Colorado Plateau Coring Project, Phase I (CPCP-I): a continuously cored, globally exportable chronology of Triassic continental environmental change from western North America
Lamont-Doherty Earth Observatory of Columbia University, Palisades,
NY 10964, USA
John W. Geissman
Department of Geosciences, University of Texas at
Dallas, Richardson, TX 75080, USA
Dennis V. Kent
Earth and Planetary Sciences,
Rutgers University, Piscataway, NJ 08854, USA
Lamont-Doherty Earth Observatory of Columbia University, Palisades,
NY 10964, USA
George E. Gehrels
Department of
Geosciences, University of Arizona, Tucson, AZ 85721, USA
Roland Mundil
Berkeley
Geochronology Center, 2455 Ridge Rd., Berkeley CA 94709, USA
Randall B. Irmis
Natural History Museum of Utah and Department of Geology &
Geophysics, University of Utah, Salt Lake City, UT 84108, USA
Christopher Lepre
Lamont-Doherty Earth Observatory of Columbia University, Palisades,
NY 10964, USA
Earth and Planetary Sciences,
Rutgers University, Piscataway, NJ 08854, USA
Cornelia Rasmussen
Natural History Museum of Utah and Department of Geology &
Geophysics, University of Utah, Salt Lake City, UT 84108, USA
Dominique Giesler
Department of
Geosciences, University of Arizona, Tucson, AZ 85721, USA
William G. Parker
Petrified Forest National Park, Petrified Forest, AZ 86028, USA
Natalia Zakharova
Department of Earth and Atmospheric Sciences, Central Michigan
University, Mount Pleasant, MI 48859, USA
Lamont-Doherty Earth Observatory of Columbia University, Palisades,
NY 10964, USA
Wolfram M. Kürschner
Department
of Geosciences, University of Oslo, P.O. Box 1047, Blindern, Oslo 0316,
Norway
Charlotte Miller
MARUM Center for Marine Environmental Sciences, University
of Bremen, Bremen, Germany
Viktoria Baranyi
Department
of Geosciences, University of Oslo, P.O. Box 1047, Blindern, Oslo 0316,
Norway
Morgan F. Schaller
Earth and Environmental Sciences,
Rensselaer Polytechnic Institute (RPI), Troy, NY 12180, USA
Jessica H. Whiteside
National Oceanography Centre, Southampton, University of
Southampton, Southampton, SO17 1BJ, UK
Douglas Schnurrenberger
Continental Scientific
Drilling Coordination Office and LacCore Facility, N.H. Winchell School of
Earth Sciences, University of Minnesota, Minneapolis, MN 55455, USA
Anders Noren
Continental Scientific
Drilling Coordination Office and LacCore Facility, N.H. Winchell School of
Earth Sciences, University of Minnesota, Minneapolis, MN 55455, USA
Kristina Brady Shannon
Continental Scientific
Drilling Coordination Office and LacCore Facility, N.H. Winchell School of
Earth Sciences, University of Minnesota, Minneapolis, MN 55455, USA
Ryan O'Grady
Continental Scientific
Drilling Coordination Office and LacCore Facility, N.H. Winchell School of
Earth Sciences, University of Minnesota, Minneapolis, MN 55455, USA
Matthew W. Colbert
University of Texas High Resolution X-ray CT Facility, The
University of Texas at Austin, Austin, TX 78712, USA
Jessie Maisano
University of Texas High Resolution X-ray CT Facility, The
University of Texas at Austin, Austin, TX 78712, USA
David Edey
University of Texas High Resolution X-ray CT Facility, The
University of Texas at Austin, Austin, TX 78712, USA
Sean T. Kinney
Lamont-Doherty Earth Observatory of Columbia University, Palisades,
NY 10964, USA
Roberto Molina-Garza
Centro de Geociencias, Universidad Nacional Autónoma de
México (UNAM), Boulevard Juriquilla No. 3001, Querétaro 76230,
México
Gerhard H. Bachman
Martin-Luther-Universität, Halle-Wittenberg,
Institut für Geowissenschaften, Von-Seckendorff-Platz 3, 06120 Halle
(Saale), Germany
Jingeng Sha
State Key Laboratory of Palaeobiology and
Stratigraphy, Nanjing Institute of Geology and Paleontology and Center for
Excellence in Life and Paleoenvironment, Nanjing 210008, China
the CPCD team
A full list of authors appears at the end of the paper.
Related authors
George Gehrels, Dominique Giesler, Paul Olsen, Dennis Kent, Adam Marsh, William Parker, Cornelia Rasmussen, Roland Mundil, Randall Irmis, John Geissman, and Christopher Lepre
Geochronology, 2, 257–282, https://doi.org/10.5194/gchron-2-257-2020, https://doi.org/10.5194/gchron-2-257-2020, 2020
Short summary
Short summary
U–Pb ages of zircon crystals are used to determine the provenance and depositional age of strata of the Triassic Chinle and Moenkopi formations and the Permian Coconino Sandstone of northern Arizona. Primary source regions include the Ouachita orogen, local Precambrian basement rocks, and Permian–Triassic magmatic arcs to the south and west. Ages from fine-grained strata provide reliable depositional ages, whereas ages from sandstones are compromised by zircon grains recycled from older strata.
Biagio Giaccio, Bernd Wagner, Giovanni Zanchetta, Adele Bertini, Gian Paolo Cavinato, Roberto de Franco, Fabio Florindo, David A. Hodell, Thomas A. Neubauer, Sebastien Nomade, Alison Pereira, Laura Sadori, Sara Satolli, Polychronis C. Tzedakis, Paul Albert, Paolo Boncio, Cindy De Jonge, Alexander Francke, Christine Heim, Alessia Masi, Marta Marchegiano, Helen M. Roberts, Anders Noren, and the MEME team
Sci. Dril., 33, 249–266, https://doi.org/10.5194/sd-33-249-2024, https://doi.org/10.5194/sd-33-249-2024, 2024
Short summary
Short summary
A total of 42 Earth scientists from 14 countries met in Gioia dei Marsi, central Italy, on 23 to 27 October 2023 to explore the potential for deep drilling of the thick lake sediment sequence of the Fucino Basin. The aim was to reconstruct the history of climate, ecosystem, and biodiversity changes and of the explosive volcanism and tectonics in central Italy over the last 3.5 million years, constrained by a detailed radiometric chronology.
Jonathan M. G. Stine, Joshua M. Feinberg, Adam K. Huttenlocker, Randall B. Irmis, Declan Ramirez, Rashida Doctor, John McDaris, Charles M. Henderson, Michael T. Read, Kristina Brady Shannon, Anders Noren, Ryan O'Grady, Ayva Sloo, Patrick Steury, Diego P. Fernandez, Amy C. Henrici, and Neil J. Tabor
Sci. Dril., 33, 109–128, https://doi.org/10.5194/sd-33-109-2024, https://doi.org/10.5194/sd-33-109-2024, 2024
Short summary
Short summary
We present initial results from the upper 450 m of ER-1, a legacy core collected from modern-day Bears Ears National Monument, Utah, USA. This section contains a relatively complete record of Upper Carboniferous to Early Permian sediments, providing a unique window on Earth's last icehouse–hothouse transition. Ongoing research will tie our results to important fossil sites, allowing us to better understand how this climate shift contributed to the evolution of terrestrial life.
Catherine C. Beck, Melissa Berke, Craig S. Feibel, Verena Foerster, Lydia Olaka, Helen M. Roberts, Christopher A. Scholz, Kat Cantner, Anders Noren, Geoffery Mibei Kiptoo, James Muirhead, and the Deep Drilling in the Turkana Basin (DDTB) project team
Sci. Dril., 33, 93–108, https://doi.org/10.5194/sd-33-93-2024, https://doi.org/10.5194/sd-33-93-2024, 2024
Short summary
Short summary
The Deep Drilling in the Turkana Basin project seeks to determine the relative impacts of tectonics and climate on eastern African ecosystems. To organize goals for coring, we hosted a workshop in Nairobi, Kenya, which focused on how a 4 Myr sedimentary core from Turkana will uniquely address research objectives related to basin evolution, past climates and environments, and modern resources. We concluded that a Pliocene to modern record is best accomplished through a two-phase drilling project.
Marci M. Robinson, Kenneth G. Miller, Tali L. Babila, Timothy J. Bralower, James V. Browning, Marlow J. Cramwinckel, Monika Doubrawa, Gavin L. Foster, Megan K. Fung, Sean Kinney, Maria Makarova, Peter P. McLaughlin, Paul N. Pearson, Ursula Röhl, Morgan F. Schaller, Jean M. Self-Trail, Appy Sluijs, Thomas Westerhold, James D. Wright, and James C. Zachos
Sci. Dril., 33, 47–65, https://doi.org/10.5194/sd-33-47-2024, https://doi.org/10.5194/sd-33-47-2024, 2024
Short summary
Short summary
The Paleocene–Eocene Thermal Maximum (PETM) is the closest geological analog to modern anthropogenic CO2 emissions, but its causes and the responses remain enigmatic. Coastal plain sediments can resolve this uncertainty, but their discontinuous nature requires numerous sites to constrain events. Workshop participants identified 10 drill sites that target the PETM and other interesting intervals. Our post-drilling research will provide valuable insights into Earth system responses.
Jonathan Obrist-Farner, Andreas Eckert, Peter M. J. Douglas, Liseth Perez, Alex Correa-Metrio, Bronwen L. Konecky, Thorsten Bauersachs, Susan Zimmerman, Stephanie Scheidt, Mark Brenner, Steffen Kutterolf, Jeremy Maurer, Omar Flores, Caroline M. Burberry, Anders Noren, Amy Myrbo, Matthew Lachniet, Nigel Wattrus, Derek Gibson, and the LIBRE scientific team
Sci. Dril., 32, 85–100, https://doi.org/10.5194/sd-32-85-2023, https://doi.org/10.5194/sd-32-85-2023, 2023
Short summary
Short summary
In August 2022, 65 scientists from 13 countries gathered in Antigua, Guatemala, for a workshop, co-funded by the US National Science Foundation and the International Continental Scientific Drilling Program. This workshop considered the potential of establishing a continental scientific drilling program in the Lake Izabal Basin, eastern Guatemala, with the goals of establishing a borehole observatory and investigating one of the longest continental records from the northern Neotropics.
