene-Eocene Thermal Maximum onset in the Appalachian Amazon, Geology, 49, 1441–1445, https://doi.org/10.1130/G49061.1, 2021.
Robinson, M. M. and Spivey, W. E.: Environmental and geomorphological changes on the eastern North American continental shelf across the Paleocene-Eocene Boundary, Paleoceanography and Paleoclimatology, 34, 715–732, https://doi.org/10.1029/2018PA003357, 2019.
Robinson, M. M., Dowsett, H. J., and Herbert, T. D.: Very high Middle Miocene surface productivity on the U.S. mid-Atlantic shelf amid glacioeustatic sea level variability, Palaeogeogr. Palaeoecol., 606, 111249, https://doi.org/10.1016/j.palaeo.2022.111249, 2022.
Röhl, U., Westerhold, T., Bralower, T. J., and Zachos, J. C.: On the duration of the Paleocene-Eocene thermal maximum (PETM), Geochem. Geophy. Geosy., 8, Q12002, https://doi.org/10.1029/2007GC001784, 2007.
Rush, W., Kiehl, J., Shields, C., and Zachos, J.: Increased frequency of extreme precipitation events in the North Atlantic during the PETM: Observations and theory, Palaeogeogr. Palaeocl., 568, 110289, https://doi.org/10.1016/j.palaeo.2021.110289, 2021.
Rush, W., Self-Trail, J., Zhang, Y., Sluijs, A., Brinkhuis, H., Zachos, J., Ogg, J. G., and Robinson, M.: Assessing environmental change associated with early Eocene hyperthermals in the Atlantic Coastal Plain, USA, Clim. Past, 19, 1677–1698, https://doi.org/10.5194/cp-19-1677-2023, 2023.
Schaller, M. F. and Fung M. K.: The extraterrestrial impact evidence at the Palaeocene–Eocene boundary and sequence of environmental change on the continental shelf, Philos. T. Roy. Soc. A, 376, 20170081, https://doi.org/10.1098/rsta.2017.0081, 2018.
Schaller, M. F., Fung, M. K., Wright, J. D., Katz, M. E., and Kent, D. V.: Impact ejecta at the Paleocene-Eocene boundary, Science, 354, 225–229, https://doi.org/10.1126/science.aaf5466, 2016.
Schaller, M. F., Turrin, B. D., Fung, M. K., Katz, M. E., and Swisher, C. C.: Initial 40Ar-39Ar ages of the Paleocene-Eocene Boundary impact spherules, Geophys. Res. Lett., 46, 9091–9102, https://doi.org/10.1029/2019GL082473, 2019.
Schmelz, W. J., Miller, K. G., Kopp, R., Mountain, G. S., and Browning, J. V.: Influence of mantle dynamic topographical variations on US mid-Atlantic continental margin estimates of sea-level change, Geophys. Res. Lett., 48, e2020GL090521, https://doi.org/10.1029/2020GL090521, 2021.
Schmelz, W. J, Miller, K. G., Mountain, G. S., Steckler, M. S., Kopp, R. E., and Browning, J. V.: Sensitivity of modeled passive margin stratigraphy to variations in sea level, sediment supply, and subsidence, Basin Res., 36, e12854, https://doi.org/10.1111/bre.12854, 2024.
Schulte, P., Alegret, L., Arenillas I., Arz, J. A., Barton, P. J., Bown, P. R., Bralower, T. J., Christeson, G. L., Claeys, P., Cockell, C. S., Collins, G. S., Deutsch, A., Goldin, T. J., Goto, K., Grajales-Nishimura, J. M., Grieve, R. A. F., Gulick, S. P. S., Johnson, K. R., Kiessling, W., Koeberl, C., Kring, D. A., Macleod, K. G., Matsui, T., Melosh, J., Montanari, A., Morgan, J. V., Neal, C. R., Nichols, D. J., Norris, R. D., Pierazzo, E., Ravizza, G., Rebolledo-Vieyra, M., Reimold, W. U., Robin, E., Salge, T., Speijer, R. P., Sweet, A. R., Urrutia-Fucugauchi, J., Vajda, V., Whalen, M. T., and Willumsen, P. S.: The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary, Science, 327, 1214–1218, https://doi.org/10.1126/science.1177265, 2010.
Secord, R., Gingerich, P. D., Lohmann, K. C., and MacLeod, K. G.: Continental warming preceding the Palaeocene-Eocene thermal maximum, Nature, 467, 955–958, https://doi.org/10.1038/nature09441, 2010.
Self-Trail, J. M., Hajek, E. A., Edwards, L. E., Robinson, M. M., Bralower, T. J., Sessa, J. A., Kump, L. R., Trampush, S. M., Willard, D. A., Powars, D. S., and Wandless, G. A.: Shallow marine response to global climate change during the Paleocene-Eocene Thermal Maximum, Salisbury Embayment, USA, Paleoceanography, 32, 710–728, https://doi.org/10.1002/2017PA003096, 2017.