Diederik Liebrand, Anouk T. M. de Bakker, Heather J. H. Johnstone, and Charlotte S. Miller
Clim. Past, 19, 1447–1459, https://doi.org/10.5194/cp-19-1447-2023, https://doi.org/10.5194/cp-19-1447-2023, 2023
Short summary
Short summary
Climate cycles with millennial periodicities are enigmatic because no Earth external climate forcing exists that operates on millennial timescales. Using a statistical analysis of a famous Greenlandic air temperature record, we show that two disparate energy sources (one astronomical and one centennial) fuel millennial climate variability. We speculate that two distinct Earth internal cryospheric/climatic/oceanic processes are responsible for the transfer of energy to millennial climate cycles.
Jesse R. Farmer, Katherine J. Keller, Robert K. Poirier, Gary S. Dwyer, Morgan F. Schaller, Helen K. Coxall, Matt O'Regan, and Thomas M. Cronin
Clim. Past, 19, 555–578, https://doi.org/10.5194/cp-19-555-2023, https://doi.org/10.5194/cp-19-555-2023, 2023
Short summary
Short summary
Oxygen isotopes are used to date marine sediments via similar large-scale ocean patterns over glacial cycles. However, the Arctic Ocean exhibits a different isotope pattern, creating uncertainty in the timing of past Arctic climate change. We find that the Arctic Ocean experienced large local oxygen isotope changes over glacial cycles. We attribute this to a breakdown of stratification during ice ages that allowed for a unique low isotope value to characterize the ice age Arctic Ocean.
Annette Hahn, Enno Schefuß, Jeroen Groeneveld, Charlotte Miller, and Matthias Zabel
Clim. Past, 17, 345–360, https://doi.org/10.5194/cp-17-345-2021, https://doi.org/10.5194/cp-17-345-2021, 2021
George Gehrels, Dominique Giesler, Paul Olsen, Dennis Kent, Adam Marsh, William Parker, Cornelia Rasmussen, Roland Mundil, Randall Irmis, John Geissman, and Christopher Lepre
Geochronology, 2, 257–282, https://doi.org/10.5194/gchron-2-257-2020, https://doi.org/10.5194/gchron-2-257-2020, 2020
Short summary
Short summary
U–Pb ages of zircon crystals are used to determine the provenance and depositional age of strata of the Triassic Chinle and Moenkopi formations and the Permian Coconino Sandstone of northern Arizona. Primary source regions include the Ouachita orogen, local Precambrian basement rocks, and Permian–Triassic magmatic arcs to the south and west. Ages from fine-grained strata provide reliable depositional ages, whereas ages from sandstones are compromised by zircon grains recycled from older strata.
James M. Russell, Philip Barker, Andrew Cohen, Sarah Ivory, Ishmael Kimirei, Christine Lane, Melanie Leng, Neema Maganza, Michael McGlue, Emma Msaky, Anders Noren, Lisa Park Boush, Walter Salzburger, Christopher Scholz, Ralph Tiedemann, Shaidu Nuru, and the Lake Tanganyika Scientific Drilling Project (TSDP) Consortium
Sci. Dril., 27, 53–60, https://doi.org/10.5194/sd-27-53-2020, https://doi.org/10.5194/sd-27-53-2020, 2020
Short summary
Short summary
Our planet experienced enormous environmental changes in the last 10 million years. Lake Tanganyika is the oldest lake in Africa and its sediments comprise the most continuous terrestrial environmental record for this time period in the tropics. This workshop report identifies key research objectives in rift processes, evolutionary biology, geomicrobiology, paleoclimatology, paleoecology, paleoanthropology, and geochronology that could be addressed by drilling this globally important site.
Erik T. Brown, Margarita Caballero, Enrique Cabral Cano, Peter J. Fawcett, Socorro Lozano-García, Beatriz Ortega, Liseth Pérez, Antje Schwalb, Victoria Smith, Byron A. Steinman, Mona Stockhecke, Blas Valero-Garcés, Sebastian Watt, Nigel J. Wattrus, Josef P. Werne, Thomas Wonik, Amy E. Myrbo, Anders J. Noren, Ryan O'Grady, Douglas Schnurrenberger, and the MexiDrill Team
Sci. Dril., 26, 1–15, https://doi.org/10.5194/sd-26-1-2019, https://doi.org/10.5194/sd-26-1-2019, 2019
Short summary
Short summary
MexiDrill, the Basin of Mexico Drilling Program, recovered a continuous, high-resolution 400 000 year record of tropical North American environmental change. The field location, in the densely populated, water-stressed, Mexico City region, gives this record particular societal relevance. The record also contains a rich record of volcanic activity; knowledge of the history of the area's explosive volcanic eruptions will improve capacity for risk assessment of future activity.
Robert McKay, Neville Exon, Dietmar Müller, Karsten Gohl, Michael Gurnis, Amelia Shevenell, Stuart Henrys, Fumio Inagaki, Dhananjai Pandey, Jessica Whiteside, Tina van de Flierdt, Tim Naish, Verena Heuer, Yuki Morono, Millard Coffin, Marguerite Godard, Laura Wallace, Shuichi Kodaira, Peter Bijl, Julien Collot, Gerald Dickens, Brandon Dugan, Ann G. Dunlea, Ron Hackney, Minoru Ikehara, Martin Jutzeler, Lisa McNeill, Sushant Naik, Taryn Noble, Bradley Opdyke, Ingo Pecher, Lowell Stott, Gabriele Uenzelmann-Neben, Yatheesh Vadakkeykath, and Ulrich G. Wortmann
Sci. Dril., 24, 61–70, https://doi.org/10.5194/sd-24-61-2018, https://doi.org/10.5194/sd-24-61-2018, 2018
Elsbeth E. van Soelen, Richard J. Twitchett, and Wolfram M. Kürschner
Clim. Past, 14, 441–453, https://doi.org/10.5194/cp-14-441-2018, https://doi.org/10.5194/cp-14-441-2018, 2018
James M. Russell, Satria Bijaksana, Hendrik Vogel, Martin Melles, Jens Kallmeyer, Daniel Ariztegui, Sean Crowe, Silvia Fajar, Abdul Hafidz, Doug Haffner, Ascelina Hasberg, Sarah Ivory, Christopher Kelly, John King, Kartika Kirana, Marina Morlock, Anders Noren, Ryan O'Grady, Luis Ordonez, Janelle Stevenson, Thomas von Rintelen, Aurele Vuillemin, Ian Watkinson, Nigel Wattrus, Satrio Wicaksono, Thomas Wonik, Kohen Bauer, Alan Deino, André Friese, Cynthia Henny, Imran, Ristiyanti Marwoto, La Ode Ngkoimani, Sulung Nomosatryo, La Ode Safiuddin, Rachel Simister, and Gerald Tamuntuan
Sci. Dril., 21, 29–40, https://doi.org/10.5194/sd-21-29-2016, https://doi.org/10.5194/sd-21-29-2016, 2016
Short summary
Short summary
The Towuti Drilling Project seeks to understand the long-term environmental and climatic history of the tropical western Pacific and to discover the unique microbes that live in metal-rich sediments. To accomplish these goals, in 2015 we carried out a scientific drilling project on Lake Towuti, located in central Indonesia. We recovered over 1000 m of core, and our deepest core extended 175 m below the lake floor and gives us a complete record of the lake.
A. Cohen, C. Campisano, R. Arrowsmith, A. Asrat, A. K. Behrensmeyer, A. Deino, C. Feibel, A. Hill, R. Johnson, J. Kingston, H. Lamb, T. Lowenstein, A. Noren, D. Olago, R. B. Owen, R. Potts, K. Reed, R. Renaut, F. Schäbitz, J.-J. Tiercelin, M. H. Trauth, J. Wynn, S. Ivory, K. Brady, R. O'Grady, J. Rodysill, J. Githiri, J. Russell, V. Foerster, R. Dommain, S. Rucina, D. Deocampo, J. Russell, A. Billingsley, C. Beck, G. Dorenbeck, L. Dullo, D. Feary, D. Garello, R. Gromig, T. Johnson, A. Junginger, M. Karanja, E. Kimburi, A. Mbuthia, T. McCartney, E. McNulty, V. Muiruri, E. Nambiro, E. W. Negash, D. Njagi, J. N. Wilson, N. Rabideaux, T. Raub, M. J. Sier, P. Smith, J. Urban, M. Warren, M. Yadeta, C. Yost, and B. Zinaye
Sci. Dril., 21, 1–16, https://doi.org/10.5194/sd-21-1-2016, https://doi.org/10.5194/sd-21-1-2016, 2016
Short summary
Short summary
An initial description of the scientific rationale, drilling and core handling, and initial core description activities of the Hominin Sites and Paleolakes Drilling Project (HSPDP). HSPDP is a large international consortium whose objective is to collect cores from lakebeds in proximity to important fossil early human fossil sites in eastern Africa, to better understand the environmental and climatic context of human evolution.
P. A. Baker, S. C. Fritz, C. G. Silva, C. A. Rigsby, M. L. Absy, R. P. Almeida, M. Caputo, C. M. Chiessi, F. W. Cruz, C. W. Dick, S. J. Feakins, J. Figueiredo, K. H. Freeman, C. Hoorn, C. Jaramillo, A. K. Kern, E. M. Latrubesse, M. P. Ledru, A. Marzoli, A. Myrbo, A. Noren, W. E. Piller, M. I. F. Ramos, C. C. Ribas, R. Trnadade, A. J. West, I. Wahnfried, and D. A. Willard
Sci. Dril., 20, 41–49, https://doi.org/10.5194/sd-20-41-2015, https://doi.org/10.5194/sd-20-41-2015, 2015
Short summary
Short summary
We report on a planned Trans-Amazon Drilling Project (TADP) that will continuously sample Late Cretaceous to modern sediment in a transect along the equatorial Amazon of Brazil, from the Andean foreland to the Atlantic Ocean. The TADP will document the evolution of the Neotropical forest and will link biotic diversification to changes in the physical environment, including climate, tectonism, and landscape. We will also sample the ca. 200Ma basaltic sills that underlie much of the Amazon.
W. C. Clyde, P. D. Gingerich, S. L. Wing, U. Röhl, T. Westerhold, G. Bowen, K. Johnson, A. A. Baczynski, A. Diefendorf, F. McInerney, D. Schnurrenberger, A. Noren, K. Brady, and the BBCP Science Team
Sci. Dril., 16, 21–31, https://doi.org/10.5194/sd-16-21-2013, https://doi.org/10.5194/sd-16-21-2013, 2013
N. Kampman, A. Maskell, M. J. Bickle, J. P. Evans, M. Schaller, G. Purser, Z. Zhou, J. Gattacceca, E. S. Peitre, C. A. Rochelle, C. J. Ballentine, A. Busch, and Scientists of the GRDP
Sci. Dril., 16, 33–43, https://doi.org/10.5194/sd-16-33-2013, https://doi.org/10.5194/sd-16-33-2013, 2013
D. V. Kent and G. Muttoni
Clim. Past, 9, 525–546, https://doi.org/10.5194/cp-9-525-2013, https://doi.org/10.5194/cp-9-525-2013, 2013
Related subject area
Location/Setting: Continental | Subject: Geology | Geoprocesses: Global climate change
Paleozoic Equatorial Records of Melting Ice Ages (PERMIA): calibrating the pace of paleotropical environmental and ecological change during Earth's previous icehouse
BASE (Barberton Archean Surface Environments) – drilling Paleoarchean coastal strata of the Barberton Greenstone Belt
ICDP workshop on the Deep Drilling in the Turkana Basin project: exploring the link between environmental factors and hominin evolution over the past 4 Myr
Paleogene Earth perturbations in the US Atlantic Coastal Plain (PEP-US): coring transects of hyperthermals to understand past carbon injections and ecosystem responses
Drilling into a deep buried valley (ICDP DOVE): a 252 m long sediment succession from a glacial overdeepening in northwestern Switzerland
Workshop report: PlioWest – drilling Pliocene lakes in western North America
Deep-time Arctic climate archives: high-resolution coring of Svalbard's sedimentary record – SVALCLIME, a workshop report
Drilling Overdeepened Alpine Valleys (ICDP-DOVE): quantifying the age, extent, and environmental impact of Alpine glaciations
From glacial erosion to basin overfill: a 240 m-thick overdeepening–fill sequence in Bern, Switzerland
Sensitivity of the West Antarctic Ice Sheet to +2 °C (SWAIS 2C)
Scientific drilling workshop on the Weihe Basin Drilling Project (WBDP): Cenozoic tectonic–monsoon interactions
Report on ICDP Deep Dust workshops: probing continental climate of the late Paleozoic icehouse–greenhouse transition and beyond
The Bouse Formation, a controversial Neogene archive of the evolving Colorado River: a scientific drilling workshop report (28 February–3 March 2019 – BlueWater Resort & Casino, Parker, AZ, USA)
Report on ICDP workshop CONOSC (COring the NOrth Sea Cenozoic)
A key continental archive for the last 2 Ma of climatic history of the central Mediterranean region: A pilot drilling in the Fucino Basin, central Italy
Trans-Amazon Drilling Project (TADP): origins and evolution of the forests, climate, and hydrology of the South American tropics
Accelerating Neoproterozoic research through scientific drilling
A way forward to discover Antarctica's past
Jonathan M. G. Stine, Joshua M. Feinberg, Adam K. Huttenlocker, Randall B. Irmis, Declan Ramirez, Rashida Doctor, John McDaris, Charles M. Henderson, Michael T. Read, Kristina Brady Shannon, Anders Noren, Ryan O'Grady, Ayva Sloo, Patrick Steury, Diego P. Fernandez, Amy C. Henrici, and Neil J. Tabor
Sci. Dril., 33, 109–128, https://doi.org/10.5194/sd-33-109-2024, https://doi.org/10.5194/sd-33-109-2024, 2024
Short summary
Short summary
We present initial results from the upper 450 m of ER-1, a legacy core collected from modern-day Bears Ears National Monument, Utah, USA. This section contains a relatively complete record of Upper Carboniferous to Early Permian sediments, providing a unique window on Earth's last icehouse–hothouse transition. Ongoing research will tie our results to important fossil sites, allowing us to better understand how this climate shift contributed to the evolution of terrestrial life.
Christoph Heubeck, Nic Beukes, Michiel de Kock, Martin Homann, Emmanuelle J. Javaux, Takeshi Kakegawa, Stefan Lalonde, Paul Mason, Phumelele Mashele, Dora Paprika, Chris Rippon, Mike Tice, Rodney Tucker, Ryan Tucker, Victor Ndazamo, Astrid Christianson, and Cindy Kunkel
Sci. Dril., 33, 129–172, https://doi.org/10.5194/sd-33-129-2024, https://doi.org/10.5194/sd-33-129-2024, 2024
Short summary
Short summary
What was Earth like when young? Under what conditions did bacteria spread? We studied some of the best-preserved, oldest rocks in South Africa. Layers there are about vertical; we drilled sideways. Sedimentary strata from eight boreholes showed that they had been deposited in rivers, sandy shorelines, tidal flats, estuaries, and the ocean. Some have well-preserved remnants of microbes. We will learn how life was established on a planet which would appear very inhospitable to us nowadays.
Catherine C. Beck, Melissa Berke, Craig S. Feibel, Verena Foerster, Lydia Olaka, Helen M. Roberts, Christopher A. Scholz, Kat Cantner, Anders Noren, Geoffery Mibei Kiptoo, James Muirhead, and the Deep Drilling in the Turkana Basin (DDTB) project team
Sci. Dril., 33, 93–108, https://doi.org/10.5194/sd-33-93-2024, https://doi.org/10.5194/sd-33-93-2024, 2024
Short summary
Short summary
The Deep Drilling in the Turkana Basin project seeks to determine the relative impacts of tectonics and climate on eastern African ecosystems. To organize goals for coring, we hosted a workshop in Nairobi, Kenya, which focused on how a 4 Myr sedimentary core from Turkana will uniquely address research objectives related to basin evolution, past climates and environments, and modern resources. We concluded that a Pliocene to modern record is best accomplished through a two-phase drilling project.
Marci M. Robinson, Kenneth G. Miller, Tali L. Babila, Timothy J. Bralower, James V. Browning, Marlow J. Cramwinckel, Monika Doubrawa, Gavin L. Foster, Megan K. Fung, Sean Kinney, Maria Makarova, Peter P. McLaughlin, Paul N. Pearson, Ursula Röhl, Morgan F. Schaller, Jean M. Self-Trail, Appy Sluijs, Thomas Westerhold, James D. Wright, and James C. Zachos
Sci. Dril., 33, 47–65, https://doi.org/10.5194/sd-33-47-2024, https://doi.org/10.5194/sd-33-47-2024, 2024
Short summary
Short summary
The Paleocene–Eocene Thermal Maximum (PETM) is the closest geological analog to modern anthropogenic CO2 emissions, but its causes and the responses remain enigmatic. Coastal plain sediments can resolve this uncertainty, but their discontinuous nature requires numerous sites to constrain events. Workshop participants identified 10 drill sites that target the PETM and other interesting intervals. Our post-drilling research will provide valuable insights into Earth system responses.
Sebastian Schaller, Marius W. Buechi, Bennet Schuster, and Flavio S. Anselmetti
Sci. Dril., 32, 27–42, https://doi.org/10.5194/sd-32-27-2023, https://doi.org/10.5194/sd-32-27-2023, 2023
Short summary
Short summary
In the frame of the DOVE (Drilling Overdeepened Alpine Valleys) project and with the support of the International Continental Scientific Drilling Program (ICDP), we drilled and recovered a 252 m long sediment core from the Basadingen Through. The Basadingen Trough, once eroded by the Rhine glacier during several ice ages, reaches over 300 m under the modern landscape. The sedimentary filling represents a precious scientific archive for understanding and reconstructing past glaciations.
Alison J. Smith, Emi Ito, Natalie Burls, Leon Clarke, Timme Donders, Robert Hatfield, Stephen Kuehn, Andreas Koutsodendris, Tim Lowenstein, David McGee, Peter Molnar, Alexander Prokopenko, Katie Snell, Blas Valero Garcés, Josef Werne, Christian Zeeden, and the PlioWest Working Consortium
Sci. Dril., 32, 61–72, https://doi.org/10.5194/sd-32-61-2023, https://doi.org/10.5194/sd-32-61-2023, 2023
Short summary
Short summary
Western North American contains accessible and under-recognized paleolake records that hold the keys to understanding the drivers of wetter conditions in Pliocene Epoch subtropical drylands worldwide. In a 2021 ICDP workshop, we chose five paleolake basins to study that span 7° of latitude in a unique array able to capture a detailed record of hydroclimate during the Early Pliocene warm period and subsequent Pleistocene cooling. We propose new drill cores for three of these basins.
Kim Senger, Denise Kulhanek, Morgan T. Jones, Aleksandra Smyrak-Sikora, Sverre Planke, Valentin Zuchuat, William J. Foster, Sten-Andreas Grundvåg, Henning Lorenz, Micha Ruhl, Kasia K. Sliwinska, Madeleine L. Vickers, and Weimu Xu
Sci. Dril., 32, 113–135, https://doi.org/10.5194/sd-32-113-2023, https://doi.org/10.5194/sd-32-113-2023, 2023
Short summary
Short summary
Geologists can decipher the past climates and thus better understand how future climate change may affect the Earth's complex systems. In this paper, we report on a workshop held in Longyearbyen, Svalbard, to better understand how rocks in Svalbard (an Arctic archipelago) can be used to quantify major climatic shifts recorded in the past.
Flavio S. Anselmetti, Milos Bavec, Christian Crouzet, Markus Fiebig, Gerald Gabriel, Frank Preusser, Cesare Ravazzi, and DOVE scientific team
Sci. Dril., 31, 51–70, https://doi.org/10.5194/sd-31-51-2022, https://doi.org/10.5194/sd-31-51-2022, 2022
Short summary
Short summary
Previous glaciations eroded below the ice deep valleys in the Alpine foreland, which, with their sedimentary fillings, witness the timing and extent of these glacial advance–retreat cycles. Drilling such sedimentary sequences will thus provide well-needed evidence in order to reconstruct the (a)synchronicity of past ice advances in a trans-Alpine perspective. Eventually these data will document how the Alpine foreland was shaped and how the paleoclimate patterns varied along and across the Alps.
Michael A. Schwenk, Patrick Schläfli, Dimitri Bandou, Natacha Gribenski, Guilhem A. Douillet, and Fritz Schlunegger
Sci. Dril., 30, 17–42, https://doi.org/10.5194/sd-30-17-2022, https://doi.org/10.5194/sd-30-17-2022, 2022
Short summary
Short summary
A scientific drilling was conducted into a bedrock trough (overdeepening) in Bern-Bümpliz (Switzerland) in an effort to advance the knowledge of the Quaternary prior to 150 000 years ago. We encountered a 208.5 m-thick succession of loose sediments (gravel, sand and mud) in the retrieved core and identified two major sedimentary sequences (A: lower, B: upper). The sedimentary suite records two glacial advances and the subsequent filling of a lake sometime between 300 000 and 200 000 years ago.