Setty, S., Cramwinckel, M. J., van Nes, E. H., van de Leemput, I. A., Dijkstra, H. A., Lourens, L. J., Scheffer, M., and Sluijs, A.: Loss of Earth system resilience during early Eocene transient global warming events, Science Advances, 9, eade5466, https://doi.org/10.1126/sciadv.ade5466, 2023.
Si, W. and Aubry, M.-P.: Vital effects and ecologic adaptation of photosymbiont-bearing planktonic foraminifera during the Paleocene-Eocene Thermal Maximum, implications for paleoclimate, Paleoceanography and Paleoclimatology, 33, 1–14, https://doi.org/10.1002/2017PA003219, 2018.
Sluijs, A., Schouten, S., Pagani, M., Woltering, M., Brinkhuis, H., Sinninghe Damsté, J. S., Dickens, G. R., Huber, M., Reichart, G.-J., Stein, R., Matthiessen, J., Lourens, L. J., Pedentchouk, N., Backman, J., Moran, K., and the Expedition 302 Scientists: Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum, Nature, 441, 610–613, https://doi.org/10.1038/nature04668, 2006.
Sluijs, A., Brinkhuis, H., Schouten, S., Bohaty, S. M., John, C. M., Zachos, J. C., Reichart, G.-J., Sinninghe Damsté, J. S., Crouch, E. M., and Dickens, G. R.: Environmental precursors to rapid light carbon injection at the Palaeocene/Eocene boundary, Nature, 450, 1218–1221, https://doi.org/10.1038/nature06400, 2007.
Sluijs, A., Brinkhuis, H., Crouch, E. M., John, C. M., Handley, L., Munsterman, D., Bohaty, S. M., Zachos, J. C., Reichart, G.-J., Schouten, S., Pancost, R. D., Sinninghe Damsté, J. S., Welters, N. L. D., Lotter, A. F., and Dickens, G. R.: Eustatic variations during the Paleocene-Eocene greenhouse world, Paleoceanography and Paleoclimatology, 23, PA4216, https://doi.org/10.1029/2008PA001615, 2008.
Sluijs, A., Schouten, S., Donders, T. H., Schoon, P. L., Röhl, U., Reichart, G.-J., Sangiorgi, F., Kim, J.-H., Sinninghe Damste, J. S., and Brinkhuis, H.: Warm and wet conditions in the Arctic region during the Eocene Thermal Maximum 2, Nat. Geosci., 11, 777–780, https://doi.org/10.1038/ngeo668, 2009.
Stassen, P., Thomas, E., and Speijer, R. P.: Integrated stratigraphy of the Paleocene-Eocene thermal maximum in the New Jersey Coastal Plain: Toward understanding the effects of global warming in a shelf environment, Paleoceanography, 27, 1–17, https://doi.org/10.1029/2012PA002323, 2012.
Stassen, P., Thomas, E., and Speijer, R. P.: Paleocene–Eocene Thermal Maximum environmental change in the New Jersey Coastal Plain: benthic foraminiferal biotic events, Mar. Micropaleontol., 115, 1–23, https://doi.org/10.1016/j.marmicro.2014.12.001, 2015.
Steckler, M. S., Mountain, G. S., Miller, K. G., and Christie-Blick, N.: Reconstruction of Tertiary progradation and clinoform development on the New Jersey passive margin by 2-D backstripping, Mar. Geol., 154, 399–420, 1999.
Thomas, D. J., Bralower, T. J., and Zachos, J. C.: New evidence for subtropical warming during the late Paleocene thermal maximum: Stable isotopes from Deep Sea Drilling Project Site 527, Walvis Ridge, Paleoceanography, 14, 561–570, 1999.
Thomas, E.: Development of Cenozoic deep-sea benthic foraminiferal faunas in Antarctic waters, Geological Society London Special Publication, 47, 283–296, 1989.
Thomas, E. and Zachos, J. C.: Was the late Paleocene thermal maximum a unique event?, Geologiska Föreningens i Stockholm Förhandlingar (GFF; Transactions of the Geological Society in Stockholm), 122, 169–170, 2000.
Tian, S. Y., Yasuhara, M., Robinson, M. M., and Huang, H.-H. M.: Ostracod eye size: A taxonomy-free indicator of the Paleocene-Eocene Thermal Maximum sea level, Mar. Micropaleontol., 174, 101994, https://doi.org/10.1016/j.marmicro.2021.101994, 2022.
Tierney, J. E., Zhu, J., Li, M., and Kump, L. R.: Spatial patterns of climate change across the Paleocene-Eocene Thermal Maximum, P. Natl. Acad. Sci. USA, 119, e2205326119, https://doi.org/10.1073/pnas.2205326119, 2022.
Tripati, A. K. and Elderfield, H.: Abrupt hydrographic changes in the equatorial Pacific and subtropical Atlantic from foraminiferal indicate greenhouse origin for the thermal maximum at the Paleocene-Eocene Boundary, Geochem. Geophy. Geosy., 5, Q02006, https://doi.org/10.1029/2003GC000631, 2004.