Molly O. Patterson, Richard H. Levy, Denise K. Kulhanek, Tina van de Flierdt, Huw Horgan, Gavin B. Dunbar, Timothy R. Naish, Jeanine Ash, Alex Pyne, Darcy Mandeno, Paul Winberry, David M. Harwood, Fabio Florindo, Francisco J. Jimenez-Espejo, Andreas Läufer, Kyu-Cheul Yoo, Osamu Seki, Paolo Stocchi, Johann P. Klages, Jae Il Lee, Florence Colleoni, Yusuke Suganuma, Edward Gasson, Christian Ohneiser, José-Abel Flores, David Try, Rachel Kirkman, Daleen Koch, and the SWAIS 2C Science Team
Sci. Dril., 30, 101–112, https://doi.org/10.5194/sd-30-101-2022, https://doi.org/10.5194/sd-30-101-2022, 2022
Short summary
Short summary
How much of the West Antarctic Ice Sheet will melt and how quickly it will happen when average global temperatures exceed 2 °C is currently unknown. Given the far-reaching and international consequences of Antarctica’s future contribution to global sea level rise, the SWAIS 2C Project was developed in order to better forecast the size and timing of future changes.
Zhisheng An, Peizhen Zhang, Hendrik Vogel, Yougui Song, John Dodson, Thomas Wiersberg, Xijie Feng, Huayu Lu, Li Ai, and Youbin Sun
Sci. Dril., 28, 63–73, https://doi.org/10.5194/sd-28-63-2020, https://doi.org/10.5194/sd-28-63-2020, 2020
Short summary
Short summary
Earth has experienced remarkable climate–environmental changes in the last 65 million years. The Weihe Basin with its 6000–8000 m infill of a continuous sedimentary sequence gives a unique continental archive for the study of the Cenozoic environment and exploration of deep biospheres. This workshop report concludes key objectives of the two-phase Weihe Basin Drilling Project and the global significance of reconstructing Cenozoic climate evolution and tectonic–monsoon interaction in East Asia.
Gerilyn S. Soreghan, Laurent Beccaletto, Kathleen C. Benison, Sylvie Bourquin, Georg Feulner, Natsuko Hamamura, Michael Hamilton, Nicholas G. Heavens, Linda Hinnov, Adam Huttenlocker, Cindy Looy, Lily S. Pfeifer, Stephane Pochat, Mehrdad Sardar Abadi, James Zambito, and the Deep Dust workshop participants
Sci. Dril., 28, 93–112, https://doi.org/10.5194/sd-28-93-2020, https://doi.org/10.5194/sd-28-93-2020, 2020
Short summary
Short summary
The events of the Permian — the orogenies, biospheric turnovers, icehouse and greenhouse antitheses, and Mars-analog lithofacies — boggle the imagination and present us with great opportunities to explore Earth system behavior. Here we outline results of workshops to propose continuous coring of continental Permian sections in western (Anadarko Basin) and eastern (Paris Basin) equatorial Pangaea to retrieve continental records spanning 50 Myr of Earth's history.
Andrew Cohen, Colleen Cassidy, Ryan Crow, Jordon Bright, Laura Crossey, Rebecca Dorsey, Brian Gootee, Kyle House, Keith Howard, Karl Karlstrom, and Philip Pearthree
Sci. Dril., 26, 59–67, https://doi.org/10.5194/sd-26-59-2019, https://doi.org/10.5194/sd-26-59-2019, 2019
Short summary
Short summary
This paper summarizes a workshop held in Parker, AZ, USA, to discuss planned scientific drilling in the Miocene(?) or early Pliocene Bouse Formation, a controversial deposit (of lacustrine, marine, or some hybrid origin) found in the lower Colorado River valley. The drilling project is intended to address this controversy as well as shed light on Pliocene climates of southwestern North America during an important period of past climate change.
Wim Westerhoff, Timme Donders, and Stefan Luthi
Sci. Dril., 21, 47–51, https://doi.org/10.5194/sd-21-47-2016, https://doi.org/10.5194/sd-21-47-2016, 2016
Short summary
Short summary
The CONOSC (COring the NOrth Sea Cenozoic) project brings scientists together that aim at scientific drilling of the north-western European marginal seas where in the last 65 million years the influence of sea and land was recorded continuously in the sediments. The subsiding area is ideally suited for detailed study of the relations between changing climate, biodiversity, and changing land masses. The report discusses the ICDP workshop outcome and overall project aims.
B. Giaccio, E. Regattieri, G. Zanchetta, B. Wagner, P. Galli, G. Mannella, E. Niespolo, E. Peronace, P. R. Renne, S. Nomade, G. P. Cavinato, P. Messina, A. Sposato, C. Boschi, F. Florindo, F. Marra, and L. Sadori
Sci. Dril., 20, 13–19, https://doi.org/10.5194/sd-20-13-2015, https://doi.org/10.5194/sd-20-13-2015, 2015
Short summary
Short summary
As a pilot study for a possible depth-drilling project, an 82m long sedimentary succession was retrieved from the Fucino Basin, central Apennines, which hosts ca. 900m of lacustrine sediments. The acquired paleoclimatic record, from the retrieved core, spans the last 180ka and reveals noticeable variations related to the last two glacial-interglacial cycles. In light of these results, the Fucino sediments are likely to provide one of the longest continuous record for the last 2Ma.
P. A. Baker, S. C. Fritz, C. G. Silva, C. A. Rigsby, M. L. Absy, R. P. Almeida, M. Caputo, C. M. Chiessi, F. W. Cruz, C. W. Dick, S. J. Feakins, J. Figueiredo, K. H. Freeman, C. Hoorn, C. Jaramillo, A. K. Kern, E. M. Latrubesse, M. P. Ledru, A. Marzoli, A. Myrbo, A. Noren, W. E. Piller, M. I. F. Ramos, C. C. Ribas, R. Trnadade, A. J. West, I. Wahnfried, and D. A. Willard
Sci. Dril., 20, 41–49, https://doi.org/10.5194/sd-20-41-2015, https://doi.org/10.5194/sd-20-41-2015, 2015
Short summary
Short summary
We report on a planned Trans-Amazon Drilling Project (TADP) that will continuously sample Late Cretaceous to modern sediment in a transect along the equatorial Amazon of Brazil, from the Andean foreland to the Atlantic Ocean. The TADP will document the evolution of the Neotropical forest and will link biotic diversification to changes in the physical environment, including climate, tectonism, and landscape. We will also sample the ca. 200Ma basaltic sills that underlie much of the Amazon.
D. J. Condon, P. Boggiani, D. Fike, G. P. Halverson, S. Kasemann, A. H. Knoll, F. A. Macdonald, A. R. Prave, and M. Zhu
Sci. Dril., 19, 17–25, https://doi.org/10.5194/sd-19-17-2015, https://doi.org/10.5194/sd-19-17-2015, 2015
Short summary
Short summary
This workshop report outlines the background, topics discussed and major conclusions/future directions arising form an ICDP- and ECORD-sponsored workshop convened to discuss the utility of scientific drilling for accelerating Neoproterozoic research.
J. S. Wellner
Sci. Dril., 18, 11–11, https://doi.org/10.5194/sd-18-11-2014, https://doi.org/10.5194/sd-18-11-2014, 2014
Cited articles
Allen, V. T.: Triassic bentonite of the Painted Desert, Am. J. Sci., 112,
283–288, 1930.
Ash, S. R.: Late Triassic plants from the Chinle Formation in northeastern
Arizona, Palaeontology, 15, 598–618, 1972.
Ash, S. R.: A catalog of Upper Triassic plant megafossils of the western
United States through 1988, in: Dawn of
the Age of Dinosaurs in the American Southwest, Albuquerque, New Mexico, edited by: Hunt, A. P. and Lucas, S. G.,
Museum of Natural History, 189–222, 1989.
Ash, S. R.: Synopsis of the Upper Triassic flora of Petrified Forest
National Park and vicinity, Mesa Southwest Mus. Bull., 9, 53–62, 2005.
Atchley, S. C., Nordt, L. C., Dworkin, S. I., Ramezani, J., Parker, W. G.,
Ash, S. R., and Bowring, S. A.: A linkage among Pangean tectonism, cyclic
alluviation, climate change, and biologic turnover in the Late Triassic: The
Record From The Chinle Formation, Southwestern United States, J. Sed.
Res. 83, 1147–1161, 2013.
Baag, C. G. and Helsley, C. E.: Remanent magnetization of a 50 m core from
the Moenkopi Formation, western Colorado, Geophys, J. Internat., 37,
245–262, 1974.
Banham, S. G. and Mountney, N. P.: Climatic versus halokinetic control on
sedimentation in a dryland fluvial succession, Sedimentology, 61,
570–608, 2014.
Baranyi, V., Reichgelt, T., Olsen, P. E., Parker, W. G., and Kürschner, W.
M.: Norian vegetation history and related environmental changes: new data
from the Chinle Formation, Petrified Forest National Park (Arizona, SW USA),
Geol. Soc. Am. Bull., 130, 775–795, https://doi.org/10.1130/B31673.1, 2017.
Barth, A. P. and Wooden, J. L.: Timing of magmatism following initial
convergence at a passive margin, southwestern US Cordillera, and ages of
lower crustal magma sources, J. Geol., 114, 231–245, 2006.
Billingsley, G. H.: General stratigraphy of the Petrified Forest National
Park, Arizona, Mus. Northern Ariz. Bull., 54, 3–8, 1985.
Blackburn, T. J., Olsen, P. E., Bowring, S. A. , McLean, N. M., Kent, D. V.,
Puffer, J., McHone, G., Rasbury, E. T., and Et-Touhami, M.: Zircon U-Pb
geochronology links the end-Triassic extinction with the Central Atlantic
Magmatic Province, Science, 340, 941–945, 2013.
Bown, P. R., Lees, J. A., and Young, J. R.: Calcareous nannoplankton
evolution and diversity through time, in: Coccolithophores: from molecular
processes to global impact, edited by: Thierstein, H. R. and Young, J. R.,
Springer-Verlag Berlin, Heidelberg, 481–508, 2004.
Briden, J. C. and Daniels, B. A.: Palaeomagnetic correlation of the Upper
Triassic of Somerset, England, with continental Europe and eastern North
America, J. Geol. Soc., 15, 317–326, 1999.
Bryan, P. and Gordon, R. G.: Rotation of the Colorado Plateau: An analysis
of paleomagnetic data, Tectonics, 5, 661–667, 1986.
Buhedma, H. M. A.: Magnetostratigraphy of the Chinle and Moenkopi Strata
Cored at Colorado Plateau Coring Project Site 1A, Northern Petrified Forest
National Park, MSc Thesis, University of Texas, Dallas, 41 p., 2017.
Buhedma, H. M. A., Geissman, J. W., McIntosh, J., Olsen, P. E., and Kent, D.
V.: Preliminary magnetic polarity stratigraphy and rock magnetic data from
the continuous cored record of Triassic continental environmental change,
the Colorado Plateau Coring Project. AGU, 2016 Fall Meeting, paper
GP31B-1298, available at: https://agu.confex.com/agu/fm16/meetingapp.cgi/Paper/144302 (last access: September 2018),
2016.
Burchfiel, B. C. and Davis, G. A.: Structural framework and structural
evolution of the southern part of the Cordilleran orogen, western United
States, Am. J. Sci., 272, 97–118, 1972.
Chemenda, A., Matte, P., and Sokolov, V.: A model of Palaeozoic obduction and
exhumation of high-pressure/low-temperature rocks in the southern Urals,
Tectonophysics, 276, 217–227, 1997.
Clyde, W. C., Gingerich, P. D., Wing, S. L., Röhl, U., Westerhold, T.,
Bowen, G., Johnson, K., Baczynski, A. A., Diefendorf, A., McInerney, F.,
Schnurrenberger, D., Noren, A., Brady, K., and the BBCP Science Team: Bighorn
Basin Coring Project (BBCP): a continental perspective on early Paleogene
hyperthermals, Sci. Dril., 16, 21–31, https://doi.org/10.5194/sd-16-21-2013,
2013.
Cohen, A., Campisano, C., Arrowsmith, R., Asrat, A., Behrensmeyer, A. K.,
Deino, A., Feibel, C., Hill, A., Johnson, R., Kingston, J., Lamb, H.,
Lowenstein, T., Noren, A., Olago, D., Owen, R. B., Potts, R., Reed, K.,
Renaut, R., Schäbitz, F., Tiercelin, J.-J., Trauth, M. H., Wynn, J., Ivory,
S., Brady, K., O'Grady, R., Rodysill, J., Githiri, J., Russell, J., Foerster,
V., Dommain, R., Rucina, S., Deocampo, D., Russell, J., Billingsley, A.,
Beck, C., Dorenbeck, G., Dullo, L., Feary, D., Garello, D., Gromig, R.,
Johnson, T., Junginger, A., Karanja, M., Kimburi, E., Mbuthia, A., McCartney,
T., McNulty, E., Muiruri, V., Nambiro, E., Negash, E. W., Njagi, D., Wilson,
J. N., Rabideaux, N., Raub, T., Sier, M. J., Smith, P., Urban, J., Warren,
M., Yadeta, M., Yost, C., and Zinaye, B.: The Hominin Sites and Paleolakes
Drilling Project: inferring the environmental context of human evolution from
eastern African rift lake deposits, Sci. Dril., 21, 1–16,
https://doi.org/10.5194/sd-21-1-2016, 2016.
Daugherty, L. H.: Upper Triassic flora of Arizona, Carnegie Institute of
Washington Publication, 526, 1–108, 1941.
DeCelles, P. G. and Giles, K. A.: Foreland basin systems, Basin Research, 8,
105–123, 1996.
Demko, T. M.: Taphonomy of fossil plants in Petrified Forest National Park,
Arizona, Mesa Southwest Mus. Bull., 3, 37–52, 1995.
Demko, T. M., Dubiel, R. F., and Parrish, J. T.: Plant taphonomy in incised
valleys: implications for interpreting paleoclimate from fossil plants,
Geology, 26, 1119–1122, 1998.
Dickinson, W. R.: Tectonosedimentary Relations of Pennsylvanian to Jurassic
strata on the Colorado Plateau, Geol. Soc. Am. Special Paper 533, 184 p.,
https://doi.org/10.1130/2018.2533, 2018.
Dickinson, W. R. and Gehrels, G. E.: U-Pb ages of detrital zircons in
relation to paleogeography: Triassic paleodrainage networks and sediment
dispersal across southwest Laurentia, J. Sed. Res., 78, 745–764, 2008a.
Dickinson, W. R. and Gehrels, G. E.: Sediment delivery to the Cordilleran
foreland basin: Insights from U-Pb ages of detrital zircons in Upper Jurassic
and Cretaceous strata of the Colorado Plateau, Am. J. Sci, 308, 1041–1082,
2008b.
Dickinson, W. R. and Gehrels, G. E.: Use of U–Pb ages of detrital zircons to
infer maximum depositional ages of strata: a test against a Colorado Plateau
Mesozoic database, Earth Planet. Sc. Lett., 288, 115–125, 2009.
Eckmeier, E. and Wiesenberg, G. L.: Short-chain n-alkanes (C 16–20) in
ancient soil are useful molecular markers for prehistoric biomass burning, J.
Archaeol. Sci., 36, 1590–1596, 2009.
Eriksson, P. G., Bose, P. K., Catuneanu, O., Sarkar, S., and Banerjee, S.:
Precambrian clastic epeiric embayments: examples from South Africa and India,
in: Dynamics of Epeiric Seas, edited by: Pratt, B. R. and Holmden, C.,
Geological Assoc. Canada, Special Papers 48, 119–136, 2008.
Fisher, M. J. and Dunay, R. E.: Palynology of the Petrified Forest member of
the Chinle Formation (Upper Triassic), Arizona, U.S.A., Pollen Spores, 26,
241–284, 1984.
Flowers, R. M.: The enigmatic rise of the Colorado Plateau, Geology, 38,
671–672, 2010.
Foster, G. L., Royer, D. L., and Lunt, D. J.: Future climate forcing
potentially without precedent in the last 420 million years, Nature Comm., 8,
14845, https://doi.org/10.1038/ncomms14845, 2017.
Gallet, Y., Krystyn, L., Besse, J., and Marcoux, J.: Improving the Upper
Triassic numerical time scale from cross-correlation between Tethyan marine
sections and the continental Newark basin sequence, Earth Planet. Sc. Lett.,
212, 255–261, https://doi.org/10.1016/S0012-821X(03)00290-5, 2003.
Gehrels, G. E., Dickinson, W. R., Darby, B. J., Harding, J. P., Manuszak, J. D.,
Riley, B. C. D., Spurlin, M. S., Finney, S. C., Girty, G. H., Harwood, D. S.,
Miller, M., M., Satterfield, J. I., Smith, M. T., Snyder, W. S., Wallin, E. T., and Wyld, S. J.: Tectonic
implications of detrital zircon data from Paleozoic and Triassic strata in
western Nevada and northern California, in: Paleozoic and Triassic
Paleogeography and Tectonics of Western Nevada and Northern California,
edited by: Soreghan, M. J. and Gehrels, G. E., Geol. Soc. Am. Spec. Pap. 347,
133–150, 2000.
Geissman, J. W., Olsen, P. E., and Kent, D. V.: Site selected for Colorado
Plateau Coring: Colorado Plateau Coring Project: Colorado Plateau Coring
Project Workshop, Phase 2: 100 Million Years of Climatic, Tectonic, and
Biotic Evolution from Continental Coring, EOS, Trans. Am. Geophys. Union, 91,
1349–1368, 2010.
Geissman, J. G., Olsen, P. E., Kent, D. V., Irmis, R. B., Gehrels, G. E.,
Mundil, R., Parker, W., Bachmann, G. H., Kuerschner, W. M., Molina-Garza, R.,
and Sha, J.: The inception of the Colorado Plateau Coring Project: Filling
the Triassic geochronologic gap and providing a continuous record of
continental environmental change in western equatorial Pangea, AGU, 2014 Fall
Meeting, Abstracts, Paper 11439, PP31C-1145, 2014.
Geissman, J. W., Buhedma, H., MacIntosh, J. A., Olsen, P. E., and Kent, D.: The Colorado Plateau (USA) Coring Project (CPCP):
Preliminary magnetic polarity stratigraphy and rock magnetic data from the continuous cored record of Triassic
continental environmental change, Internat. Geol. Cong., Abstracts 35; Paper number 4254, 35th international geological 65, Cape Town, South Africa, 27 August–4 September 2016, 2016.
Gottesfeld, A. S.: Palynology of the Chinle Formation, Suppl. Mus. Northern
Ariz. Bull., 47, 13–18, 1972.
Gradstein, F. M., Agterberg, F. P., Ogg, J. G., Hardenbol, J., Van Veen, P.,
Thierry, J., and Huang, Z.: A Mesozoic time scale, J. Geophys. Res., 99,
24051–24074, 1994.
Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M. (Eds.): The
Geologic Time Scale 2012, Elsevier, Amsterdam (1144 pp.), 2012.
Hamilton, W.: Plate-tectonic mechanism of Laramide deformation, Contributions
to Geology-University of Wyoming, Laramie, 19, 87–92, 1981.
Hartley, A. and Evenstar, L.: Fluvial architecture in actively deforming salt
basins: Chinle Formation, Paradox Basin, Utah, Basin Research, 1–19,
https://doi.org/10.1111/bre.12247, 2017.
Hazel, J. E.: Sedimentary response to intrabasinal salt tectonism in the
Upper Triassic Chinle Formation, Paradox basin, Utah, U.S. Geol. Surv. Bull.
2000-F, F1–F34, 1994.
Heckert, A. B.: Late Triassic microvertebrates from the lower Chinle Group
(Otischalkian–Adamanian: Carnian) southwestern U.S.A., NM Mus. Nat. Hist.
Sci. Bull., 27, 170 pp., 2004.
Heckert, A. B. and Lucas, S. G.: Revised Upper Triassic stratigraphy of the
Petrified Forest National Park, Arizona, USA. NM Mus. Nat. Hist. Sci. Bull.,
21, 1–36, 2002.
Hesselbo, S. P., Robinson, S. A., Surlyk, F., and Piasecki, S.: Terrestrial
and marine extinction at the Triassic-Jurassic boundary synchronized with
major carbon-cycle perturbation: A link to initiation of massive volcanism?,
Geology, 30, 251–254, 2002.
Heylmun, E. B.: Arizona's Holbrook salt basin holds oil, gas opportunities,
Oil and Gas Journal, 95, 127–132, 1997.
Hildebrand, R. S.: Did westward subduction cause Cretaceous-Tertiary orogeny
in the North American Cordillera?, Geol. Soc. Am. Spec. Pap., 457, 1–71,
2009.
Hildebrand, R. S.: Mesozoic assembly of the North American cordillera, Geol.