Vimpere, L., Spangenberg, J., Roige, M., Adatte, T., De Kaenel, E., Fildani, A., Clark, J., Sahoo, S., Bowman, A., Sternai, P., and Castelltort, S.: Carbon isotope and biostratigraphic evidence for an expanded Paleocene–Eocene Thermal Maximum sedimentary record in the deep Gulf of Mexico, Geology, 51, 334–339, https://doi.org/10.1130/G50641.1, 2023.
Wang, H., Kent, D. V., and Jackson, M. J.: Evidence for abundant isolated magnetic nanoparticles at the Paleocene–Eocene boundary, P. Natl. Acad. Sci. USA, 110, 425–430, https://doi.org/10.1073/pnas.1205308110, 2013.
Westerhold, T., Röhl, U., Frederichs, T., Agnini, C., Raffi, I., Zachos, J. C., and Wilkens, R. H.: Astronomical calibration of the Ypresian timescale: implications for seafloor spreading rates and the chaotic behavior of the solar system?, Clim. Past, 13, 1129–1152, https://doi.org/10.5194/cp-13-1129-2017, 2017.
Westerhold, T., Röhl, U., Donner, B., and Zachos, J. C.: Global extent of Early Eocene hyperthermal events: A new Pacific benthic foraminiferal isotope record from Shatsky Rise (ODP Site 1209), Paleoceanography and Paleoclimatology, 33, 626–642, https://doi.org/10.1029/2017PA003306, 2018.
Wing, S. L., Harrington, G. J., Smith, F. A., Bloch, J. I., Boyer, D. M., and Freeman, K. H.: Transient floral change and rapid global warming at the Paleocene-Eocene boundary, Science, 310, 993–996, https://doi.org/10.1126/science.1116913, 2005.
Wright, J. D. and Schaller, M. F.: Evidence for a rapid release of carbon at the Paleocene-Eocene Thermal Maximum, P. Natl. Acad. Sci. USA, 110, 15908–15913, https://doi.org/10.1073/pnas.1309188110, 2013.
Zachos, J. C., Wara, M. W., Bohaty, S. M., Delaney, M. L., Petrizzo, M. R., Brill, A., Bralower, T. J., and Premoli-Silva, I.: A transient rise in tropical sea surface temperature during the Paleocene-Eocene thermal maximum, Science, 302, 1551–1554, https://doi.org/10.1126/science.1090110, 2003.
Zachos, J. C., Röhl, U., Schellenberg, S. A., Sluijs, A., Hodell, D. A., Kelly, D. C., Thomas, E., Nicolo, M., Raffi, I., Lourens, L. J., McCarren, H., and Kroon, D.: Rapid Acidification of the Ocean During the Paleocene-Eocene Thermal Maximum, Science, 308, 1611–1615, https://doi.org/10.1126/science.1109004, 2005.
Zachos, J. C., Bohaty, S. M., John, C. M., McCarren, H., Kelly, D. C., and Nielsen, T.: The Palaeocene–Eocene carbon isotope excursion: constraints from individual shell planktonic foraminifer records, Philos. T. Roy. Soc. A, 365, 1829–1842, https://doi.org/10.1098/rsta.2007.2045, 2007.
Zachos, J. C., McCarren, H., Murphy, B., Röhl, U., and Westerhold, T.: Tempo and scale of late Paleocene and early Eocene carbon isotope cycles: Implications for the origin of hyperthermals, Earth Planet. Sc. Lett., 299, 242–249, https://doi.org/10.1016/j.epsl.2010.09.004, 2010.
Zeebe, R. E. and Lourens, L. J.: Solar system chaos and the Paleocene-Eocene boundary age constrained by geology and astronomy, Science, 365, 926–929, https://doi.org/10.1126/science.aax0612, 2019.
Zeebe, R. E., Ridgwell, A., and Zachos, J. C.: Anthropogenic carbon release rate unprecedented during the past 66 million years, Nat. Geosci., 9, 325–329, https://doi.org/10.1038/ngeo2681, 2016.
Zhou, X., Thomas, E., Rickaby, R. E. M., Winguth, A. M. E., and Lu, Z.: evidence for upper ocean deoxygenation during the PETM, Paleoceanography, 29, 964–975, https://doi.org/10.1002/2014PA002702, 2014.
Short summary
The Paleocene–Eocene Thermal Maximum (PETM) is the closest geological analog to modern anthropogenic CO2 emissions, but its causes and the responses remain enigmatic. Coastal plain sediments can resolve this uncertainty, but their discontinuous nature requires numerous sites to constrain events. Workshop participants identified 10 drill sites that target the PETM and other interesting intervals. Our post-drilling research will provide valuable insights into Earth system responses.
The Paleocene–Eocene Thermal Maximum (PETM) is the closest geological analog to modern...