Soc. Am. Spec. Pap., 495, 169 pp., 2013.
Hilgen, F. J., Krijgsman, W., Langereis, C. G., and Lourens, L. J.:
Breakthrough made in dating of the geological record, EOS, Trans. Am.
Geophys. Union, 78, 285–289, 1997.
Hounslow, M. W., Posen, P. E., and Warrington, G.: Magnetostratigraphy and
biostratigraphy of the Upper Triassic and lowermost Jurassic succession, St.
Audrie's Bay, UK, Palaeogeo. Palaeoclim. Palaeoeco., 213, 331–358, 2004.
Howell, E. R. and Blakey, R. C.: Sedimentological constraints on the
evolution of the Cordilleran arc: New insights from the Sonsela Member, Upper
Triassic Chinle Formation, Petrified Forest National Park (Arizona, USA),
Geol. Soc. Am. Bull., 125, 1349–1368, https://doi.org/10.1130/B30714.1, 2013.
Huber, P., Olsen, P. E., and LeTourneau, P. M.: Incipient Pangean rifting
responsible for the initiation of Chinle-Dockum sedimentation: Insights from
the Newark Supergroup and shared Late Triassic plate-scale tectonic events
and geochronologies, Geol. Soc. Am. Abst. Prog., NE Sect., 48,
https://doi.org/10.1130/abs/2016NE-271702, 2016.
Ikeda, M. and Tada, R.: Long period astronomical cycles from the Triassic to
Jurassic bedded chert sequence (Inuyama, Japan); Geologic evidences for the
chaotic behavior of solar planets, Earth Planets Space, 65, 351–360, 2013.
Irmis, R. B., Mundil, R., Geissman, J. W., Kent, D. V., Olsen, P. E., and
Whiteside, J. H.: New geochronologic constraints allow comparisons between
Late Triassic biota and paleoenvironment from western and eastern North
America, Geol. Soc. Am. Abst. Prog., 6, Paper 12-2, 2014.
Irmis, R. B., Olsen, P. E., Parker, W., Rasmussen, C., Mundil, R., and
Whiteside, J. H.: Understanding Late Triassic low latitude terrestrial
ecosystems: new insights from the Colorado Plateau Coring Project (CPCP),
PP53A-1098 presented at 2017 Fall Meeting, AGU, New Orleans, L.A., 11–15
December 2017.
IUGS/ISC: International Chronostratigraphic Chart, v2017/02, International
Commission on Stratigraphy, avaible at:
http://www.stratigraphy.org/ICSchart/ChronostratChart2017-02.jpg (last access: September 2018), 2017.
Kent, D. V. and Irving, E.: Influence of inclination error in sedimentary
rocks on the Triassic and Jurassic apparent pole wander path for North
America and implications for Cordilleran tectonics, J. Geophys. Res., 115,
B10103, https://doi.org/10.1029/2009JB007205, 2010.
Kent, D. V. and Olsen, P. E.: Astronomically tuned geomagnetic polarity time
scale for the Late Triassic, J. Geophys. Res., 104, 12831–12841, 1999.
Kent, D. V. and Olsen, P. E.: Magnetic polarity stratigraphy and
paleolatitude of the Triassic–Jurassic Blomidon Formation in the Fundy basin
(Canada): implications for early Mesozoic tropical climate gradients, Earth
Planet. Sc. Lett., 179, 311–324, 2000.
Kent, D. V. and Tauxe, L.: Corrected Late Triassic latitudes for continents
adjacent to the North Atlantic, Science, 307, 240–244, 2005.
Kent, D. V. and Witte, W. K.: Slow apparent polar wander for North America in
the Late Triassic and large Colorado Plateau rotation, Tectonics, 12,
291–300, 1993.
Kent, D. V, Santi Malnis, P., Colombi, C. E., Alcober, O. A., and
Martínez, R. N.: Age constraints on the dispersal of dinosaurs in the
Late Triassic from magnetochronology of the Los Colorados Formation
(Argentina), P. Natl. Acad. Sci., 111, 7958–7963, 2014.
Kent, D. V., Olsen, P. E., and Muttoni, G.: Astrochronostratigraphic polarity
time scale (APTS) for the Late Triassic and Early Jurassic from continental
sediments and correlation with standard marine stages, Earth-Sci. Rev., 166,
153–180, 2017a.
Kent, D. V., Olsen, P. E., Mundil, R., Lepre, C. J., and CPCP Science Team:
Testing the age calibration of the Newark-Hartford APTS by
magnetostratigraphic correlation of U-Pb zircon-dated tuffaceous beds in the
Late Triassic Chinle Formation in core PFNP-1A from the Petrified Forest
National Park (Arizona, USA), PP44A-03 presented at 2017 Fall Meeting, AGU,
New Orleans, L.A., 11–15 December, 2017b.
Kent, D. V., Olsen, P. E., Rasmussen, C., Lepre, C. J., Mundil, R., Irmis, R.
B., Gehrels, G. E., Giesler, D., Geissman, J. W., and Parker, W. G.:
Empirical evidence for stability of the 405 kyr Jupiter-Venus eccentricity
cycle over hundreds of millions of years, P. Natl. Acad. Sci., 115,
6153–6158, 2018.
Knobbe, T. K. and Schaller, M. F.: A tight coupling between atmospheric pCO2 and sea-surface temperature in the Late Triassic, Geology, 46, 43–46, 2018.
Kozur, H. and Weems, R. E.: Conchostracan evidence for a late Rhaetian to
early Hettangian age for the CAMP volcanic event in the Newark Supergroup,
and a Sevatian (late Norian) age from the immediately underlying beds,
Hallesches Jahrb. Geowiss., B27, 21–51, 2005.
Kuhn, T. K., Krull, E. S., Bowater, A., Grice, K., and Gleixner, G.: The
occurrence of short chain n-alkanes with an even over odd predominance in
higher plants and soils, Organic Geochemistry, 41, 88–95, 2010.
Larochelle, A. and Currie, K. L.: Paleomagnetic study of igneous rocks from
the Manicouagan structure, Quebec, J. Geophys. Res., 72, 4163–4169, 1967.
Lawton, T. F.: Tectonic setting of Mesozoic sedimentary basins, Rocky
Mountain region, United States, in: Mesozoic systems of the Rocky Mountain
region, edited by: Caputo, M. V., Peterson, J. A., and Franczyk, K. J., USA: Rocky Mountain Section, SEPM (Society for Sedimentary
Geology), 1–25, 1994.
Lindström, S., Irmis, R. B., Whiteside, J. H., Smith, N. S., Nesbitt, S.
J., and Turner, A. H.: Palynology of the upper Chinle Formation in northern
New Mexico, U.S.A.: Implications for biostratigraphy and terrestrial
ecosystem change during the Late Triassic (Norian-Rhaetian), Review
Palaeobot. and Palynol., 225, 106–131,
https://doi.org/10.1016/j.revpalbo.2015.11.006, 2016.
Litwin, R. J., Traverse, A., and Ash, S. R.: Preliminary palynological
zonation of the Chinle Formation, southwestern USA, and its correlation to
the Newark Supergroup (eastern USA), Rev. Palaeobot. Palynol., 68, 269–287,
1991.
Liu, L. and Gurnis, M.: Dynamic subsidence and uplift of the Colorado
Plateau, Geology, 38, 663–666, 2010.
Long, R. A. and Murry, P. A.: Late Triassic (Carnian and Norian) Tetrapods
from the Southwestern United States: Bulletin 4 (Vol. 4), New Mexico Mus.
Nat. Hist. Sci., 4, 254 pp., 1995.
Lucas, S. G.: The Chinle Group: revised stratigraphy and biochronology of
Upper Triassic nonmarine strata in the western United States, in: Aspects of
Mesozoic Geology and Paleontology of the Colorado Plateau, edited by:
Morales, M., Museum of Northern Arizona Bulletin 59, Flagstaff: Museum of
Northern Arizona Press, 27–50, 1993.
Lucas, S. G.: Global Triassic tetrapod biostratigraphy and biochronology,
Palaeogeo. Palaeoclimat. Palaeoeco., 143, 347–384, 1998.
Lucas, S. G.: The Triassic timescale based on nonmarine tetrapod
biostratigraphy and biochronology, Geol. Soc. Lond., Spec. Pub., 334,
447–500, 2010.
Lucas, S. G.: Chapter 10: Late Triassic terrestrial tetrapods:
biostratigraphy, biochronology and biotic events, in: The Late Triassic
World: Earth in a Time of Transition, edited by: Tanner, L. H., Topics in
Geobiology, 351–405, 2018.
Lucas, S. G. and Schoch, R. R.: Triassic temnospondyl biostratigraphy,
biochronology and correlation of the German Bundtsandstein and North American
Moenkopi Formation, Lethaia, 35, 97–106, 2002.
Marsh, A. D., Rowe, T., Simonetti, A., Stockli, D., and Stockli, L.: The age
of the Kayenta Formation of northern Arizona: overcoming the challenges of
dating fossil bone, J. Vert. Paleo. Prog. Abst., 2014, 178, 2014.
Martz, J. W. and Parker, W. G.: Revised lithostratigraphy of the Sonsela
Member (Chinle Formation, Upper Triassic) in the southern part of Petrified
Forest National Park, Arizona, PLoS One, 5, e9329, https://doi.org/10.1371/journal.pone.0009329, 2010.
Martz, J. W. and Parker, W. G.: Revised formulation of the Late Triassic Land
Vertebrate “Faunachrons” of western North America: recommendations for
codifying nascent systems of vertebrate biochronology, in: Terrestrial
Depositional Systems: Deciphering Complexes Through Multiple Stratigraphic
Methods, edited by: Ziegler, K. E. and Parker, W. G., 39–125, 2017.
Martz, J. W., Parker, W. G., Skinner, L., Raucci, J. J., Umhoefer, P., and
Blakey, R. C.: Geologic map of Petrified Forest National Park, Arizona.
Arizona Geological Survey, Contributed Map CR-12-A, 1 map sheet, 1:50000 map
scale, 2012.
Matthews, W. J., Hampson, G. J., Trudgill, B. D., and Underhill, J. R.:
Controls on fluviolacustrine reservoir distribution and architecture in
passive salt-diapir provinces: Insights from outcrop analogs, AAPG Bull., 91,
1367–1403, 2007.
McCall, A. M. and Kodama, K. P.: Anisotropy-based inclination correction for
the Moenave Formation and Wingate Sandstone: implications for Colorado
Plateau rotation, Front. Earth Sci., 2, 1–10, 2014.
McIntosh, J., Buhedma, H. M. A., Geissman, J. W., and CPCP Petrified Forest
Science Team: Magnetic polarity stratigraphy and rock magnetic data from the
continuous cored record of Triassic continental environmental change, the
Colorado Plateau Coring Project, Am. Geophys. Union 2017, Fall Meeting
Abstracts, paper PP53A-1100, available at:
https://agu.confex.com/agu/fm17/meetingapp.cgi/Paper/236192 (last access: September 2018), 2017.
Miller, C. S., Peterse, F., da Silva, A. C., Baranyi, V., Reichart, G. J.,
and Kürschner, W. M.: Astronomical age constraints and extinction
mechanisms of the Late Triassic Carnian crisis, Scientific Reports, 7,
https://doi.org/10.1038/s41598-017-02817-7, 2017.
Miller, G. L. and Ash, S. R.: The oldest freshwater decapod crustacean from
the Triassic of Arizona, Palaeontology, 31, 272–279, 1988.
Molina-Garza, R. S., Geissman, J. W., Van der Voo, R., Lucas, S. G., and
Hayden, S. N.: Paleomagnetism of the Moenkopi and Chinle Formations in
central New Mexico: Implications for the North American apparent polar wander
path and Triassic magnetostratigraphy, J. Geophys. Res., 96, 14239–14262,
1991.
Morales, M.: Terrestrial fauna and flora from the Triassic Moenkopi Formation
of the southwestern United States, J. Ariz.-Nev. Acad. Sci., 22, 1–19, 1987.
Mori, H.: Dinosaurian faunas of the Cedar Mountain Formation with Detrital
Zircon Ages for Three Stratigraphic Sections and the Relationship Between the
Degree of Abrasion and U-Pb LA-ICP-MS Ages of Detrital Zircons, Provo, Utah,
Brigham Young University, MSc. thesis, 102 pp., 2009.
Murry, P. A.: Stratigraphy of the Upper Triassic Petrified Forest Member
(Chinle Formation) in Petrified Forest National Park, Arizona, USA, J. Geol.
98, 780–789, 1990.
Murry, P. A. and Long, R. A.: Geology and paleontology of the Chinle
Formation, Petrified Forest National Park and vicinity, Arizona and a
discussion of vertebrate fossils of the southwestern Upper Triassic, In,
Lucas, S. G., and Hunt, A. P. (eds.) Dawn of the Age of Dinosaurs in the
American Southwest, New Mexico Museum of Natural History, Albuquerque, New
Mexico, 29–64, 1989.
Muttoni, G., Kent, D. V., Olsen, P. E., DiStefano, P., Lowrie, W.,
Bernasconi, S., and Hernandez, F. M.: Tethyan magnetostratigraphy from Pizzo
Mondello (Sicily) and correlation to the Late Triassic Newark
astrochronological polarity time scale, Geol. Soc. Am. Bull., 116,
1043–1058, 2004.
Muttoni, G., Mazza, M., Mosher, D., Katz, M. E., Kent, D. V., and Balini, M.:
A Middle–Late Triassic (Ladinian–Rhaetian) carbon and oxygen isotope record
from the Tethyan Ocean, Palaeogeo. Palaeoclim. Palaeoeco., 399, 246–259,
2014.
Ogg, J. G.: The Triassic Period, In, Gradstein, F. M., Ogg J, Smith A (eds.),
A geologic time scale 2004, Cambridge University Press, Cambridge, 271–306,
2004.
Ogg, J. G.: Triassic, in: The Geological Time Scale 2012, edited by:
Gradstein, F. M., Ogg, J. G., Schmitz, M., and Ogg, G., Elsevier, Amsterdam,
681–730, 2012.
Olsen, P., Geissman, J., Gehrels, G., Irmis, R., Kent, D., Martz, J., Mundil,
R., and Parker, W.: The Colorado Plateau Coring Project (CPCP): Providing a
precise numerical timescale for Triassic Earth system events and processes,
Soc. Vert. Paleont., Prog. Abst., Berlin, Germany, 5–8 November 2014,
198–199, 2014a.
Olsen, P., Geissman, J., Gehrels, G., Irmis, R., Kent, D., Mundil, R.,
Parker, W., Sha, J. G., Garza, R. M., Kurschner, W., and Bachmann, G.: The
Colorado Plateau Coring Project (CPCP): Chronostratigraphic Context for
Triassic-Jurassic Earth System Events and Processes, 1st Symposium of IGCP
632 in the 4th International Palaeontological Congress, Mendoza, Argentina,
876, 2014b.
Olsen, P., Geissman, J., Gehrels, G., Irmis, R., Kent, D., Mundil, R.,
Parker, W., Sha, J., Roberto-Molina Garza, R.-M., Kuerschner,
W., Bachmann, G., and Schaller, M.: The Colorado Plateau
coring project (CPCP): exportable chronostratigraphic context
for Triassic-Jurassic Earth System events and processes, Internat.
Geol. Cong., Abstracts, 35; 35th international geological 65
congress, Cape Town, South Africa, 27 August–4 September
2016, 2016.
Olsen, P. E. and Kent, D. V.: Milankovitch climate forcing in the tropics of
Pangea during the Late Triassic, Palaeogeo. Palaeoclim. Palaeoeco., 122,
1–26, 1996.
Olsen, P. E. and Kent, D. V.: Long-period Milankovitch cycles from the Late
Triassic and Early Jurassic of eastern North America and their implications
for the calibration of the early Mesozoic time scale and the long-term
behavior of the planets, Philos. T. Roy. Soc. London A, 357, 1761–1787,
1999.
Olsen, P. E., Kent, D. V., and Geissman, J. W.: Climatic, Tectonic, and
Biotic Evolution in Continental Cores: Colorado Plateau Coring Project:
Workshop St. George, Utah, 13–16 November 2007, EOS, EOS, Trans. Am.
Geophys. Union, 89, 2008.
Olsen, P. E., Kent, D. V., and Whiteside, H.: Implications of the Newark
Supergroup-based astrochronology and geomagnetic polarity time scale
(Newark-APTS) for the tempo and mode of the early diversification of the
Dinosauria, Earth Environ. Sci. Trans. Roy. Soc. Edin., 101, 201–229, 2011.
Olsen, P. E., Kent, D. V., Geissman, J. W., Mundil, R., Gehrels, G. E.,
Irmis, R. B., Whiteside, J. H., Morgan, F., and Schaller, M. F.: Filling the
Triassic geochronologic gap: a continuous cored record of continental
environmental change in western North America. Abstract GP42A-10 presented at
2013 Fall Meeting, AGU, San Francisco, CA, 9–13 December 2013.
Olsen, P. E., Geissman, J. W., Gehrels, G., Irmis, R. B., Kent, D. V.,
Mundil, R., Parker, W., Sha, J., Molina-Garza, R. S., Kuerschner, R.,
Bachmann, G. H., Schaller, M., Zakharova, N. V., and Colbert, M.: The
Colorado Plateau Coring Project (CPCP): A continuous cored Record of Triassic
continental environmental change in Western North America, AGU, 2014 Fall
Meeting, Abstracts, Paper 11510, PP31C-1145, 2014.
Olsen, P. E., Reid, J. C., Taylor, K., Kent, D., and Whiteside, J. H.:
Revised stratigraphy of Late Triassic age strata of the Dan River Basin
(Virginia and North Carolina, USA) based on drill core and outcrop data,
Southeastern Geology, 51, 1–31, 2015.
Olsen, P. E., Parker, W., Kuerschner, W., Huber, P., and Geissman, J.:
Implications of the stratigraphic results of the Colorado Plateau Coring
Project (CPCP): salt vs. plate tectonics vs. eustasy in the Late Triassic Chinle Formation, Internat. Geol. Cong.,
Abstracts 35; Paper number 4603, 35th International Geological Congress, Cape Town, South Africa, 27 August–4 September 2016, 2016.
Olsen, P. E., Mundil, R., and Kent, D. V.: CPCP Science Party, 2017,
Milankovitch cyclicity in the paleotropical, fluvial, Late Triassic age
strata recovered by the Colorado Plateau Coring Project (CPCP), PP53A-1099
presented at 2017 Fall Meeting, AGU, New Orleans, L.A., 11–15 December 2017.
Onoue, T., Sato, H., Yamashita, D., Ikehara, M., Yasukawa, K., Fujinaga, K.,
Kato, Y., and Matsuoka, A.: Bolide impact triggered the Late Triassic event
in equatorial Panthalassa, Nature Sci. Rep., 6, 29609, https://doi.org/10.1038/srep29609,
2016.
Ouimette, M. A.: Preliminary report on the Pintado Point maar, Petrified
Forest National Park, Nat. Park Ser., Paleont. Res. Abst., 2, 21, 1992.
Parker, W. G.: The stratigraphic distribution of major fossil localities in
Petrified Forest National Park, Arizona, Mus. North. Ariz. Bull., 62, 46–61,
2006.
Parker, W. G. and Irmis, R. B.: Advances in Late Triassic vertebrate
paleontology based on new material from Petrified Forest National Park,
Arizona, New Mexico Mus. Nat. Hist. Sci. Bull., 29, 45–58, 2005.
Parker, W. G. and Martz, J. W.: The Late Triassic (Norian)
Adamanian–Revueltian tetrapod faunal transition in the Chinle Formation of
Petrified Forest National Park, Arizona, Earth Environ. Sci. Trans. Roy. Soc.
Edin., 101, 231–260, 2011.
Parker, W. G., Ash, S. R., and Irmis, R. B. (Eds.): A Century of Research at
Petrified Forest National Park: Geology and Paleontology, Mus. North. Ariz.
Bull., 62, 187 pp., 2006a.
Parker, W. G., Irmis, R. B., and Nesbitt, S. J.: Review of the Late Triassic
dinosaur record from Petrified Forest National Park, Arizona, Mus. North.
Ariz. Bull., 62, 160–161, 2006b.
Ramezani, J., Bowring, S. A., Pringle, M. S., Winslow III, F. D., and
Rasbury, E. T.: The Manicouagan impact melt rock: A proposed standard for the
intercalibration of U–Pb and 40Ar/39Ar isotopic systems, Geochim. Cosmochim.
Acta Supp., 69, A321, 2005.
Ramezani, J., Hoke, G. D., Fastovsky, D. E., Bowring, S. A., Therrien, F.,
Dworkin, S. I., Atchley, S. C., and Nordt, L. C.: High-precision U-Pb zircon
geochronology of the Late Triassic Chinle Formation, Petrified Forest
National Park (Arizona, USA): Temporal constraints on the early evolution of
dinosaurs, Geol. Soc. Am. Bull., 123, 2142–2159, 2011.
Ramezani, J., Fastovsky, D. E., and Bowring, S. A.: Revised
chronostratigraphy of the lower Chinle Formation strata in Arizona and New
Mexico (USA): high-precision U-Pb geochronological constraints on the Late
Triassic evolution of dinosaurs, Am. J. Sci., 314, 981–1008, 2014.
Rasmussen, C., Mundil, R., Irmis, R. B., Keller, C. B., Giesler, D., and
Gehrels, G. E.: U-Pb Geochronology of non-marine Upper Triassic strata of the
Colorado Plateau (western North America): implications for stratigraphic
correlation and paleoenvironmental reconstruction, Am. Geophys. Union 2017,
Fall Meeting Abst., available at:
https://agu.confex.com/agu/fm17/meetingapp.cgi/Paper/266123 (last access: September 2018), 2017.
Rauzi, S. L.: Permian Salt in the Holbrook Basin, Arizona, Ariz. Geol. Sur.
Open File Rept., OFR-00-03, 1–20, 2000,
Reichgelt, T., Parker, W. G., Martz, J. W., Conran, J. G., van
Konijnenburg-van Cittert, J. H. A., and Kürschner, W. M.: The palynology of
the Sonsela Member (Late Triassic, Norian) at Petrified Forest National Park,
Arizona, USA, Rev. Palaeobot. Palynol., 189, 18–28, 2013.
Riggs, N. R., Lehman, T. M., Gehrels, G. E., and Dickinson, W. R.: Detrital
zircon link between headwaters and terminus of the Upper Triassic
Chinle–Dockum paleoriver system, Science, 273, 97–100, 1996.
Riggs, N. R., Ash, S. R., Barth, A. P., Gehrels, G. E., and Wooden, J. L.:
Isotopic age of the Black Forest Bed, Petrified Forest Member, Chinle
Formation, Arizona: an example of dating a continental sandstone, Geol. Soc.
Am. Bull., 115, 1315–1323, 2003.
Riggs, N. R., Reynolds, S. J., Lindner, P. J., Howell, E. R., Barth, A. P.,
Parker, W. G., and Walker, J. D.: The Early Mesozoic Cordilleran arc and Late
Triassic paleotopography: The detrital record in Upper Triassic sedimentary
successions on and off the Colorado Plateau, Geosphere, 9, 602–613, 2013.
Riggs, N. R., Oberling, Z. A., Howell, E. R., Parker, W. G., Barth, A. P.,
Cecil, M. R., and Martz, J. W.: Sources of volcanic detritus in the basal
Chinle Formation, southwestern Laurentia, and implications for the Early
Mesozoic magmatic arc, Geosphere, 12, 439–463, 2016.
Ruffell, A., Simms, M. J., and Wignall, P. B.: The Carnian Humid Episode of
the late Triassic: a review, Geol. Mag., 153, 271–284, 2016.
Schultz, L. G.: Clay minerals in Triassic rocks of the Colorado Plateau, U.S.
Geol. Sur. Bull. 1147-C, 71 pp., 1963.
Schwab, K. W., Miller, H. W., and Smith, M. A.: Source-rock potential of the
Lower Permian Supai Formation in the Blackstone Exploration Company Rocking
Chair Ranch No. 4 well, Navajo County, Arizona, Search and Discovery, Article
#80601, 21 pp., 2017.
Scott, R. A.: Aspects of the Palynology of the Chinle Formation (Upper
Triassic), Colorado Plateau, Arizona, Utah and New Mexico, U.S. Geol. Surv.
Open-File Rep. 82–937, 19 pp., 1982.
Schaller, M. F., Wright, J. D., and Kent, D. V.: Atmospheric pCO2
perturbations associated with the Central Atlantic magmatic province,
Science, 331, 1404–1409, 2011.
Schaller, M. F., Wright, J. D., and Kent, D. V.: A 30 Myr record of Late
Triassic atmospheric pCO2 variation reflects a fundamental
control of the carbon cycle by changes in continental weathering, Geol. Soc.
Am. Bull., 127, 661–671, 2015.
Schaller, M., Pettitt, E., and Knobbe, T.: A potential new proxy for
paleo-atmospheric pO2 from soil carbonate-hosted fluid inclusions
applied to pristine Chinle soils from the Petrified Forest 1A core, PP44A-05
presented at 2017 Fall Meeting, AGU, New Orleans, L.A., 11–15 December 2017.
Shoemaker, E. M., Case, J. E., and Elston, D. P.: Salt anticlines of the
Paradox Basin. Guidebook to the Geology of the Paradox Basin, Ninth Annual
Field Conference, 1958, 39–59, 1958.
Sigloch, K. and Mihalynuk, M. G.: Intra-oceanic subduction shaped the
assembly of Cordilleran North America, Nature, 496, 50–57, 2013.
Sigloch, K. and Mihalynuk, M. G.: Mantle and geological evidence for a Late
Jurassic–Cretaceous suture spanning North America, GSA Bull., 129,
1489–1520, 2017.
Stanley Jr., G. D.: Early history of scleractinian corals and its geological
consequences, Geology, 9, 507–511, 1981.
Steiner, M. B.: Rotation of the Colorado Plateau, Tectonics, 5, 649–660,
1986.
Steiner, M. B. and Lucas, S. G.: Paleomagnetism of the Late Triassic
Petrified Forest Formation, Chinle Group, western United States: further
evidence of “large” rotation of the Colorado Plateau, J. Geophys. Res.,
105, 25791–25808, 2000.
Stone, A., Brady, K., Noren, A., Olsen, P., Mundil, R., Kent, D., Irmis, R., Gehrels, G., Giesler, D., Lepre, C., Geissman, J., Haque, Z., and Rasmussen,
C.: CPCP, https://doi.org/10.17605/OSF.IO/5VD8U, 2016.
Suarez, C. A., Knobbe, T. K., Crowley, J. L., Kirkland, J. I., and Milner, A.
R.: A chronostratigraphic assessment of the Moenave Formation, USA using
C-isotope chemostratigraphy and detrital zircon geochronology: Implications
for the terrestrial end Triassic extinction, Earth Planet. Sc. Lett., 475,
83–93, 2017.
Tanner, L. H. and Lucas, S. J., The Triassic-Jurassic strata of the Newark
Basin, USA: A complete and accurate astronomically-tuned timescale?
Stratigraphy, 12, 47-65, 2015.
Tanner, L. H., Lucas, S. G., and Chapman, M. G.: Assessing the record and
causes of Late Triassic extinctions, Earth-Sci. Rev., 65, 103–139, 2004.
Therrien, F. and Fastovsky, D. E.: Paleoenvironments of Early Theropods,
Chinle Formation (Late Triassic), Petrified Forest National Park, Arizona,
Palaios, 15, 194–211, 2000.
Trendell, A. M., Atchley, S. C., and Nordt, L. C.: Facies analysis of a
probable large-fluvial-fan depositional system: the Upper Triassic Chinle
Formation at Petrified Forest National Park, Arizona, USA, J. Sed. Res., 83,
873–895, 2013.
Trotter, J. A., Williams, I. S., Nicora, A., Mazza, M., and Rigo, M.:
Long-term cycles of Triassic climate change: A new δ18O record from
conodont apatite, Earth Planet. Sc. Lett., 415, 165–174,
https://doi.org/10.1016/j.epsl.2015.01.038, 2016.
Trudgill, B. D.: Evolution of salt structures in the northern Paradox Basin:
controls on evaporite deposition, salt wall growth and supra-salt
stratigraphic architecture, Basin Res., 23, 208–238,
https://doi.org/10.1111/j.1365-2117.2010.00478.x, 2011.
Trujillo, K. C., Foster, J. R., Hunt-Foster, R. K., and Chamberlain, K. R.: A
U/Pb age for the Mygatt-Moore Quarry, Upper Jurassic Morrison Formation, Mesa
County, Colorado, Volumina Jurassica, 12, 107–114, 2014.
Walker, J. D., Geissman, J. W., Bowring, S. A., and Babcock, L. E.: The
Geological Society of America Geologic Time Scale, Geol. Soc. Am. Bull., 25,
259–272, https://doi.org/10.1130/B30712.1, 2013.
White, J. D. L.: Depositional architecture of a maar-pitted playa:
sedimentation in the Hopi Buttes volcanic field, northeastern Arizona,
U.S.A., Sed. Geol., 67, 55–84, 1990.
Whiteside, J. H., Olsen, P. E., Eglinton, T. I., Brookfield, M. E., and
Sambrotto, R. N.: Compound-specific carbon isotopes from Earth's largest
flood basalt province directly link eruptions to the end-Triassic mass
extinction, P. Natl. Acad. Sci., 107, 6721–6725, 2010.
Whiteside, J. H., Grogan, D. S., Olsen, P. E., and Kent, D. V.: Climatically
driven biogeographic provinces of Late Triassic tropical Pangea, P. Natl.
Acad. Sci., 108, 8972–8977, 2011.
Whiteside, J. H., Lindström, S., Irmis, R. B., Glasspool, I. J.,
Schaller, M. F., Dunlaveyh, M., Nesbitt, S. J., Smith, N. D., and Turner, A.
H.: Extreme ecosystem instability suppressed tropical dinosaur dominance for
30 million years, P. Natl. Acad. Sci., 112, 7909–7913, 2015.
Woody, D. T.: Revised stratigraphy of the lower Chinle Formation (Upper
Triassic) of Petrified Forest National Park, Arizona, Mus. North. Ariz.
Bull., 62, 17–45, 2006.
Zeigler, K. E., Parker, W. G., and Martz, J. W.: The lower Chinle Formation
(Late Triassic) at Petrified Forest National Park Southwestern U.S.A.: a case
study in magnetostratigraphic correlations, in: Terrestrial Depositional
Systems: Deciphering Complexes Through Multiple Stratigraphic Methods, edited
by: Ziegler, K. E. and Parker, W. G., 237–277, 2017.
Short summary
The Colorado Plateau Coring Project-1 recovered ~ 850 m of core in three holes at two sites in the Triassic fluvial strata of Petrified Forest National Park, AZ, USA. The cores have abundant zircon, U-Pb dateable layers (210–241 Ma) that along with magnetic polarity stratigraphy, validate the eastern US-based Newark-Hartford astrochronology and timescale, while also providing temporal and environmental context for the vast geological archives of the Triassic of western North America.
The Colorado Plateau Coring Project-1 recovered ~ 850 m of core in three holes at two sites in...